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Abstract

Emerging research has demonstrated that statistical learning is a modality-specific ability governed by domain-general principles.
Yet limited research has investigated different forms of statistical learning within modality. This paper explores whether there is
one unified statistical learning mechanism within the visual modality, or separate task-specific abilities. To do so, we examined
individual differences in spatial and nonspatial conditional and distributional statistical learning. Participants completed four
visual statistical learning tasks: conditional spatial, conditional nonspatial, distributional spatial, and distributional nonspatial.
Performance on all four tasks significantly correlated with each other, and performance on all tasks accounted for a large portion
of the variance across tasks (57%). Interestingly, a portion of the variance of task performance (between 11% and 18%) was also
accounted for by performance on each of the individual tasks. Our results suggest that visual statistical learning is the result of the
interplay between a unified mechanism for extracting conditional and distributional statistical regularities across time and space,
and an individual’s ability to extract specific types of regularities.

Keywords Statistical learning - Domain-general mechanisms - Modality specificity - Individual differences - Psychometrics

Humans can extract and encode statistical regularities from
perceptual input across visual, auditory, and even tactile
modalities—after only brief exposure and without instruction
to do so (Conway & Christiansen, 2005; Fiser & Aslin, 2001;
Frost, Armstrong, & Christiansen, 2019; Pavlidou &
Bogaerts, 2019). This is known as statistical learning and is
broadly thought to underlie many basic perceptual and cogni-
tive processes such as categorization and language acquisition
(Siegelman & Frost, 2015). Individuals are able to extract both
conditional relationships between stimuli (e.g., A co-occurs
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with B in time or space; i.e., conditional statistical learning)
and distributions of stimuli (e.g., C is more frequent than D;
i.e., distributional statistical learning; Siegelman, Bogaerts,
Christiansen, & Frost, 2017a; Thiessen & Erickson, 2013).
Individuals that are exposed to conditional or distributional
statistical information typically perform above chance when
deciding which stimuli is more familiar to them (e.g., AB. vs.
XY, orC.vs.Dvs. Z; Fiser & Aslin, 2001; Growns & Martire,
2020). These two forms of statistical learning are thought to be
facilitated by different, but interrelated, memory processes
(Thiessen & Erickson, 2013; Thiessen, Kronstein, &
Hufnagle, 2013).

Statistical learning was initially conceptualized as a
unified domain-general ability where learning is interde-
pendent across all sensory modalities (see Frost,
Armstrong, Siegelman, & Christiansen, 2015 for
review). However, emerging research suggests that statis-
tical learning has both modality and stimuli-specific con-
straints (Conway & Christiansen, 2005, 2006; Mitchel &
Weiss, 2011; Perfors & Kidd, 2018; Raviv & Arnon,
2018). For example, you may expect that statistical learn-
ing performance would change at the same rate across
development in all modalities—yet visual statistical
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learning improves with age in children, whilst auditory
statistical learning does not (Raviv & Arnon, 2018).
Modality-specific statistical learning is also supported by
the fact that learning in one modality (e.g., visual) is not
reliably associated with learning in other modalities (e.g.,
auditory)—as might be expected if statistical learning
were one unified ability (Siegelman & Frost, 2015).

Together, these converging lines of research demonstrate
that statistical learning is not a unified, domain-general mech-
anism. Rather, they suggest that although statistical learning
may be governed by domain-general principles, it is also sub-
ject to modality-specific constraints governed by respective
brain regions (e.g., visual statistical learning would be
governed by the visual cortex; Frost et al., 2015). Yet despite
the breadth of research examining statistical learning across
modalities, limited research has investigated it within
modality.

Investigating statistical learning within modality is critical
to furthering our understanding of it as a theoretical construct.
Are different forms of statistical learning (i.e., conditional and
distributional learning) part of one, unified ability within a
modality? Or are they separate subprocesses affected by
task-specific demands? If these forms of statistical learning
are part of one modality-specific unified ability, individuals
with high conditional learning might also have high distribu-
tional learning. Conversely, you would expect no relationship
if they are separate subprocesses. In the same vein, although it
is well documented that visual statistical learning can be dem-
onstrated in both spatial and nonspatial tasks (Fiser & Aslin,
2001, 2002), it is unclear whether the two types of learning are
governed by the same mechanism. Given that the visual cortex
shows enhanced sensitivity to spatial information (Chen &
Vroomen, 2013; Frost et al., 2015; Recanzone, 2009), indi-
viduals’ performance in spatial tasks may be reliably associ-
ated with each other if spatial learning is also governed by a
unified modality-specific mechanism (but not in nonspatial
tasks).

In this paper, we examine whether spatial and nonspatial
conditional and distributional statistical learning are governed
by one unified visual statistical learning mechanism, or sepa-
rate subprocesses within the visual modality. We examine
individual differences in statistical learning to empirically ex-
plore the overlap or independence of these subprocesses. As
discussed above, we would expect significant correlations be-
tween conditional and distributional learning in spatial and
nonspatial tasks if statistical learning is one unified mecha-
nism. Given the sensitivity of the visual cortex to spatial in-
formation, you may also predict stronger correlations between
some tasks (i.e., spatial conditional and distributional learn-
ing) than others (e.g., spatial and nonspatial conditional learn-
ing). Conversely, we would expect no significant associations
if visual statistical learning is comprised of several distinct
subprocesses.
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Method
Design

A 2 (conditional or distributional) X 2 (nonspatial or spatial)
within-subjects design was used. Participants completed the
four tasks in the following set order to minimize error variance
across participants (Mollon, Bosten, Peterzell, & Webster,
2017): distributional nonspatial, conditional spatial, conditional
nonspatial, distributional spatial. This experiment was
preregistered, and the preregistration, data, and materials are
available (https://osf.io/kua3?2/).

Participants

Participants were 76 undergraduate students from a large uni-
versity in eastern Australia who were 19.30 years of age on
average (SD = 2.14 years, min = 17, max = 28), and the
majority of the sample was female (65.8%). Participants re-
ceived course credit for their participation and had normal or
corrected-to-normal vision. We preregistered our intention to
collect data from 67 participants, but recruited nine additional
participants to replace data lost from the conditional spatial
task due to a technical error.

Tasks and dependent measures

Each task consisted of an exposure and a test phase. During
the exposure phase, participants viewed stimuli with
predetermined statistical regularities. They were instructed to
pay attention to the stimuli because they would be asked ques-
tions about them later. During each exposure phase, partici-
pants did not perform a cover task and were not informed
about the presence of any statistical regularities.

During each test phase, participants completed pattern rec-
ognition and/or pattern completion trials to investigate how
well they learned the predetermined regularities. During pat-
tern recognition trials, participants were asked to choose
which shape or shape-pattern was more familiar to them from
arrays of two to four shapes/shape-patterns. During pattern
completion trials, participants were asked to choose the shape
that “best completes the pair” for a pattern with one missing
target shape. Group-level chance performance was calculated
by aggregating the different probabilities of responses for each
trial.

Each task was replicated from validated tasks available in
the literature (with minor modifications) wherever possible.
Whilst this resulted in some differences in experimental pa-
rameters (e.g., trial numbers), we elected to use tasks that had
previously demonstrated reliable assessment of statistical
learning. Although we replicated experimental parameters
and statistical regularities from the literature, each task in this
paper used different shapes (see Fig. 1). This preserved the
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Fig. 1 Shapes and example stimuli used in the conditional nonspatial (upper left panel), conditional spatial (upper right panel), distributional nonspatial

(lower left panel), and distributional spatial (lower right panel) tasks

independence of each task by ensuring there would be no
interference across tasks.

Conditional nonspatial task Participants completed a condi-
tional nonspatial task (see upper left panel of Fig. 1) replicated
from Siegelman, Bogaerts, and Frost (2017b). This task has
reliability and internal consistency within psychometrically
recommended ranges (Cronbach’s o = .88, split-half reliabil-
ity = .83 and test-retest reliability = .68; Siegelman, Bogaerts,
et al., 2017).

Exposure. Participants completed one block where they
viewed “triplets” of 16 individual shapes (see upper left
panel of Fig. 1) in a temporal stream in a 10-minute ex-
posure phase. Each shape was presented for 800 ms, with
an interstimulus interval (ISI) of 200 ms. Conditional
statistical information was manipulated so that shapes
appeared together in one of eight predetermined triplets:
four triplets made up of four shapes had transitional prob-
abilities (TP) of .33 (i.e., 1-2-3, 2-1-4, 4-3-1, and 3-4-2);
and four triplets made up of 12 shapes with TP of 1.0
(e.g., 5-6-7). Participants viewed each triplet twenty-four
times in a randomized order, with the constraint that the
same triplet could not be immediately repeated.

Test. Participants first completed 34 pattern recognition
trials and then eight pattern completion trials (42 trials in
total). On pattern recognition trials, participants were
asked to choose the most familiar pair or triplet out of
two or four pairs/triplets. On pattern completion trials,
participants were asked to choose the shape “that best
completes the triplet” from an array of three shapes.
Participants were presented with pairs or triplets from
exposure (with TPs of .33 or 1) and foils (i.e., incorrect
answers with TPs from 0-.50) with varying levels of
position violations. They completed trials by pressing
computer keys to select the most familiar pair/triplet or
select the missing shape. Pattern recognition and comple-
tion trials were randomized within each block. Chance
performance in this task was 16.67 trials, or 39.7%
accuracy.

Conditional spatial task Participants completed a conditional
spatial task (see upper right panel of Fig. 1) adapted from
Experiment 2 in Fiser and Aslin (2001).

Exposure. Participants completed one block where they
viewed shape-pairs made of 12 individual shapes in one
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hundred and forty-four 3 x 3 grids (see upper left panel of
Fig. 1) presented in a randomized order in a 7-minute
exposure phase. Grids were presented for 2,000 ms with
no ISI. Conditional-spatial statistical information was
manipulated so that shapes appeared together in one of
six pairs of predetermined spatial relationships with spa-
tial probabilities (SP) of 1. For example, Shapes 1 and 2
always co-occurred vertically (1 above 2), 3-4 always co-
occurred horizontally (3 next to 4), and 5-6 always co-
occurred obliquely (5 diagonal to 6). Six shape pairs co-
occurred across all trials (two vertical, two horizontal,
and two oblique). Each grid contained six shapes (made
up from three pairs) by positioning pairs so that each pair
neighboured at least one other. This ensured that condi-
tional spatial learning was not facilitated by discernible
segmentation cues. The shape-pairs always co-occurred
in the same spatial relationship to ensure participants
could extract pairs only based on spatial co-occurrences.
Test. Participants completed 36 pattern recognition trials
in a randomized order where they viewed two shape-pairs
presented sequentially on each trial.' They were asked to
choose which shape pair was more familiar between ex-
posure shape pairs (SPs of 1) and foil shape-pairs (i.e.,
two shapes that did not co-occur in exposure; with an SP
of 0). Foils were two shapes that appeared in the tested
positions of the grid during exposure but that never co-
occurred in this spatial arrangement (i.e., SP = 0).
Participants selected the most familiar shape-pair by
pressing a computer key that corresponded to their
choice. The correct answers were based on the SPs from
the exposure phase. Chance performance in this task was
18 trials, or 50% accuracy.

Distributional nonspatial task Participants completed a distri-
butional nonspatial task (see lower left panel of Fig. 1) repli-
cated fromExperiment 1 in Growns & Martire (in press). This
task has reliability and internal consistency within psychomet-
rically recommended ranges (Cronbach’s o« = .86 and split-
half reliability = .76 derived from reanalysis of Growns &
Martire, in press; data available at https://osf.io/kua32/).

Exposure. Participants completed three blocks where
they viewed 13 individual shapes that occurred on the
“arms” of 60 complex patterns (see lower left panel in
Fig. 1) in a 9-minute exposure phase. Each block was
separated by a short self-determined break. Patterns were
presented for 3000 ms (with a 1000 ms ISI) in a
pseudorandomized order where all participants

! Note that participants did not complete pattern completion trials in the con-
ditional spatial task as none were included in the original Fiser and Aslin
(2001) task.

@ Springer

completed trials in one order randomly generated when
coding the experiment. Distributional statistical informa-
tion was manipulated so that each shape appeared with a
different frequency across all the patterns that participants
viewed. For example, Shape 1 appeared in all exemplars,
2 appeared in 0.3 of exemplars, 3 appeared in 0.7 of
exemplars, and 4—13 each appeared in 0.1 of exemplars
(see Fig. 2 for an example). These frequencies resulted in
three distributional joint probability shape-pairs: 0.1 (0.1
%x1); 0.3 (0.3 x 1); and 0.7 (0.7 % 1). The entire set of 60
exemplars contained every possible spatial combination
of shapes to ensure the distribution was independent of
any spatial co-occurrences. As a consequence of every
spatial combination being created whilst maintaining
the distribution, Shapes 2 and 3 never co-occurred in
the same exemplar (see Fig. 2).

Test. Participants completed 33 pattern recognition tri-
als and 12 nonsequential pattern completion trials in a
pseudorandomized order (45 trials in total). On pattern
recognition trials, participants chose the most familiar
shape or shape-pair out of two, three, or four shape/
shape-pairs. For 12 pattern recognition trials, partici-
pants chose between two shapes presented one after
the other. For 21 pattern recognition trials, participants
chose between two, three, or four shape-pairs present-
ed simultaneously on-screen. On pattern completion
trials, participants were asked to choose the shape
“that best completes the pair” from an array of two,
three, or four shapes. The shapes participants were
presented on all trials occurred between 0.1 and 1 in
the exposure phase, and the shape-pairs they chose
between occurred between 0.1 and 0.7. The correct
answer was based on the frequency or joint probabil-
ities from the exposure phase. They completed trials
by pressing computer keys to either select the most
familiar shape/shape-pair or select the missing shape.
Participants were instructed to ignore shape orienta-
tion and location when making their choices. Chance
performance in this task was 20.5 trials, or 45.5%
accuracy.

Distributional spatial task Participants completed a distribu-
tional spatial task (see lower right panel of Fig. 1) that was
created for the purposes of this study, but was adapted from
the distributional nonspatial task in the literature (Growns &
Martire, in press).

Exposure. Participants completed three blocks where
they viewed six individual shapes that occurred on the
“arms” of 60 complex patterns (see lower right panel in
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Fig. 2 Example of the distributional statistical information manipulated in patterns in the distributional nonspatial task. Note that exemplars in the task

were presented in black and white

Fig. 1) presented in a pseudorandomized order in a 9-
minute exposure phase. Each block was separated by a
short self-determined break and patterns were presented
for 3,000 ms with a 1,000 ms ISI. Distributional-spatial
statistical information was manipulated so that each
shape appeared with different frequencies in different
spatial locations across all patterns. Shapes occurred in
these spatial locations: 1 appeared 0.1 on Arm 1% and 0.9
on Arm 5; 2 appeared .02 on Arm 4 on 0.8 on Arm 2; 3
appeared 0.3 on Arm 3 and 0.7 on Arm 6; 4 appeared 0.1
on Arm 5, 0.4 on Arm 1, and 0.5 on Arm 3; 5 appeared
0.1 on Arms 2 and 6, 0.2 on Arm 1, and 0.6 on Arm 4;
and 6 appeared 0.1 on Arm 2, 0.2 on Arms 3, 4, and 6,
and 0.3 on Arm 1. The pseudorandom order of exemplars
again ensured the spatial-frequency distribution was in-
dependent of any consistent temporal information.

Test. Participants completed 26 pattern recognition trials
and 19 pattern completion trials in a pseudorandomized
order (45 trials in total). On pattern recognition trials,
participants chose the most familiar shape in a specific
location out of an array of two, three, or four of the same
shape in different spatial locations (see left panel of Fig.
3). Targets appeared most frequently in one spatial loca-
tion (e.g., 0.9 on Arm 1), while foils were the same shape
that appeared less frequently in another spatial location
(e.g., 0.1 on Arm 5). On pattern completion trials, partic-
ipants were asked to “choose the shape in the specific
location that best completes the pair” from an array of
two, three, or four of the same shape in different location
(see right panel of Fig. 3). On all trials, the correct answer
could only be determined by the location in which that

% Note “Arms” are labeled 1-6 in a clockwise order from the upper-left arm
(Arm 1; see Fig. 1), upper-middle arm (Arm 2), upper-right arm (Arm 3),
lower-right arm (Arm 4), lower-middle arm (Arm 5), and lower-left arm
(Arm 6).

shape appeared most frequently. Chance performance in
this task was 16.62 trials, or 36.9% accuracy.

Procedure

Participants provided demographic information and then com-
pleted each task in the set order (distributional nonspatial, con-
ditional spatial, conditional nonspatial, and then distributional
spatial). Each task consisted of an exposure and test phase as
described above. Before each task, participants were instructed
to pay attention to the stimuli as they would be asked some
questions afterwards. Upon completion of the experiment, par-
ticipants were thanked for their participation and debriefed.

Results
Preregistered results

Group-level analysis Statistical learning accuracy was signifi-
cantly better than chance in all tasks (see Table 1). This indi-
cates that participants successfully extracted and encoded the
relevant statistical regularities in each task.

Individual-level analysis All tasks had internal consistency that
was close to or within the recommended range for standard tests
(as = 0.76-0.92; see Table 1). This suggests that the measures
generally produced reliable, internally consistent data and sup-
ports their use for assessment of individual differences.

All tasks also significantly correlated with one another (see
Table 2 and Fig. 4). Importantly, the magnitude of the corre-
lations did not significantly vary as a function of the tasks used
despite the multiple comparisons in this analysis. For
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Which of these shapes is more familiar to you in the specific location?

Press 'A' Press 'L’

Please choose the shape in the specific location that best completes the pair.

?

Press 'A’ Press 'G' Press 'L

Fig. 3 Examples of pattern recognition (left panel) and completion (right panel) discrimination judgement trials

example, even the smallest (» = .277) and largest (r = .512)
correlations did not significantly differ from one another
(Fisher r-to-z test: Z = 1.66, p = .097). This suggests that all
the tasks in this study share some portion of the variance in
task performance and this shared variance does not vary sig-
nificantly across all four tasks. However, it is also important to
note that the correlations were not perfect, and were lower
than the reliability coefficients for the same tasks (which pres-
ent an upper-bound to the observed correlations). This sug-
gests that each statistical learning task also taps into some
portion of unique variance.

Given that we had no a priori predictions about the pres-
ence of any significant task correlations (see preregistration),
we also calculated Bayes factors to examine the likelihood of
the data under the null hypothesis (i.e., the absence of corre-
lations) compared with an alternative hypothesis (i.e., the
presence of correlations). We observed Bayes factors greater
than 10 for 5 of the 6 correlations (see Table 2). This provides
strong evidence for the presence of the correlations (Wetzels
et al., 2011), although the remaining correlation (distribution-
al/conditional learning in nonspatial tasks) provided weaker
support for the presence of the correlation.

Exploratory results: Principle component analysis
(PCA)

We further explored the shared and unshared variance across

all four tasks with a principle component analysis (PCA) using

Table 1.  Descriptive statistics for statistical judgements in all tasks

the prcomp function from the core stats package in R. The
loadings of all four tasks on the four components and the
proportion of variance explained by each component can be
seen in Table 3. The first factor explains the majority of var-
iance in task performance observed across all four tasks
(57%). Note that all tasks are similarly loaded on this compo-
nent, suggesting that it represents the shared component of
figure variance across them.

Importantly, however, the next three components also ex-
plain substantial amount of observed variance (43% overall;
between 11% to 18% each). The task loadings suggest that
these additional components reflect domain-specific variance,
related specifically to the different tasks. The second compo-
nent is strongly related to performance in the conditional spa-
tial tasks; the third component is strongly related to perfor-
mance in the distributional nonspatial tasks; and the fourth
component differentiates performance in the conditional non-
spatial and distributional spatial tasks (performance is posi-
tively related in the conditional nonspatial task and negatively
related in the distributional spatial task). Overall, these results
suggested that performance in each statistical learning task
reflects a mixture of shared and nonshared variance.

Discussion

We examined whether spatial and nonspatial conditional and
distributional statistical learning were part of one unified

Chance Mean (SD) df t p Cronbach’s o
Conditional nonspatial 16.67 22.39 (6.98) 75 7.15 <.001 .80
Conditional spatial 18 21.25 (5.80) 66 4.59 <.001 .76
Distributional nonspatial 20.50 34.64 (8.43) 75 14.62 <.001 91
Distributional spatial 16.62 29.07 (10.16) 75 10.68 <.001 92
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Table 2.
displayed below)

Correlations between discrimination judgements in all tasks (Pearson correlations reported with p-values in brackets, with Bayes Factors

Conditional nonspatial

Conditional spatial

Distributional nonspatial Distributional spatial

Conditional nonspatial -

Conditional spatial 475 (<.001) -
BF =492.1

Distributional nonspatial 277 (.015) .365 (.002) -
BF =2.55 BF =13.9

Distributional spatial 512 (<.001) 468 (<.001) .335 (.003) -
BF >1,000 BF =370.4 BF =10.5

visual statistical learning mechanism, or separate subpro-
cesses within the visual modality. Validating our tasks for
the assessment of individual differences, we identified
better-than-chance and generally reliable (xs = .76-92) per-
formance in all four tasks, including the novel distributional
spatial task. Performance on all four tasks significantly corre-
lated with one another, and a large portion of the variance
across all four tasks was accounted for by one factor that all
tasks similarly loaded on to. This demonstrates that on one
level, at least some of the ability to learn spatial and nonspatial
conditional and distributional regularities can be traced back
to one unified visual statistical learning ability.

Importantly, however, our results also provide evidence
that individual ability in separate tasks accounts for a substan-
tial amount of variance. This is reflected by the moderate
correlations observed between all tasks, as well as in the re-
sults of the PCA where performance on the conditional spatial
and distributional nonspatial tasks discriminates between per-
formance on all other tasks on two factors; and the remaining
factor discriminates performance between the conditional
nonspatial and distributional spatial tasks. Overall, our results
suggest visual statistical learning is an interplay between a
unified ability to learn spatial and nonspatial conditional and
distributional regularities, and individual skill in extracting
specific regularities.

Our findings thus extend the conceptualization of statistical
learning as a modality-constrained ability governed by
domain-general principles (Frost et al., 2015). They provide
evidence that even within the visual modality, statistical learn-
ing performance can be traced back to a single unified ability,
as well as to specific regularity computations. It also supports
theoretical conceptualization of conditional and distributional
statistical learning being underpinned by interrelated—yet
separate—memory processes (Thiessen & Erickson, 2013;
Thiessen et al., 2013). We also identified a significant rela-
tionship between performance on both spatial and nonspatial
tasks. The visual cortex is more sensitive to spatial regularities
compared with nonspatial information—such as the condi-
tional nonspatial task (Chen & Vroomen, 2013; Frost et al.,
2015; Recanzone, 2009). Our results demonstrate that the

ability to learn spatial and nonspatial regularities are partially
related to a single general visual statistical learning ability.

To our knowledge, this is the first empirical evidence that
visual statistical learning is both a single unified ability to
learn different forms of statistical regularities and individual
ability to extract specific types of statistical regularities. It
extends research on modality-specific constraints of statistical
learning (Frost et al., 2015; Siegelman & Frost, 2015) and
work on differences between learning adjacent and nonadja-
cent auditory regularities that document the interplay between
modality-specific, domain-specific, and general statistical
learning computations (Newport & Aslin, 2004; Romberg &
Saffran, 2013; Siegelman & Frost, 2015).

Limitations and future directions

It is important to note that the psychometric properties and
task parameters were not identical across all tasks in this pa-
per. Stability and internal consistency were only known for
the conditional nonspatial task, and only internal consistency
was known for the distributional nonspatial task. Stability and
consistency were not known for either spatial task. There were
also differences in task parameters such as stimulus presenta-
tion times and interstimulus intervals. These differences oc-
curred as we preferred to use tasks that had previously been
used in the literature (Wherever possible) that had shown reli-
able assessment of statistical learning.

Nevertheless, this did not appear to have a substantial im-
pact on the observed correlations—for example, the two dis-
tributional tasks shared many task parameters but did not cor-
relate more strongly with one another compared with other
tasks. However, an ideal experimental design would use tasks
with similar and known psychometric properties and would
equate more task parameters to better estimate the exact por-
tions of shared and unshared variance. Future research should
investigate the psychometric properties of existing and novel
measures to ensure optimal measurement of statistical learn-
ing across all of its dimensions. It should also further examine
the association between different statistical learning tasks with
similar parameters.
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Fig. 4 Correlations between all tasks: Conditional nonspatial and conditional/distributional spatial learning (upper panels), distributional nonspatial and
conditional/distributional spatial learning (middle panels), and spatial and nonspatial conditional/distributional learning (lower panels)

It is also worth noting that some of the shared variance
across tasks may be due to individual differences in encoding
or memory processes rather than statistical learning. Although
each task used different shapes to help control for this, it is
possible that some individuals may better learn statistical
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regularities in the visual domain, as they are better at encoding
or recalling sensory information. It is possible that statistical
learning is inextricably linked with other sensory and memory
processes (see Frost et al., 2015)—and may indeed be why
higher correlations in statistical learning tasks are seen within



Psychon Bull Rev

Table 3. Results of principle component analysis (PCA): Loadings matrix and percentage of variance explained

Component 1 Component 2 Component 3 Component 4
Conditional nonspatial 0.52 —0.44 0.32 0.66
Conditional spatial 043 0.87 0.15 0.17
Distributional nonspatial 0.51 —-0.09 —-0.85 -0.05
Distributional spatial 0.54 —0.18 0.39 -0.73
Variance explained (%) 56.8% 18.3% 13.6% 11.4%

modality (rather than between). Future research should contin-
ue to investigate within-modality statistical learning using on-
line measures to better disentangle the relationship between
memory and statistical learning (Siegelman, Bogaerts,
Kronenfeld, & Frost, 2018).

Conclusion

In this paper, we provided the first evidence of a relationship
between the ability to extract different forms of visual statis-
tical regularities. We demonstrated that the ability to learn
conditional and distributional regularities across time and
space is part of one unified visual statistical learning ability,
but is also subject to domain-specific constraints reflecting
individual skills in learning different types of regularities.
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