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Cognitive states, such as rest and task engagement, share an ’intrinsic’ functional network organization that is
subject to minimal variation over time and yields stable signatures within an individual. Importantly, there are
also transient state-specific functional connectivity (FC) patterns that vary across neural states. Here, we ex-
amine functional brain organization differences that underlie distinct states in a cross-sectional developmental
sample. We compare FC fMRI data acquired during naturalistic viewing (i.e., movie-watching) and resting-state
paradigms in a large cohort of 157 children and young adults aged 6-20. Naturalistic paradigms are commonly
implemented in pediatric research because they maintain the child’s attention and contribute to reduced head
motion. It remains unknown, however, to what extent the brain-wide functional network organization is com-
parable during movie-watching and rest across development. Here, we identify a widespread FC pattern that
predicts whether individuals are watching a movie or resting. Specifically, we develop a model for prediction of
multilevel neural effects (termed PrimeNet), which can with high reliability distinguish between movie-watching
and rest irrespective of age and that generalizes across movies. In turn, we characterize FC patterns in the most
predictive functional networks for movie-watching versus rest and show that these patterns can indeed vary as a
function of development. Collectively, these effects highlight a ’core’ FC pattern that is robustly associated with
naturalistic viewing, which also exhibits change across age. These results, focused here on naturalistic viewing,
provide a roadmap for quantifying state-specific functional neural organization across development, which may
reveal key variation in neurodevelopmental trajectories associated with behavioral phenotypes.

1. Introduction

Cognitive processes, including crucial abilities such as attention,
fluid intelligence, and language, arise from complex neural interactions
that are reflected in the brain’s large-scale functional organization. In
the adult brain, these interactions mature to a ‘trait-like’ pattern that is
relatively stable over time and subject to minimal day-to-day variability
(Gratton et al., 2018). This ‘intrinsic’ functional network organization is
indeed shared across brain states (e.g., rest and tasks) (Cole et al., 2014;
Fox et al., 2007). Although these functional connectivity (FC) patterns
yield stable signatures within an individual (Finn et al., 2015; Miranda-
Dominguez et al., 2014), there is also variation in FC patterns across cog-
nitive states such as attentional engagement (Rosenberg et al., 2020),
semantic judgment (Gratton et al., 2016) or motor tasks (Cole et al.,
2014). Thus, despite the existence of an intrinsic functional network or-
ganization that extends across brain states, these studies also support
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the existence of transient state-specific FC patterns that differentiate be-
tween rest and task and vary across cognitive states.

Cognitive states and the functional brain architecture that under-
lies them are not fixed across the lifespan, but rather are shaped by
neurodevelopment. A number of studies have examined the develop-
mental trajectory of the intrinsic functional organization of the brain
at ‘rest’ during early and late childhood (Fair et al., 2009; Gao et al.,
2015; Smyser et al., 2010; Supekar et al., 2009). Nevertheless, direct
comparisons of resting-state and task-based FC in childhood or compar-
isons of resting-state FC between children and adults are limited due
to the challenges of collecting fMRI data with children. Specifically,
younger children are often unwilling or unable to adequately comply
with the demands of resting-state scans, which require them to remain
awake and motionless during 6-10 min runs of data-collection. This is
especially problematic for resting-state paradigms because correlation-
based analyses such as FC measures are more sensitive to head motion
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than task activation analyses (Power et al., 2012). As a result, children
younger than school age are often scanned while performing attention-
grabbing tasks, asleep, or sedated rather than resting (Damaraju et al.,
2014; Dinstein et al., 2011; C. T. Ellis et al., 2020; Konishi et al.,
2002; Uematsu et al., 2012) (see reviews by (Cameron T. Ellis & Turk-
Browne, 2018; Snyder, 2016)).

Consequently, a main challenge in pediatric neuroimaging has been
to examine the brain’s functional network organization using paradigms
that are better suited for young children and that allow direct compari-
son with the adult brain unconfounded by differences in state. To avoid
developmental comparisons that involve sleep, sedation, or cognitive
tasks (which can be confounded by performance differences), a common
strategy has been to scan young children using ‘naturalistic paradigms,’
which consist of stimuli that necessitate rapid integration of continuous
real-time information (Bottenhorn et al., 2019; Sonkusare et al., 2019).
The most commonly implemented type of naturalistic paradigm in pe-
diatric research has, to date, been movies which provide a compelling
mixture of visual and auditory events to maintain the child’s cooperation
(e.g., language, face processing, social interactions, different camera an-
gles, music) and are amenable to FC analyses (i.e., identification of spa-
tially separate brain regions or voxels that have correlated BOLD signal
time-courses). Furthermore, movie-watching paradigms in the scanner
have been demonstrated as an efficient method of reducing motion in
children under the age of 10 (Greene et al., 2018; Vanderwal, Eilbott,
and Castellanos, 2019). Therefore, it is becoming a common method of
assessing the brain’s functional network organization in younger pop-
ulations. Importantly, the use of these two different paradigms, rest as
a predominant method in adult research and movie-watching in chil-
dren, requires an understanding of the similarities and differences in
functional network organization between these two contexts.

Despite the growing role of movie-watching paradigms in neurode-
velopmental research, it is still unclear to what extent the functional
network organization during movie-watching and rest are comparable in
the developing brain and how they differ across age. Prior work suggests
that the two states are associated with distinct functional network orga-
nizations. There are FC changes that are specific to resting-state, as well
as task-specific hubs (i.e., highly interconnected regions) in the fron-
toparietal, attention and default-mode networks, which are not observed
during rest (Cole et al., 2014; Dixon et al., 2017; Gilson et al., 2018).
Resting-state scans often exhibit a more distributed and stronger FC in
comparison to movie-watching paradigms. These differences are more
clearly observed in the visual, sensorimotor, default mode and dorsal-
attention networks (Lynch et al., 2018). Other studies have shown that
within-network connectivity in both visual and auditory networks in-
creases during rest, whereas connectivity between visual and language
networks increases during naturalistic-viewing (Betti et al., 2013). Fur-
thermore, movie-watching evokes inter-subject correlations (ISCs), or
time-locked responses that are shared across subjects, but reduced dur-
ing rest (Baldassano et al., 2017; Hasson et al., 2004, 2010; Pajula et al.,
2012; Simony et al., 2016). A recent study also showed that movie-
watching FC overlaps with ISC patterns, but only in temporal and occipi-
tal regions, and that this core pattern could be explained by a single prin-
cipal component (Demirtas et al., 2019). Overall these studies indicate
that movie-watching is associated with FC patterns specific to this at-
tentive and engaged brain state, which are not observed during resting-
state. Resting-state, on the other hand, often reveals more widespread
FC that modulates state-specific networks. Collectively, these studies
show that despite a common ‘intrinsic’ functional network organiza-
tion shared by both movie-watching and resting states, these two neu-
ral states exhibit differences in FC patterns that remain uncharacterized
across neurodevelopment.

Research on developmental changes in FC using resting-state
paradigms have shown both whole-brain and network-specific effects.
The neonatal brain already shows early formation of resting-state net-
works and a strong overlap with the mature adult brain (81%) (De Asis-
Cruz et al., 2015; van den Heuvel et al., 2015). Developmental changes
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in brain network organization during the first two years of life lead to the
establishment of sensory networks well before the formation of higher-
level cognitive networks (Eggebrecht et al., 2017; Gao et al., 2015).
Functional network maturation may extend until late childhood and
seems to be ultimately dependent on the network’s functional roles,
thus displaying complex within- and between-network time-dependent
changes (see Grayson and Fair (2017) for a recent review on develop-
mental changes in large-scale functional networks). Finally, anatomi-
cal data (i.e., cortical thickness) between early childhood and late ado-
lescence (5-18 years of age) further indicates that structural brain net-
works serving basic functions (e.g., primary sensorimotor regions) ma-
ture the earliest relative to networks supporting higher-order cogni-
tive functions (e.g., higher-order association and paralimbic regions)
(Khundrakpam et al., 2013).

Studies investigating age-related differences in FC during movie-
watching are, however, much more limited. One of the first studies that
examined the relationship between movie-related FC and development
identified a strong relationship between FC and age in a group of 44
2-6-year-old children (Long et al., 2017). Specifically, some networks
(e.g., the frontoparietal network) exhibited increased FC change with
age, whereas other networks exhibited more complex FC changes as
a function of age, such as local-to-distributed FC shifts (e.g., temporal
networks). Another set of studies in a group of girls aged 4-7 found
that age is positively associated with FC in sensory and higher-order
cognitive networks, further suggesting that attention engagement dur-
ing movie-watching in early childhood involves a distributed functional
network organization (Rohr et al., 2017, 2018). One of the few stud-
ies comparing movie-watching and resting-state FC across development
focused on 6-year-olds (Emerson et al., 2015). This study showed that
movie-watching in children elicits uncoupling between the visual and
dorsal-attention networks relative to rest. Furthermore, children exhibit
an adult-like pattern of network interactions among the dorsal-attention,
the default-mode and the frontal control networks. In contrast to adults,
however, children show marginally significant changes in the magni-
tude of these network-level interactions between movie-watching and
rest, which the authors characterize as an ‘immature’ pattern. Collec-
tively, these studies reveal a strong relationship between FC and age
across both resting and movie-watching states. Network-specific effects
seem to be characterized by i) an increase in FC with age, ii) a local-to-
distributed shift in brain functional organization and iii) modulation of
state-specific (movie versus rest) brain networks.

Crucially, to our knowledge, three core knowledge gaps remain un-
addressed in our understanding of the brain’s functional network or-
ganization during distinct cognitive states and associated developmen-
tal changes. 1) Although there is evidence for both intrinsic and, to a
lesser degree, state-specific FC patterns in the adult brain, the extent
to which a child’s unique FC signature is affected by cognitive state re-
mains relatively unexplored. 2) Despite initial evidence for movie versus
rest differences, no study has characterized whether FC patterns con-
sistently distinguish movie-watching from rest irrespective of age and
whether these patterns generalize across movies. 3) No study has exam-
ined whether such state-specific FC patterns are associated with large-
scale functional networks across the brain, and how these patterns vary
as a function of age.

To address these knowledge gaps, here we compare movie-watching
and resting-state fMRI data acquired from the same subjects. We hy-
pothesize that these two states will differentially engage the default
mode and dorsal-attention networks, networks associated with internal
and external attention, in addition to networks that have been asso-
ciated with processing auditory stimuli, such as the auditory and lan-
guage networks. Furthermore, we expect that FC, particularly between
networks, will be strengthened as a function of age. To test these hy-
potheses, we examine FC differences across movie-watching and resting
states and how these differences may vary as a function of age. Specifi-
cally, we characterize movie-watching versus resting-state FC fMRI data
in a group of 157 participants aged 6-20 from the publicly-available
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Healthy Brain Network (HBN) dataset (Alexander et al., 2017). We quan-
tify BOLD fluctuations during movie-watching and resting-state condi-
tions using a whole-brain data-driven FC approach. To identify patterns
that are predictive across both brain states and developmental trajec-
tories, we developed the Pred iction of Multi-L evel Neural Effec ts
(PrimeNet) framework. Specifically, the PrimeNet_modeling framework
was developed to concurrently test hypotheses related to within-subject
(i.e., movie versus rest) and across-subject state changes (i.e., age). This
multi-level modeling framework is specifically designed to address the
key knowledge gaps highlighted above and is implemented here to as-
sess how the effects of movie-watching map onto the developing func-
tional connectome.

Using this analytic framework, we identify a robust set of FC patterns
that are predictive of movie-watching relative to rest. We also explicitly
test whether we can train a predictive model based on the identified
FC features and irrespective of age. Furthermore, we use the Human
Connectome Project parcellation (Glasser et al., 2016) and the recently
developed brain-wide network partition (Ji et al., 2019) to establish
whether the predictive patterns are localized to specific networks across
the brain. Finally, building from this predictive set of FC features, we
test whether these effects differ as a function of age. Collectively, this
study highlights that there are robust and predictive movie-watching
versus rest (that is, cognitive-state-specific) widespread FC patterns that
are age-independent and show high overlap across different movies. In
addition, a subset of the most predictive movie versus rest FC patterns
is associated with specific large-scale functional networks. Finally, de-
velopmental status (i.e., age) interacts with the core predictive movie
versus rest FC pattern. These effects highlight a ‘core’ movie-rest FC
pattern, which serves as a basis for understanding the functional neu-
ral organization of naturalistic viewing. In turn, this predictive core FC
pattern provides an entry point for characterizing similarities and dif-
ferences in naturalistic viewing across development.

2. Materials and methods
2.1. Dataset

Data were obtained from the Healthy Brain Network (HBN) dataset,
which is openly available in 1,000 Functional Connectomes Project
and its International Neuroimaging Data-sharing Initiative (FCP/INDI)
and can be accessed at http://fcon_1000.projects.nitrc.org/indi/
cmi_healthy brain_network/. The HBN study was approved
by the Chesapeake Institutional Review Board (https://www.
chesapeakeirb.com/). Written informed consent was obtained from
participants ages 18 or older prior to enrolling in the study. Written
assent was obtained from participants younger than 18 and written
consent was obtained from their legal guardians. Data included in the
study were collected across two different sites in the United States.
Data from the first six releases (Data Release 6.0, 02/16/2019) were
considered for analysis. Subjects were included if the following criteria
were met: i) BOLD data met the requirements of the HCP minimum
processing pipelines (Glasser et al., 2013), ii) BOLD data passed visual
quality control (QC), iii) each BOLD run had more than 40% volumes
remaining after scrubbing, iv) subjects had participated in at least a
5-min resting scan and a 3.47-min movie scan and v) subjects received
no diagnosis or, if diagnosed, participants had no history of serious
medical or neurological disorder that would likely affect cognitive
functioning (i.e., a neurocognitive or depressive disorder, trauma,
schizophrenia, or obsessive-compulsive disorder). After implementing
these criteria, the original dataset with 1168 subjects was reduced
to data from 157 individuals ranging in age from 6-20 years (mean:
11, SD: 3.5) (Table 1) (Demographics by study site can be found in
Supplementary Table S1 and subject IDs in Table S6.) We conducted
secondary analyses on a subset of participants (n = 78) who had also
participated in a second 10 min movie scan and a second 5 min resting-
state scan. The HBN initiative focuses on the diagnosis of mental health
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and learning disorders in the developing human brain, thus providing
a comprehensive overview of the clinical psychopathology status of
each participant. In the selected dataset, a total of 63 individuals
received no diagnosis, whereas 75 individuals were classified as having
a neurodevelopmental disorder (attention deficit hyperactivity disorder
[ADHD] or a specific learning disorder) and 19 as having an anxiety
disorder (generalized anxiety disorder, social/separation anxiety or
specific phobia).

2.2. Neuroimaging data acquisition

102 subjects underwent data collection at the Rutgers Univer-
sity Brain Imaging Center (RUBIC) and 55 subjects at the CitiGroup
Cornell Brain Imaging Center (CBIC). Neuroimaging data acquired
at RUBIC were obtained using a 3.0 T Siemens Tim Trio, with
transversal slices parallel to the anterior-posterior commissure (AC-
PC) using a T2*-weighted gradient-echo, multi-slice echo-planar se-
quence [time repetition (TR)/time echo (TE)=800/30, flip angle=31,
field of view=216 x 216 mm, acquisition matrix = 90 x 90, voxel
size = 2.4 X 2.4 x 2.4 mm]. Data acquisition produced 370 volumetric
images per subject (66 slices/volume). Structural images were acquired
using a T1-weighted image (TR/TE/time to inversion = 2500/2.88, flip
angle = 8, field of view = 256 x 256 mm, acquisition matrix = 256 x 256,
voxel size = 1 x 1 x 1 mm), with sagittal slices parallel to the AC-PC
line. Neuroimaging data at the CBIC were obtained using a 3 T Siemens
Prisma following the same data acquisition protocol implemented at RU-
BIC. The acquisition of the two resting-state scans lasted 5 min each,
during which participants viewed a fixation cross located at the cen-
ter of the computer screen. Throughout the scan, participants were in-
structed to open or close their eyes at various points. The acquisition of
the first movie scan consisted of a 10 min clip of the movie ‘Despica-
ble Me’ (Coffin and Renaud, 2010). The second movie lasted 3.47 min,
during which participants viewed the animated short film ‘The Present’
(Frey, 2014). Both movies were played with English audio. The pro-
tocol included three additional scans, which consisted of calibration
scans to monitor gaze direction via predictive eye estimation regres-
sion (PEER scans) (Alexander et al., 2017). The scans were presented in
the following order across the two sites: rest 1 (5 min), peer 1 (1.9 min),
rest 2 (5 min), peer 2 (1.9 min), movie ‘Despicable Me’ (10 min), peer
3 (1.9 min), movie ‘The Present’ (3.47 min). For all subjects, we used
the first rest (rest 1) and the second movie (‘The Present’) to conduct
the main analyses in order to have a comparable number of frames per
scan session. We conducted secondary analyses with data from the first
movie (‘Despicable Me’) and the second resting-state run (rest 2) with
the subset of subjects (n = 78) who participated in these sessions and
whose BOLD data passed the established preprocessing criteria.

2.3. Data Preprocessing

The dataset was preprocessed in accordance with the Human Con-
nectome Project (HCP) minimal preprocessing pipelines (Glasser et al.,
2013). After HCP preprocessing and prior to parcellation, all BOLD im-
ages were mildly smoothed on the cortical surface and in the volume at
a kernel of 2 mm isotropic to deal with subtle misalignment differences
across development. Additionally, we implemented movement scrub-
bing following the guidelines described in (Power et al., 2012). Specifi-
cally, we computed the frame-to-frame signal intensity change between
each two timeframes and calculated their normalized root mean square
(RMS), divided by their mean intensity and multiplied by 100. This in-
dex reflects mean % change of the BOLD signal from frame to frame.
We excluded frames when RMS>3, as well as the frame preceding
and the 2 frames following the flagged frame. We also calculated an
estimate of frame-to-frame displacement per subject by summing the
displacement across all 6 rigid body movement correction parameters
per frame. We removed volumes where mean frame-to-frame displace-
ment (FD) estimate >0.5 mm across all parameters. Additionally, we
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Table 1

Demographics by Age Group. MovieTP=movie ‘The Present’. Parental education level is the average of the mother and father’s education and was determined based on the following scale: 3=less than Grade 7;
6=Grade 8-9; 9=Grade 10-11; 12=High School graduate; 15=partial college (at least one year); 18=4-year college; 21=graduate degree. tSNR (temporal signal-to-noise ratio) was determined as the ratio of the mean
signal for a given slice to the standard deviation across the relevant BOLD run, while excluding all non-brain voxels across all frames. Percent (%) frames refers to the percentage of frames that were included in the
final analysis. FD=Framewise Displacement. FD and DVARS mean values were calculated on the raw data. Only scores for behavioral surveys with at least 90% of the data (n=141) are shown, namely: the Strengths
and Weaknesses of ADHD Symptoms and Normal Behavior Scale (SWAN), the Autism Spectrum Screening Questionnaire (ASSQ), the Social Communication Questionnaire (SCQ), The Columbia Impairment Scale
(CIS), the WHO Disability Assessment Schedule (WHODAS) and the Inventory of Callous-Unemotional Traits (ICU).

Age Group 6 7 8 9 10 11 12 13 14 15 16 17-20
Characteristic M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD
Age years 6.3 0.6 7.5 0.3 8.6 0.3 9.5 0.3 105 03 115 03 125 03 135 03 145 0.2 154 03 164 0.2 18.3 1.3
Sex (% female) 44 — 41 — 60 — 44 — 56 — 25 — 22 — 54 — 25 — 63 — 50 — 20 —
Handedness % right 89 — 88 — 83 — 94 — 94 — 95 — 78 — 92 — 100 — 88 — 67 — 100 —
Parental education 178 33 168 4.7 16.2 43 162 4.2 168 44 158 45 148 56 144 52 169 3.1 146 55 16 4.3 152 36
Sample size 9 — 17 — 25 — 16 — 16 — 20 — 9 — 13 — 8 — 8 — 6 — 10 —
Diagnosis (% healthy) 25 — 42 — 41 — 40 — 35 — 47 — 33 — 50 — 40 — 30 — 43 — 40 —
tSNR - rest 59.8 19 644 143 667 168 704 138 71 108 694 13.7 66.1 16.7 737 125 78 59 70.5 176 686 9.6 705 9.1
tSNR - movie 704 176 634 164 705 155 673 16.8 725 19.2 672 174 704 132 758 14 73.2 119 723 98 62 7.9 659 172
Frames % (rest) 86 158  90.5 10 90.8 122 944 82 96.8 4 948 7 946 9 956 7.3 99.1 2 995 0.5 97 3.6 97 7.8
Frames % (movie TP) 86.7 17.8 86.2 11.8 922 85 90 153 923 103 932 8 95 5.8 92.7 10.1 942 76 98.7 08 929 63 949 6.7
FD (rest) 0.19 0.02 048 041 024 0.1 029 028 024 022 019 012 022 013 019 009 015 008 013 002 012 005 014 0.07
FD (movie TP) 0.52 0.6 0.5 046 029 012 028 0.21 033 038 022 009 024 013 0.21 0.11 0.2 0.17 0.2 0.12 0.17 0.06 0.2 0.16
DVARS (rest) 1.03  0.03 1.17 017 1.05 005 106 0.09 106 0.1 1.04 0.06 1.06 0.07 1.03  0.03 1.03 0.06 1.01 0.02 1.02  0.02 1.02  0.02
DVARS (movie TP) 1.09 013 1.19 022 1.09 008 1.07 0.12 1.1 0.19 1.06 0.05 1.07  0.08 1.04 004 106 009 104 006 105 004 106 0.08
SWAN (total score) 0.5 0.7 0.1 0.9 0.3 0.9 -0.1 13 0.2 0.6 -0.2 1.1 0.5 1.5 003 04 -0.1 1.2 -0.2 1.1 -0.2 1.2 0.9 0.6
ASSQ (total score) 43 5.9 2.1 24 4.5 6.8 35 43 3.1 33 1.6 24 6.3 6.6 3.1 2.6 7.2 2.1 24 2.7 1.9 1.8 1.6 1.9
SCQ (total score) 2 14 4.3 33 4.5 2.8 6.7 5.6 6.3 54 53 4.1 7 5.1 4.5 29 8.3 5 5.5 2.3 5.6 2.8 7.1 33
CIS (parent report) 7 4.2 8 5.7 9.1 6.5 7.7 7.2 6.8 52 4.7 6.1 10.1 6.7 102 8.1 5.7 7.2 125 63 9.4 9.1 13.5 12.5
WHODAS (parent report) 5.2 6.9 11.1 19.8 11.3 10.7 8.1 8.6 4.8 8.5 5.1 6.7 13.5 152 46 5.9 12.1 185 13 2.6 8.9 7.4 7 9.8
ICU (parent report) 21.2 14.1 228 54 193 74 22 8.7 196 89 224 77 196 9 186 6.7 234 127 256 74 24.1 105 298 12.4
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conducted supplementary analyses using more stringent FD values of
0.2 mm and 0.18 mm to examine the impact of FD on the predictive
model. These cutoffs were chosen after examining the effects of age
on head motion statistics, which include FD and DVARS measures (D
refers to the temporal derivative of timecourses and VARS to the root
mean square movement variance over voxels) (Power et al., 2012) (see
Supplementary Fig. S1 for visualizations of age-related effects on head
motion). Next, the censored volumes were interpolated using a cubic
spline function to preserve the overall BOLD frame number for each
participant (Power et al., 2012, 2014). Participants were excluded if
they had fewer than 40% frames remaining after scrubbing in any of
the conditions (movie or rest). This criterion was determined separately
for each condition to ensure that every BOLD run included in the study
had at least 40% of frames retained. Next, we removed additional BOLD
artifact using ‘nuisance’ regressors defined via subject-specific segmen-
tation derived from FreeSurfer (Fischl, 2012). Specifically, we isolated
subject-specific nuisance signals from the masks centered on the ventri-
cles, deep white matter and mean gray matter. We computed a regres-
sion model such that the nuisance signal was used as an independent
measure per each frame. The de-noised residual BOLD signal (i.e., af-
ter accounting for the nuisance covariation) was further band-pass fil-
tered to retain frequencies in the range of 0.008-0.09Hz. In addition,
we performed visual QC on BOLD images to ensure that all functional
data were correctly mapped onto the CIFTI-generated cortical surfaces.
BOLD temporal signal-to-noise (tSNR) ratio was calculated by comput-
ing the mean signal for all gray matter voxels across all BOLD frames
divided by the standard deviation across all frames in a given BOLD
run, but explicitly excluding all non-brain voxels (mean, SD and statisti-
cal tests across conditions for FD, DVARS, frames retained and tSNR can
be found in Supplementary Tables S2 and $3). To isolate parcel-level
and network-level signals we used the whole-brain CAB-NP parcellation
(Ji et al., 2019) derived from the HCP atlas (Glasser et al., 2016), which
includes 360 cortical parcels and 358 subcortical parcels assigned to 12
functional networks in CIFTI space. Parcel size and shape vary as a func-
tion of the alignment between functional and anatomical borders across
imaging modalities and can be found in Glasser et al. (2016).

2.4. Predictive modeling of state-specific multi-level neural effects
(PrimeNet)

Multi-level modeling and feature selection is outlined in Fig. 1. The
model was iteratively trained on 80% of the sample (n = 125), while
20% of the sample was held out (n = 32). The prediction of the multi-
level neural effects (PrimeNet) framework followed 3 sequential steps:
i) Inference, ii) Training, and iii) Prediction. The Inference step iden-
tifies those edges whose mean FC significantly differs between movie-
watching and rest FC matrices via a multi-level linear model (MLM).
Selection of the final set of edges is performed by comparing the perfor-
mance of a range of p-value thresholds via a support-vector machine
(SVM) binary classifier with leave-one-out cross-validation (LOOCV).
The Training step applies the top-performing p-value threshold to
movie/rest FC matrices and trains an SVM classifier across iterations
via LOOCV. The Prediction step applies the trained SVM model to the
held-out dataset and evaluates its performance using receiver operat-
ing characteristic (ROC) curves. Additionally, this step calculates the
area under the curve (AUC) and accuracy (ACC) for each classifier out-
put. The default parameter in PrimeNet is to run 1000 iterations of the
training and prediction step to assess the predictive value of the model.
This section will discuss each of these steps in detail.

In the present study, we first input the FC matrices for 80% of the
sample into an MLM as part of the Inference step. As explanatory in-
dependent variables we included state (movie or rest), age, diagnosis
(no diagnosis or presence of any DSM [Diagnostic and Statistical Man-
ual of Mental Disorders] diagnosis), temporal SNR and percentage of
frames analyzed per subject. We additionally ran supplementary anal-
yses with FD and DVARS as covariates to comprehensively account for
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the effects of head motion. As random effects, we included intercepts for
subjects, as well as by-subject random slopes for the effect of state to ac-
count for within-subject variation between rest and movie FC matrices.
In order to establish the cutoff for selection of edges that are predic-
tive of movie vs rest, we computed the MLM model sweeping across a
range of p-values from Bonferroni corrected (1.9 x 10~7) to 0.05 (from
1.9 x 1077 to 3 x 1077 in increments of 1 x 102, from 3 x 107 to
0.0001 in increments of 1 x 1077, and from 0.0001 to 0.05 in incre-
ments of 0.0001). To assess each p-value performance on the training
dataset, we used a single-feature SVM binary classifier with a linear
kernel. Specifically, for each subject, Fischer’s r-to-z values (Fz) for the
selected edges were summed into a single value per scan, which resulted
in two values per subject (one for the movie scan and one for the rest
scan) (a schematic of PrimeNet step for identification of predictive edges
is provided in Supplementary Fig. $2). These summary values served
as input into the SVM classifier. For each classifier run, we performed
ten-fold cross-validation across a range of values of the cost parame-
ter (0.001,0.01,0.1,1,5,10,100) and selected the cost with the lowest
cross-validation error rate following the recommendations outlined in
(James et al., 2013) (see Supplementary Fig. S3 for a schematic of the
SVM workflow). The top performing p-value was retained and used to
select the predictive edges of movie versus rest.

Next, in the Training step, we used an SVM binary classifier to test
whether whole-brain FC patterns can be used to distinguish between rest
and movie scans. First, we ran 1,000 iterations of the MLM. For each it-
eration of the model, a subset of subjects (80%) was randomly selected
and the corresponding movie and rest FC matrices were used as input to
the MLM. After running the MLM, we masked each subject’s FC matrices
corresponding to the rest and movie scans with the edges that survived
after applying the top-performing p-value threshold. Next, for each sub-
ject, Fz values corresponding to the predictive edges were summed into
a single summary value for each movie/rest scan. These summary values
were in turn used to train an SVM classifier to assess predictive accuracy
of the selected edges. Specifically, we computed 1,000 cross-validation
runs of the SVM classifier on the training dataset using LOOCV and fol-
lowing the kernel and cost parameters noted above. In each repetition
of the LOOCV, summary values from a single subject (one rest scan and
one movie scan) were used as the validation data and the remaining
data were used as training. The classifier output consisted of the state-
specific label (rest or movie) for each of the observations in the training
dataset.

This SVM model was then tested on the held-out dataset (20% of
the sample, randomly selected in each iteration) as part of the Predic-
tion step. We employed ROC curves to quantify the performance of the
SVM classifier. The ROC curve plots the true positive rate (TPR or sen-
sitivity) against the false positive rate (FPR or 1-specificity) at various
thresholds. The TPR or sensitivity is calculated as the proportion of scans
correctly classified as movie-watching scans. The FPR (1-specificity) is
calculated as the proportion of resting-state scans incorrectly classified
as movie-watching scans. Additionally, we calculated the AUC, the area
between the ROC curve and the x-axis, which can be interpreted as the
probability that the classifier will accurately classify a randomly drawn
pair of scans. We also calculated accuracy of the classifier for all 1,000
iterations of the classifier, which corresponds to the ratio of the number
of movie/rest correct predictions to the total number of input samples.
Finally, we identified the predictive edges of brain state (movie or rest)
by visualizing those edges that survived across 1,000 iterations of the
model. We refer to this set of edges as state-specific predictive edges.

2.5. Network-level differences between movie & rest

We calculated mean FC (Fz) values for all parcels predictive of state
(movie vs. rest) and associated networks using the CAB-NP parcellation
(Glasser et al., 2016; Ji et al., 2019). Next, to qualitatively assess dif-
ferences across these predictive network clusters between movie and
rest FC matrices, we computed one-way analyses of variance (ANOVA)
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Fig. 1. PrimeNet Workflow. Inference.
FC=Functional connectivity, LOOCV=Leave-
one-out cross-validation, MLM=Multi-level
model, SVM=Support-vector machine, ROC
curve=Receiver = Operating  Characteristic
curve. FC matrices for the training dataset
(80% of the sample) are input into a multi-
level model (MLM) for each condition (e.g.,
movie-watching and resting-state). Next, the
selected explanatory independent variables
(predictors) and covariates are input into
the model. Two FC matrices are input per
subject: movie-watching and resting-state
FC matrices. The output of the MLM is two
matrices per independent variable with either
a B statistic or p-value per edge in the FC
matrices. Identification of the p-value cutoff
for selection of predictive edges is performed
by first thresholding the matrices iteratively
across p-values ranging from Bonferroni cor-
rected 1.9e-07 — 0.05 (p-value sweep). For each
p-value threshold, a predictive Support-Vector
Machine (SVM) model with Leave-One-Out
Cross-Validation (LOOCV) is built using the
selected edges on the training dataset. The
predictive value of each p-value threshold is
assessed via ROC curves, model accuracy and

p-value(s)

(e-g., ROC curves) .
area under the curve (AUC). Training. The top

performing p-value(s) is retained and the MLM

Output S statistic &

p-value matrixes for
independent
variables

is re-run across 1K iterations. In each iteration,
the selected p-value threshold is used to iden-
tify the predictive edges. Next, FC values for
the predictive edges are summed into a single
summary value for each rest/movie scan. A
binary predictive model is then built via SVM
for the selected edges and cross-validated using
LOOCV. The output is the predictive state
category (movie or rest) for each observation
in the training dataset. Prediction. In each

Identify/visualize
edges that survive
across 1k iterations

iteration, the trained SVM model is applied to the left-out dataset (20% of the original sample) after calculating single summary values per scan in the test dataset.
The output is the predictive state category for each scan in the test dataset. The SVM model prediction is evaluated via ROC curves. Mean accuracy, mean AUC and
corresponding visualizations are created. The final set of maximally predictive edges is computed via identification of edges that survive across 1K iterations of the

model.

for the effect of state (movie versus rest) on mean FC for each of the
predictive networks.

2.6. Age-related effects: movie versus rest prediction accuracy and
network-level FC differences

To examine accuracy of the predictive model across age, we first cal-
culated mean predictive accuracy for all age groups in both training and
test datasets across 1,000 iterations of PrimeNet. Second, to examine the
relationship between age and mean FC in the predictive networks, we
computed linear, quadratic and cubic regressions with age as predictor
and mean FC as dependent variable for each predictive network clus-
ter (Madhyastha et al., 2018). As covariates, we added diagnosis status
(no diagnosis or diagnosed), site, FD and DVARS. Finally, we visual-
ized mean FC for each of the predictive networks in the youngest and
oldest groups of subjects to highlight FC differences across age for the
predictive parcels and associated networks.

The data that support the findings of this study are openly available
in 1,000 Functional Connectomes Project and its International Neu-
roimaging Data-sharing Initiative (FCP/INDI), which can be found at
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/.
We are currently developing a manuscript describing the PrimeNet
framework and anticipate that the code will be released to the wider
community shortly after publication. In the meantime, the code is
available from the corresponding authors upon reasonable request.

3. Results

3.1. Predictive modeling of state-specific (movie vs rest) multi-level neural
effects

First, we examine whether there is a set of FC features that differen-
tiate between naturalistic viewing (i.e., movie) and rest. The presence of
such a feature set would provide evidence for state-specific FC patterns
in a developmental sample.

Fig. 2A shows the unthresholded FC matrix from the subtraction
movie-rest with Fz values shown for all edges for the training dataset us-
ing 80% of the original sample (n = 125). The matrix shows that movie-
watching modulates brain-wide FC, particularly by reducing within-
network FC (e.g., visual 1 [V1]), whereas it seems to elevate coupling of
specific networks (e.g., default network with visual 2 [V2]) (FC matri-
ces for movie-watching and rest BOLD acquisitions separately are given
in Supplementary Fig. S4). Additionally, we visualized FC for a sin-
gle V1 parcel in both the unthresholded and Bonferroni thresholded
FC matrices to corroborate these results (Figs. 2B & C) (FC visualiza-
tions with FD motion cutoffs of 0.2 mm and 0.18 mm can be found
in Supplementary Figs. S5 & S6). To identify FC predictive features
of movie versus rest, we ran an MLM per edge of the FC matrix using
FC values from both rest and movie scans as dependent variable and
state (rest or movie) as the primary independent variable. As covari-
ates, we included age, diagnosis status (no diagnosis or diagnosed) and
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Fig. 2. Brain-wide Differences in Functional
Connectivity Between Movie and Rest Across
Development with the Movie ‘The Present’.
BC=Bonferroni corrected, LOOCV=Leave-one-
out cross-validation. A. Unthresholded func-
tional connectivity (FC) matrix (movie-rest dif-
ference) derived from the CAB-NP parcella-
tion with Fz values shown for all edges.
The matrix highlights the differences between
movie-watching and rest in the training dataset
(n=125, 80% of the original sample). B. Number
of frames retained after scrubbing for resting-
state and movie-watching conditions. Error bars
reflect standard deviation. C. FC brain map
seeded from the visual 1 network (V1) with Fz
values shown for all parcels. D. FC map seeded
from V1 showing only those parcels that sur-
vive at Bonferroni corrected (BC) p-value (p-
value=1.9 x 1077). E. ROC curves quantify-
ing performance of the support-vector machine
(SVM) binary classifier after sweeping across a
range of p-values from 1.9 x 1077 - 0.05 to
. identify the top-performing threshold for edge
’ selection. F. ROC curves quantifying the per-
formance of the training classifier using a BC
p-value threshold of p=1.9 x 10~7. Each ROC
curve represents a single SVM iteration using
LOOCYV for a total of 1K iterations. The solid blue
line represents the average across the 1K iter-
ations. We calculated the area under the curve
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head motion statistics (FD, DVARS, % frames, tSNR; see Methods for
a complete description), along with corresponding interactions. Next,
threshold for edge selection was established by running an SVM binary
classifier with a linear kernel on the training dataset and sweeping across
a range of p-value cutoffs from Bonferroni corrected 1.9 x 1077 to 0.05.
The classifier trained on the Bonferroni corrected 1.9 x 107 p-value
yielded the highest performance (accuracy = 87%, sensitivity = 88%,
specificity = 86.4%, AUC = 0.91) (Fig. 2D).

Having established a p-value threshold for edge selection, we ran
1,000 iterations of the MLM and used Bonferroni corrected p-value
1.9 x 1077 to select the relevant edges for each iteration. Next, we
used an SVM classifier to test if movie-watching and rest states can
be predicted from FC features. Specifically, the features selected in
each of the 1,000 iterations were used to train single-feature SVM
binary classifiers using LOOCV (mean accuracy=88%, mean sensitiv-
ity = 87.6%, mean specificity = 87.8%, AUC = 0.92, Fig. 2E). Finally,
we identified the edges that survived across all 1,000 iterations of the
model from the main effect of state (movie versus rest) to qualita-
tively assess the differences between movie and rest (Fig. 2F). The fi-
nal set of predictive edges consisted of 154 parcels associated with
ten functional networks (auditory [5 parcels], cingulo-opercular [13
parcels], default-mode [33 parcels], dorsal attention [9 parcels], fron-

toparietal [9 parcels], language [11 parcels], posterior-multimodal [8
parcels], somatomotor [8 parcels], V1 [6 parcels] and V2 [52 parcels])
(Fig. 2G).

We applied this cross-validated trained model to the held-out test
datasets (20% of the sample, n = 32) across the 1,000 iterations (mean
accuracy = 89%, mean sensitivity = 88.6%, mean specificity = 89%,
AUC = 0.93, Fig. 2H). Importantly, training datasets (80% of the sam-
ple) and test datasets were randomly selected for each iteration of the
model. These results indicate that the classifiers yielded highly compara-
ble performance in both the training and test datasets across iterations.
In addition, and to evaluate the effect of FD cutoff on the predictive
model, we ran 1,000 iterations of PrimeNet with the same data and
FD cutoff <0.2 mm. After excluding subjects with <40% of frames re-
tained, the final dataset consisted of 126 subjects. We observed a slightly
higher predictive accuracy in both training (mean accuracy=91.7%,
mean sensitivity=92.3%, mean specificity = 91%, AUC = 0.95, Fig. S6)
and testing (mean accuracy = 90.3%, mean sensitivity = 89.9%, mean
specificity = 90.4%, AUC = 0.94) datasets relative to the results obtained
with FD<0.5 mm. The final set of predictive edges mapped onto a more
restricted set of parcels that overlapped with the set of FC features iden-
tified with a scrubbing criterion of FD <0.5 mm. This set of parcels con-
sisted of 30 parcels, which were associated with five functional networks
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Fig. 3. Predictive Accuracy Across Movies
as a Function of Movie Scan Length. Movie
TP=Movie “The Present”, Movie DM=Movie
“Despicable Me”, TPR=True Positive Rate,
FPR=False Positive Rate. A. Screenshots of the
first scene in each truncated BOLD run included
in the analyses starting at 75 frames (1 min)
for each of the movies. BOLD runs were trun-
cated every 25 frames (20 sec). B. Predictive
accuracy across PrimeNet runs as a function
of the number of BOLD frames from each of
the movies included in the analysis. Each data
. point represents mean predictive accuracy af-
ter running PrimeNet across 500 iterations for
/A ST e corresponding truncated BOLD run and the
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movie and rest conditions have equal number of frames. C. ROC curves quantifying the performance of the classifier with data from the movie TP. Each ROC curve
represents the average accuracy across 500 iterations for a given truncated movie BOLD run and the full resting-state run. D. ROC curves quantifying the performance
of the classifier with data from the movie DM. Each ROC curve represents the average accuracy across 500 iterations for a given truncated movie BOLD run and the

full resting-state run.

(frontoparietal [1 parcel], language [1 parcel], posterior-multimodal [1
parcel], V1 [3 parcels] and V2 [24 parcels]).

We conducted additional analyses with a second longer movie (‘De-
spicable Me’, 10 min) to examine i) generalizability of predictive accu-
racy across movies and ii) the effect of the number of BOLD frames (i.e.,
scan length) on state prediction. For these analyses, we used a subset
of the data (n = 78) from the initial sample, which consisted of data
from those participants who had also completed a movie-watching ses-
sion with the movie “Despicable Me” and whose BOLD data passed the
established preprocessing criteria.

To assess whether predictive accuracy of FC features generalizes
across movies, we employed the model trained on the shorter 3.47 min
movie ‘The Present’ (movie TP) to predict brain state on data from the
longer movie ‘Despicable Me’ (movie DM). We first ran PrimeNet with
the movie TP and the same resting-state data to confirm no differences
in the results due to the smaller sample size (training dataset: mean ac-
curacy = 94.8%, mean sensitivity = 97.1%, mean specificity = 92.4%,
AUC = 0.965; testing dataset: mean accuracy = 94.9%, mean sensitiv-
ity = 96.4%, mean specificity = 93.4%, AUC = 0.97). The final set of
predictive edges mapped onto 57 parcels associated with seven func-
tional networks (default-mode [2 parcels], dorsal attention [3 parcels],
frontoparietal [2 parcels], language [2 parcels], posterior-multimodal
[2 parcels], V1 [3 parcels] and V2 [42 parcels]). Next, we applied the
trained model to data from the movie DM. The results showed similar,
albeit slightly lower, predictive accuracy (mean accuracy = 90%, mean
sensitivity = 87%, mean specificity = 91%, AUC = 0.93) for this dataset.

Additionally, we ran 1,000 iterations of PrimeNet using only the
movie DM and the same 5 min resting-state session. All three steps (In-
ference, Training and Testing) were implemented with the exact same
parameters. We observed a slightly lower mean predictive accuracy
with this movie for both the training (80% of sample, n = 63) (mean
accuracy = 87%, mean sensitivity = 83%, mean specificity = 89%,
AUC = 0.91) and test datasets (20% of sample, n = 15) (mean ac-
curacy = 88%, mean sensitivity = 85%, mean specificity = 91%,
AUC = 0.91). Relative to the set of predictive FC features previously
identified with the movie TP, the final set of features showed 82% over-
lap. Specifically, the set of predictive features across the two movies
shared 46 parcels, which were associated with six functional networks
(shared predictive parcels across movies: default-mode [2 parcels], dor-
sal attention [1 parcel], frontoparietal [1 parcel], language [1 parcell,
posterior-multimodal [1 parcel], V1 [1 parcel] and V2 [39 parcels]) (FC
visualizations can be found in Supplementary Fig. S7).

Finally, to examine whether the number of frames input into the
model impacts predictability of brain state, we truncated the movie

BOLD runs iteratively in increments of 25 frames (20 sec) by starting
at 75 frames (1 min) and extending the movie to its full length. For
each truncated BOLD run, we computed 500 iterations of PrimeNet us-
ing the corresponding truncated movie scan and the full resting-state
scan (375 frames). This process was implemented separately for each
movie. We report here the results of applying the models trained with
the truncated BOLD runs to the test datasets across the two movies. For
the shorter movie (movie TP), we observe a predictive accuracy of 89%
at 75 frames, which increases to 95% at 100 frames and remains stable
across the remaining BOLD run (mean accuracy: 95.3) (Fig. 3A-B). For
the longer movie (movie DM), we observe a lower predictive accuracy at
75 frames (79%), which increases to 94.3% at 100 frames and remains
relatively stable until 225 frames (mean accuracy: 94%) (Fig. 3A-B).
Crucially, in the longer movie, predictive accuracy starts to decrease
at 250 frames with the lowest accuracy achieved at 350 frames (65%),
after which there is a relatively steady increase in predictive accuracy
until the end of the run as a function of the number of frames included
in the model. This drop in accuracy between 250-350 frames coincides
with two critical moments in the movie: i) the bedtime story that started
the movie clip ends at 250 frames and ii) there is a one-minute scene be-
tween frames 275-350 in which a new character appears and the conver-
sation appears decontextualized with references to earlier scenes of the
movie (not shown in the clip) that the participants need to infer. Mean
ROC curves across iterations for each truncated movie BOLD run are
shown in Figs. 3C-D for movie TP and movie DM respectively. Addition-
ally, we conducted the same analysis with the truncated movie BOLD
runs, but this time using a longer resting-state run, which was the result
of concatenating the two resting-state runs (10 min total, 750 frames).
Specifically, we used the same dataset (n = 78), but also included data
corresponding to the second resting-state session for the subset of par-
ticipants who participated in this session and whose resting-state BOLD
run passed the established preprocessing criteria (n = 58). The results
showed a similar trend for both movies and significantly lower mean
predictive accuracy for the movie TP when the concatenated resting-
state scan was used for state prediction (p < 0.001). No differences in
predictive accuracy were observed for the movie DM when the second
resting-state was added to the model (p = 0.11) (Supplementary Figs.
$8-59).

3.2. Network-level differences between movie & rest

Having shown that FC features reliably distinguish between movie
and rest and generalize across movies, we now turn to the predictive net-
work areas (i.e., network clusters) that are associated with this effect.
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Fig. 4. Characterizing Network-Level Func-
tional Connectivity During Movie & Rest.
Rest. FC=Functional connectivity, V2=Visual 2
network, PMM=Posterior-multimodal network.
A. Resting-state FC brain map with mean Fz val-
ues shown for all predictive parcels. B. Thresh-
olded FC matrix with Fz values for all predictive
networks. C. Left: FC brain map seeded from a
V2 parcel with Fz values for all predictive edges.
Right: FC map seeded from a PMM parcel with
Fz values for all predictive edges. Middle: Un-
thresholded FC matrix with Fz values shown for
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Specifically, we characterize mean FC across parcels and networks as-
sociated with the edges (i.e., brain connections) identified as predictive
of state (movie versus rest).

We first examine mean FC across predictive parcels/networks during
rest and movie-watching independently. Fig. 4A shows an FC map for
the resting-state condition with mean Fz values for each of the predictive
parcels, which reveals strong positive FC of visual and default networks.
Network-level FC visualization (Fig. 4B) reveals positive coupling of vi-
sual networks (V1 and V2) and of V1 and dorsal-attention networks.
Seed-based FC brain maps allow exploration of mean FC for a given
parcel with all other predictive parcels. For visualization purposes, we
focus on parcels from a sensory network (V2) and a higher-order cog-
nitive network (posterior-multimodal [PMM]), which can be visualized
on the unthresholded FC matrix in Fig. 4C. The V2-seeded brain map
reveals strong FC between V1 and V2, whereas the PMM-seeded brain

map shows primarily low FC with areas of the language network. As for
the movie-watching condition, an FC brain map with mean Fz values for
each of the predictive parcels (Fig. 4D) shows that movie-watching mod-
ulates FC of networks associated with higher-order cognitive function-
ing (language and PMM). Between-network FC reveals strong coupling
between PMM and language/V2 networks (Fig. 4E). Coupling between
PMM and language/V2 parcels can also be observed in the PMM-seeded
brain map shown in Fig. 4F.

Next, we focus on differences in FC between movie and rest across
networks. We analyzed mean FC for the movie-rest difference across all
parcels/networks associated with the identified state-specific predictive
edges. In Fig. 5A, an FC brain map with mean Fz values for each predic-
tive parcel reveals stronger positive FC in language network areas during
movie-watching relative to rest. In contrast, resting-state is character-
ized by increased FC in areas of the visual and default-mode networks.
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A between-network FC matrix visualization shows a stronger coupling
of language and PMM networks during movie-watching relative to rest
(Fig. 5B). There is also a stronger coupling of dorsal-attention network
clusters with visual networks (V1 and V2) during resting-state relative to
movie-watching. In addition, seed-based maps indicate stronger within-
network FC in V2 during rest relative to movie-watching (Fig. 5C). In
contrast, PMM and language networks show stronger between-network
FC during movie-watching relative to rest (Fig. 5C). Seed-based FC maps
for additional movie-rest predictive network clusters are provided in
Supplementary Fig. S10.

An overall ANOVA on the effect of brain state (movie versus rest) on
FC for each of the ten predictive network clusters showed that movie-
watching is characterized by increased FC in auditory, language and
PMM networks relative to rest (auditory: F(1) = 127.7, p < 0.001;
language: F(1) = 280.1, p < 0.001; PMM: F(1) = 339.2, p < 0.001),
whereas resting-state is characterized by increased visual and dorsal-
attention FC relative to movie-watching (V1: F(1) = 348.5, p < 0.001;
V2: F(1) = 522.8, p < 0.001); dorsal-attention: F(1) = 355.2, p < 0.001.
These results are illustrated in Fig. 6 (ANOVA results for each of the
predictive network clusters can be found in Supplementary Table S4).

3.3. Age-related effects: movie versus rest prediction accuracy and
network-level differences

The results described so far reveal consistent differences in FC dur-
ing movie-watching versus rest across childhood, adolescence, and early
adulthood. Additionally, the results indicate that distinct functional net-

FC for Predictive Networks

FC for Visual 2 & PMM Network Seeds Across Predictive Parcels

Posterior-Multimodal
Somatomotor
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Fig. 5. Characterizing Network-Level Func-
tional Connectivity for the Movie-Rest Differ-
ence. FC=Functional connectivity, V2=Visual 2

C. Opercular 05 05 network, PMM=Posterior-multimodal network.
Default A. Movie-Rest FC brain map with mean Fz val-

D. Attention Fz ues shown for all predictive parcels. B. Thresh-
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Somatomotor Right: FC map seeded from a PMM parcel with

. Visual 1 Fz values for all predictive edges. Middle: Un-

. . . Visual 2 thresholded FC matrix with movie-rest Fz values

for all edges. The gray dotted lines indicate par-
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Fig. 6. Within-Network Functional Con-
nectivity Differences Between Movie &
Rest. FC=Functional connectivity, M=Movie,
R=Rest. Error bars reflect standard error of
the mean. A. Mean FC (Fz) across predic-
tive network clusters during rest. B. Mean FC
(Fz) across predictive network clusters during
movie. C. Mean FC (Fz) across predictive net-

Visual1 work clusters for the movie-rest difference.

Visual2

work clusters exhibit robust differences in widespread coupling across
the two states. Next, we characterize performance of the predictive
model by age group and examine whether there are differences in
resting-state and movie-watching FC across predictive parcels/networks
as a function of age.

First, we visualize mean predictive accuracy across 1000 iterations of
PrimeNet for both training and test datasets as a function of age (Fig. 7).
State-specific predictive accuracy increases with age for both movie-
watching and rest states. The results of a mixed model ANOVA with a
between-subject factor of age group (i.e., 6-9,10-15,16-20) and within-
subject brain state (i.e., rest versus movie) showed a trend for an inter-
action between age group and brain state (F(2,154 = 2.78, p = 0.065).
Individual ANOVAs by age group showed that brain state predictions
were more accurate for the youngest children (6 to 9-year-olds) when
using movie-watching data relative to resting-state data (p = 0.019). In
contrast, model predictions showed no differences in predictive accu-
racy between rest and movie-watching data in early adolescents (10 to
15-year-olds, p = 0.79) and late adolescents/young adults (16 to 20-
year-olds, p = 0.23).

To examine age-related changes in mean state-specific (movie ver-
sus rest) FC across predicted parcels and network clusters, we computed
multiple linear regressions for each of the ten network clusters predic-
tive of brain state. We included age as a predictor and mean movie-
rest FC as the dependent variable. As covariates, we included diagnosis
status (no diagnosis or diagnosed), site, mean FD and mean DVARS.
We ran two additional multiple regression models with age either as
a quadratic or cubic term. The results revealed age-effects across four
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network clusters: auditory, language, PMM and V2. To illustrate these
effects, we focus on two networks that show a strong coupling between
them: the language and PMM networks. A linear regression model pro-
vided the best fit for the language network (p = 0.03) (Fig. 8B) whereas
a quadratic model yielded the best fit for the PMM network (p = 0.01)
(Fig. 8D) (results for all networks are provided in Supplementary Ta-
ble S5; visualizations of best fits for auditory and V2 networks are pro-
vided in Supplementary Fig. S11). Importantly, these effects hold af-
ter controlling for potential covariates (i.e., diagnosis status, site, FD
and DVARS). Changes in mean FC across age for the language and
PMM network clusters are visualized in Figs. 8A & 8C respectively. The
lowest mean FC values were observed in the groups of 6- and 7-year-
olds. Qualitatively, state-specific (movie-rest) FC across the language
and PMM network clusters exhibits a steady increase between 6 and 9
years of age and reaches a peak in the group of 11-year-olds (mean FC
for all predictive networks across age can be found in Supplementary
Fig. S12).
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Finally, to assess FC changes in naturalistic viewing across age, we vi-
sualized mean movie-rest FC in the youngest and oldest participants: 6—
7-year-olds (n = 26) and 16-20-year-olds (n = 16) (FC brain maps for all
age groups are provided in Supplementary Fig. S13). We observe key
differences between these two groups with respect to their within- and
between-network mean FC. First, overall FC across predictive parcels
is stronger in late adolescents/young adults relative to children. This
is observed particularly in areas of the language, V1 and V2 networks.
However, a few areas in the somatomotor network reveal stronger mean
FC in children (Figs. 9A & 9D). Second, adolescents/young adults show
a stronger coupling of the language network cluster with PMM and de-
fault networks relative to mean FC in children (Figs. 9B & 9E). Brain
maps seeded from the language and PMM networks provide further vi-
sualization of the coupling between these two networks (Figs. 9C-D &
F-G). In contrast, children exhibit a stronger coupling between areas
located in the frontoparietal and dorsal-attention networks relative to
adolescents/young adults.



S. Sanchez-Alonso, M.D. Rosenberg and R.N. Aslin

MOVIE - REST (6-7-year-olds, n=26)

FC for Predictive Parcels

FC for Predictive Networks

Neurolmage 229 (2021) 117630

Fig. 9. Characterizing FC Differences
Between Movie & Rest Across Age.
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4. Discussion

Understanding the brain’s functional network organization during
distinct cognitive states and associated developmental changes remains
a key knowledge gap in characterizing the neural bases of higher
cognitive functioning in the developing brain. Here we use a novel
data-driven approach, Pred iction of Multi-L evel Neural Effec ts
(PrimeNet), to dlstlngulsh resting-state ‘from movie- watchmg FC pat-
terns in a cross-sectional developmental sample from 6 to 20 years of
age. We demonstrate that whole-brain FC can reliably distinguish be-
tween movie-watching and rest irrespective of age. The differences be-
tween the two states are associated with a robust and predictive set of
FC features that generalizes across two different movies. Despite cross-
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movie generalizability, we also observe that predictive accuracy of state
(movie vs rest) is affected by movie-specific content. Furthermore, we
demonstrate that distinct functional network clusters exhibit differences
in FC and widespread coupling across movie-watching and resting-state
BOLD acquisitions. Finally, we show that there are FC patterns that dif-
fer across movie-watching and rest as a function of age.

In addition to its relevance for predicting state-specific FC pat-
terns, the relationship between movie-watching and rest states is rele-
vant for applications in developmental neuroimaging. Although resting-
state studies are commonplace in adult research, movie-watching fMRI
paradigms are better suited for pediatric research since movies engage
the subjects’ attention and robustly reduce head motion in children un-
der the age of 10 (Greene et al., 2018; Vanderwal, Eilbott, and Castel-
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lanos, 2019). Thus, comparisons across age are often confounded by
the use of resting-state in adults and movie-watching in young children.
Furthermore, the study of the functional network organization under-
lying movie-watching versus rest has been challenging due to the lack
of large-scale developmental datasets that allow comparisons with the
adult brain. Finally, there is limited work on the associated neurode-
velopmental trajectories of these two states. Resolving this question is
particularly important to improve fMRI paradigms in pediatric research,
thereby allowing across-age comparisons and establishing a direct rela-
tionship of state differences with those seen in the adult brain. Our re-
sults address these knowledge gaps and inform three parallel questions,
which we summarize below.

4.1. Whole-brain FC features predict naturalistic viewing versus rest

We demonstrate that movie-watching and rest are characterized by
reliable, state-specific FC patterns across age. This finding is consis-
tent with prior studies showing that movie-watching and resting-state
paradigms are associated with distinct FC patterns in adults (Demirtas
et al., 2019; Vanderwal et al., 2015) (see review by (Vanderwal, Fil-
bott, and Castellanos, 2019)). We go beyond prior findings, how-
ever, by identifying a set of FC patterns that consistently and reli-
ably distinguish movie-watching versus rest across subjects irrespec-
tive of age. Specifically, we use a predictive multi-level FC-based model
(PrimeNet) to predict brain state (movie versus rest). In turn, we ap-
ply the model to a withheld subset of the data with very high average
accuracy (FD<0.5 mm, mean accuracy: 89%) across 1,000 iterations.
Similar results are observed with a more stringent head motion crite-
rion (FD<0.2 mm, mean accuracy: 90%). These results provide robust
evidence of state-specific FC patterns that differentiate between movie-
watching and rest in a developmental population. Furthermore, our re-
sults indicate that FC patterns generalize across movies. Specifically, we
observe similar predictive accuracy when the model trained with an an-
imated short film (‘The Present’, 3.47 min) is applied to a longer movie
clip (‘Despicable Me’, 10 min) using a subset of the initial data (mean
predictive accuracy: 95% on the same movie versus 90% on a differ-
ent movie). Furthermore, state-specific predictive FC features for mod-
els run on each of the movies independently show 82% overlap. These
findings indicate that there seems to be a ‘core’ stable functional net-
work organization across development, which is reliably dissociated by
cognitive state (i.e., movie versus rest). We focus here on state-specific
differences, but it is unknown whether both movie-watching and rest
states are supported by a ‘core’ intrinsic FC network organization as
found in the adult brain, in line with prior findings on state-trait varia-
tion (Gratton et al., 2018).

Importantly, our results shed light on the impact of scan length (i.e.,
number of BOLD frames) on prediction of brain state. First, our results
indicate that more data are not necessarily better for identification of
state-specific FC features. Indeed, data from the 3.47-min movie (movie
TP, “The Present”) achieves a higher mean predictive accuracy in com-
parison to the longer 10 min movie (movie DM, “Despicable Me”) irre-
spective of the number of frames from the longer movie included in the
model. Relatedly, state-specific predictive accuracy fluctuates within a
given BOLD run and it is independent of the number of frames included
in the movie. Specifically, we observe a drop in predictive accuracy in
the movie DM at 4.5 min into the movie (mean accuracy: 64%). We ar-
gue that these fluctuations in predictive accuracy may be related to the
type of stimuli shown in the movie, in line with recent studies on the
adult brain (van der Meer et al., 2020). For example, decontextualized
scenes that require rapid inferences and a constant engagement may
lead to FC states during movie-watching that are more difficult to dif-
ferentiate from rest. We believe this was the case for the 10 min movie
clip that we used, which is extracted from a longer movie. Indeed, the
drop in predictive accuracy coincides with a scene in which the char-
acters have a conversation that assumes the audience has information
from earlier scenes in the movie. Thus, we hypothesize that presentation
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of a complete narrative that is properly contextualized engages partici-
pants’ attention to a greater extent, therefore leading to more consistent
FC patterns over time across subjects.

Furthermore, the predictive model implemented in the current study
focuses on a 5 min resting-state session and shows robust state-specific
predictive accuracy even when using more stringent motion thresholds.
In the context of prior studies on test-retest individual-level reliability,
gains in reliability of resting-state networks and therefore stability of
the resting-state neural signal across sessions are greater in scans of 9-
12 min in adults (Birn et al., 2013; Noble et al., 2017). In developmen-
tal samples, there is moderate-to-high test-retest reliability of resting-
state FC in children and adolescents (9-17-year-olds) in 6 min scans
(Somandepalli et al., 2015; Thomason et al., 2011), although reliability
seems to be lower than in adults (Kaufmann et al., 2017; Vanderwal, Eil-
bott, Kelly, et al., 2019). In our study, the addition of a second 5 min
resting-state BOLD run to the model yielded significantly lower predic-
tive accuracy for the movie TP, but not for the movie DM. Additional
work is needed to characterize how the reliability of FC patterns changes
as a function of amount of data and scan condition in children, and how
FC reliability impacts predictive power. Finally, although we did not
explore this possibility, it may be that some edges across subjects are
less stable/reliable during longer versus shorter scan times since it is
possible that the test-retest reliability of edges is higher in some net-
works/regions than in others across subjects.

4.2. Naturalistic viewing and rest involve distinct functional networks

We show that movie-watching versus rest FC differences are asso-
ciated with distinct patterns within specific large-scale functional net-
works. The predictive FC patterns identified by the binary classifier are
associated with brain areas that belong to ten functional networks. Our
findings confirm prior results indicating that movie-watching modu-
lates FC, particularly in the default mode and dorsal-attention networks
(Betti et al., 2013; Gao & Lin, 2012; Lv et al., 2013; Vanderwal et al.,
2015). In addition, we found that movie-watching modulates FC in au-
ditory, language and posterior-multimodal (PMM) networks. Indeed, we
observe a strong coupling of language and PMM networks during movie-
watching relative to rest. It is likely that state-specific stimuli during
movie-watching modulate additional network-level FC that is absent
during rest and that were not captured in our study. Collectively, these
results provide evidence of a common functional brain network organi-
zation that differentiates movie-watching from rest.

Importantly, here we isolated parcel-level and network-level sig-
nals using the whole-brain CAB-NP parcellation (Ji et al., 2019), de-
rived from the HCP atlas (Glasser et al., 2016). Although further studies
are needed to determine whether the results generalize to other par-
cellations, we would also expect that brain coverage, granularity (i.e.,
number of parcels and networks), topology (volume/surface) and age
group representative of the parcellation (e.g., age-specific versus adult-
based parcellations) would have an effect on the final set of predic-
tive edges (Gonzalez-Castillo et al., 2015; Vanderwal et al., 2017) (see
(Eickhoff et al., 2018) for a review of differences/similarities across
imaging-based parcellations). Furthermore, network-level signals are
expected to be more generalizable than those at the parcel level given
their stability across scrubbing criteria (i.e., network signals get aver-
aged across multiple parcels). Indeed, implementation of a more strin-
gent scrubbing criterion with an FD<0.2 mm replicates the observed
FC effects in frontoparietal, language, posterior-multimodal, V1 and V2
networks.

4.3. FC during naturalistic viewing versus rest varies across age

Most relevant for studies of neurodevelopment, we show that FC
patterns in the most predictive functional network clusters for movie-
watching versus rest also exhibit notable variation as a function of age.
Put differently, finding the most predictive movie-rest features across
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age (i.e., main effect of state) does not guarantee that there will not
be an interaction with age (i.e., state x age interaction). Our results
are consistent with there being such an interaction that involves au-
ditory, language, posterior-multimodal and V2 network clusters. Across
network clusters and relative to older subjects, the youngest children
(6 and 7-year-olds) tend to show the lowest average within-network FC
in clusters of the default, visual, language and PMM networks, as well
as in the coupling of these clusters with other brain areas. Some ex-
ceptions are areas of the somatomotor network and FC between areas
of the frontoparietal and dorsolateral attention networks, which show
stronger FC in children relative to adolescents/young adults. Addition-
ally, FC in language and PMM networks exhibits an age-related steady
increase in children between 6-9 years of age and reaches a peak in
early adolescence. Finally, our results align with prior work indicating
that movie-watching paradigms are better suited in children under the
age of 10, which may be due to reduction of head motion during movie-
watching relative to rest (Alexander et al., 2017; Greene et al., 2018;
Vanderwal, Eilbott, and Castellanos, 2019). Specifically, we found that
accuracy of state prediction increases in children 6-9 years of age for
movie-watching relative to resting-state scans, while no differences in
predictive accuracy between the two states are observed in adolescents
and young adults.

Overall, these results strongly suggest that neurodevelopmental com-
parisons across age should be performed using the same paradigms
in order to fully understand changes in functional network organiza-
tion across the lifespan. These data also imply that movie-watching
paradigms in younger children may not be a good proxy for FC com-
parisons using resting-state paradigms in older children and adults.
Nonetheless, a potential application of the observed FC patterns is to
inform computational models that allow transformation of movie-based
FC patterns into “pseudo-rest” patterns, which may be beneficial for
comparisons with resting-state data from adults and older children. Al-
though further analyses are needed to examine the feasibility of this ap-
proach, we hypothesize that such a transformation would be particularly
useful for comparing resting-state FC estimates even for the youngest
children or those diagnosed with ADHD, who may have difficulty re-
maining still during resting-state scans. This would be particularly rel-
evant when movie-to-movie comparisons between children and adults
are not possible and also in the context of large-scale developmental
datasets that include resting-state, but not movie-watching paradigms,
such as the ABCD (Casey et al., 2018) or HCP Lifespan Development
(Somerville et al., 2018) studies.

4.4. Limitations and future directions

While these results provide strong evidence of state-specific FC pat-
terns that differentiate between movie-watching and rest in a devel-
opmental population, it is unclear which specific behavioral variation,
such as attention or abstract thinking, may relate to this reliable state-
specific effect. Addressing this question will require the use of task
designs that manipulate different behavioral measures during movie-
watching paradigms. For example, recent work has examined how sta-
ble patterns of brain activity can be used to identify ‘event’ structures
that are associated with changes in causal structure or goal-setting dur-
ing movies (Baldassano et al., 2017, 2018). Furthermore, studies exam-
ining the nature of dynamic FC during development have shown that
networks reconfigure over time during a single task (Hutchison and
Morton, 2015). Importantly, while network reconfigurations during a
task show similarities across development, transitions between these re-
configurations are faster in adults. Similarly, during rest, networks re-
configure into independent ‘states’ (van der Meer et al., 2020), which
vary as a function of age (Marusak et al., 2017). These whole-brain
dynamic FC patterns have been associated with distinct cognitive phe-
notypes or cognitive-task-like processes (Diaz et al., 2013; Gonzalez-
Castillo et al., 2019; Gonzalez-Castillo and Bandettini, 2018). Identi-
fication of moment-to-moment fluctuations in FC during a single task
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or resting-state scan is particularly relevant for neurodevelopmental re-
search since it can provide age-related measures of variability in behav-
iorally relevant FC patterns over time. These measures can then be used
in conjunction with FC static measures to examine the development of
brain networks that support higher-level cognitive functions and how
they are modulated by environmental stimuli and cognitive demands.

A further limitation is that the data-driven analytic approach imple-
mented in the present study, while robust and successful in capturing
differences between states, takes into account only FC at the level of sin-
gle connections (i.e., edges). Therefore, it does not consider interconnec-
tions across edges, which may potentially reveal differences within clus-
ters of adjacent edges. Future work would therefore benefit from graph-
based models, or component-level analyses more generally, that focus
on examining the organization, dynamics and topology of brain net-
works. To illustrate this point, one such analysis employs the network-
based statistic (NBS) (Zalesky et al., 2010), which relies on cluster statis-
tics to identify structure exhibited by single connections. The NBS ap-
proach has been successfully implemented to characterize network com-
ponents across a range of psychopathologies (Korgaonkar et al., 2014;
Lai et al., 2017; Z. Long et al., 2015; Lopes et al., 2017; Pua et al., 2018;
Zajac et al., 2017). A key feature of the NBS approach is that it provides
greater statistical power to control the family-wise error rate relative
to other procedures, such as implementation of the false discovery rate
(FDR). This type of approaches can be complementary to PrimeNet-like
analyses as it can provide an additional measure of connectivity (i.e.,
brain network components) that may reveal crucial subnetworks not
captured by analyses based on single connections.

Another outstanding question relates to the developmental sample
used in the present study which, despite spanning a broad age range
(6-20 years of age), does not include younger developmental popula-
tions (e.g., toddlers or pre-schoolers). Studies with younger populations
are crucial since they may elucidate how development of specific cogni-
tive abilities, such as language or attention, affects state-specific FC pat-
terns. Such studies may also benefit from longitudinal designs that allow
for within-subject comparisons over time. Longitudinal designs may be
able to identify developmental trajectories that are key to understanding
changes in state-specific FC patterns across age. In addition, one possi-
ble direction for future studies would be to examine differences between
females and males in their patterns of neural responses, especially since
prior studies have shown that neural responses to naturalistic stimuli
vary as a function of sex (Petroni et al., 2018).

Due to the nature of the HBN dataset, which focuses on the diagno-
sis of mental health and learning disorders, a subset of participants was
diagnosed with a learning or anxiety disorder or ADHD. Although we en-
sured a balanced inclusion of non-diagnosed/diagnosed subjects across
age, our final sample included a mix of non-diagnosed and diagnosed
participants, which may have had some impact on the observed effects.
Specifically, mental health problems have been associated with delays
in stabilization and individualization of the brain’s functional connec-
tions or ‘connectome’ (Kaufmann et al., 2017; Vanderwal, Eilbott, Kelly,
et al., 2019), which suggests that psychiatric disorders affect the mat-
uration of FC patterns. To minimize the impact of psychopathology on
the model results, we implemented the following measures: i) ensured
a balanced inclusion of non-diagnosed/diagnosed subjects across age,
ii) implemented a randomized design across the model iterations in all
three steps (inference, training and prediction), iii) employed a within-
subject design by including only subjects that had data for both resting-
state scans and movie-watching scans, iv) included diagnostic status as a
covariate in the model and v) resctricted the types of diagnosis to learn-
ing or anxiety disorders and ADHD. These steps limited the amount of
data that we were able to include but were necessary to reduce the im-
pact of psychopathology on the findings. Even with these precautions,
the final dataset may have included subjects with a more variable con-
nectome than expected in a healthy population. Although further stud-
ies are needed to examine the extent to which the observed FC patterns
generalize to a typically-developing sample, we can conclude that the
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predictive model identifies FC patterns that are common to participants
with and without clinical disorders.

Finally, some methodological considerations are worth noting. First,
we aimed to limit the effects of motion as much as possible by imposing
temporal SNR and movement scrubbing criteria that ensured a consis-
tently high threshold for participant inclusion. However, it is possible
that there may have been subtle motion differences that we were not
able to capture. Second, it is unclear if there are subtle but important
neuro-vascular and/or global signal respiratory changes/differences
across age, which we cannot capture here. Further studies that exam-
ine age-specific changes in these physiological measures may be able
to shed light on neurodevelopmental differences and improve available
fMRI data processing pipelines.

5. Conclusion

Prior studies on the adult brain have identified an ‘intrinsic’ func-
tional network organization that extends across brain states. There is
also evidence of transient state-specific FC patterns that differentiate
among specific cognitive states (e.g., rest and tasks). Here, we focus
on how state-specific FC patterns differentiate between movie-watching
and rest in a developmental sample. We demonstrate that whole-brain
FC can reliably distinguish between these two states irrespective of age.
Notably, the results generalize to a withheld subset of the data with
very high average accuracy across 1000 iterations and also general-
ize across movies. The identified FC patterns are associated with func-
tional networks that exhibit differences in FC and widespread coupling
across movie-watching and rest. Importantly, we identify FC variation
in the most predictive functional network clusters for movie-watching
versus resting-state as a function of age. The results have implications
for our understanding of state-specific network organization across de-
velopment and for comparisons of state-specific FC patterns across age.
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