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A B S T R A C T

Neuroimaging studies of basic achievement skills – reading and arithmetic – often control for the effect of IQ to
identify unique neural correlates of each skill. This may underestimate possible effects of common factors be-
tween achievement and IQ measures on neuroimaging results. Here, we simultaneously examined achievement
(reading and arithmetic) and IQ measures in young adults, aiming to identify MRI correlates of their common
factors. Resting-state fMRI (rs-fMRI) data were analyzed using two metrics assessing local intrinsic functional
properties; regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF), measuring
local intrinsic functional connectivity and intrinsic functional activity, respectively. ReHo highlighted the tha-
lamus/pulvinar (a subcortical region implied for selective attention) as a common locus for both achievement
skills and IQ. More specifically, the higher the ReHo values, the lower the achievement and IQ scores. For fALFF,
the left superior parietal lobule, part of the dorsal attention network, was positively associated with reading and
IQ. Collectively, our results highlight attention-related regions, particularly the thalamus/pulvinar as a key
region related to individual differences in performance on all the three measures. ReHo in the thalamus/pulvinar
may serve as a tool to examine brain mechanisms underlying a comorbidity of reading and arithmetic diffi-
culties, which could co-occur with weakness in general intellectual abilities.

1. Introduction

Reading and arithmetic are basic achievement skills that influence
individuals’ success at school and beyond. As these domain-specific
achievement skills are correlated with general intellectual abilities
(indexed by IQ scores) (Gagné & St Père, 2001; Lambert & Spinath,
2018; Mayes, Calhoun, Bixler, & Zimmerman, 2009; Peng, Wang,
Wang, & Lin, 2019), neuroimaging studies often control for the effect of
IQ (i.e., IQ being entered as a covariate of no-interest or being matched
between groups) to identify unique neural underpinnings of the
achievement skills and their impairments (Ashkenazi, Rosenberg-Lee,
Tenison, & Menon, 2012; De Smedt, Holloway, & Ansari, 2011; Eden
et al., 2004; Hoeft et al., 2006; Koyama et al., 2011; Pugh et al., 2008;
Rosenberg-Lee, Barth, & Menon, 2011). Although this analytical

practice has been criticized from logical, statistical, and/or methodo-
logical perspectives (Dennis et al., 2009), it remains a topic of debate on
whether IQ should be controlled for when studying relationships be-
tween brain structures/functions and the achievement skills. This lack
of consensus in the literature is evident by the fact that majority of most
recent neuroimaging studies of reading and arithmetic have still opted
to control for IQ (Ashburn, Flowers, Napoliello, & Eden, 2020; Bulthe
et al., 2019; Jolles et al., 2016; Michels, O'Gorman, & Kucian, 2018;
Paz-Alonso et al., 2018).
Some prior studies, addressing the role of IQ in predicting the

achievement skills and intervention responses, have indicated that IQ is
not a direct cause of either academic achievement (Brankaer,
Ghesquiere, & De Smedt, 2014; Fletcher, Francis, Rourke, Shaywitz, &
Shaywitz, 1992; Francis, Fletcher, Shaywitz, Shaywitz, & Rourke, 1996;
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Murayama, Pekrun, Lichtenfeld, & Vom Hofe, 2013) or intervention
responses for learning difficulties (Stuebing, Barth, Molfese, Weiss, &
Fletcher, 2009; Vellutino, Scanlon, & Lyon, 2000). Furthermore, neu-
roimaging studies have demonstrated that activations in core regions
involved in the achievement skills (e.g., the left temporoparietal junc-
tion for reading) are independent of IQ (Hancock, Gabrieli, & Hoeft,
2016; Simos, Rezaie, Papanicolaou, & Fletcher, 2014; Tanaka et al.,
2011). These prior findings lead us to think that significant correlations
observed between the achievement and IQ tests likely reflect the con-
sequence of both tests measuring common latent factors. Under this
circumstance, the use of IQ as a covariate of no-interest could remove
some unspecified factors accounting for an achievement skill, and thus
potentially producing overcorrected or counterintuitive MRI findings.
However, it may be equally misguiding to fail to use IQ as a covariate of
interest, which would result in disregarding possible effects of shared
factors between achievement and IQ measures on brain activation/
connectivity.
Alternatively, both achievement and IQ measures can be simulta-

neously examined (e.g., an F-test with the two measures of interest) to
detect regions where brain signals can be explained by either measure
or their combination (Mumford, Poline, & Poldrack, 2015). This ap-
proach can answer questions, such as “which regions show significant
associations with either measure (e.g., reading or IQ) or both mea-
sures”. In particular, the identification of regions common to both
measures could help to understand neuromechanisms underlying bi-
directional interactions between the achievement and IQ measures.
Such bidirectional interactions have been recently appreciated, with
mounting evidence from longitudinal studies. Speficially, for reading
and IQ relationships, early reading performance predicts later IQ, and
early IQ predicts later reading performance (Chu, vanMarle, & Geary,
2016; Ramsden et al., 2013; Ritchie, Bates, & Plomin, 2015). For ar-
ithmetic and IQ relationships, 10-week arithmetic training improves IQ,
and 13-week reasoning training improves arithmetic performance
(Lowrie, Logan, & Ramful, 2017; Sanchez-Perez et al., 2017). Most
evidently, a meta-analysis of longitudinal studies (Peng et al., 2019) has
rendered further evidence that intellectual abilities and achievement
skills (both reading and mathematics) predict each other even after
controlling for initial performance. Crucially, neural substrates under-
lying such relations, which can be mediated by shared latent factors in
the achievement skills and IQ, cannot be delineated by common ana-
lytical practices in the literature, that is, IQ being either covaried out
(i.e., controlled for) or excluded from analysis.
In the current resting-state functional MRI (rs-fMRI) study, we ad-

dress this issue by simultaneously examine both achievement (either
reading or arithmetic) and IQ measures. Our primary aim is to explore
rs-fMRI correlates common to both the achievement and IQ measures in
young adults, whose achievement and IQ scores ranged along a con-
tinuum from conventionally impaired to superior performance. We
address our aim in a twofold way; (1) entering two covariates of interest
– one for an achievement measure (either reading or arithmetic) and
the other for Full-Scale IQ (FSIQ) and (2) entering the first principal
component (PC1) – reduced from the three measures (reading, ar-
ithmetic, and FSIQ) – as the covariate of interest. The first approach
uses F-tests, allowing us to detect regions associated with either mea-
sure (i.e., specific) or those associated with the common variance ex-
plained by the two measures (Mumford et al., 2015). The second ap-
proach using principal component analysis (PCA) allows us to explore
common regions (Pugh et al., 2013), reflecting the shared variance
among the three measures (i.e., two achievement measures and FSIQ),
irrespective of the achievement domains.
When analyzing rs-fMRI data, we focus on two data-driven metrics

that index local/regional intrinsic functional properties; the first is
voxel-wise regional homogeneity (ReHo; Zang, Jiang, Lu, He, & Tian,
2004), and the second is fractional amplitude of low frequency fluc-
tuations (fALFF; Zou et al., 2008). ReHo, which is calculated with
Kendall’s coefficient of concordance (KCC), estimates local or short-

distance intrinsic functional connectivity (iFC) between the time-series
of a given voxel and its nearest neighboring voxels. Jiang et al. (2015,
Jiang and Zuo, 2016) have postulated that a higher ReHo value, re-
presenting higher synchronization of regional brain activity, indicates
higher functional specification in a given region (e.g., the primary vi-
sual cortex has the highest ReHo value among regions in the visual
ventral pathway). Unlike ReHo, fALFF is a frequency-domain analysis
to assess the relative contribution of specific low frequency oscillations
to the whole frequency range (Zou et al., 2008). That is, fALFF is a
measure of local brain activity, and does not provide any information
on functional connectivity. Hence, ReHo and fALFF could be com-
plementary in such that they potentially reveal different brain regions
associated with cognitive functions and dysfunctions, although similar
results/regions are often reported (Bueno et al., 2019; Hu et al., 2016;
Yuan et al., 2013).
Both ReHo and fALFF have successfully detected regions associated

with individual differences in cognitive abilities (Kuhn, Vanderhasselt,
De Raedt, & Gallinat, 2014; Yang et al., 2015), clinical diagnoses/traits
(Du, Liu, Hua, & Wu, 2019; Han et al., 2018; Hoexter et al., 2018;
Respino et al., 2019; Xu, Zhuo, Qin, Zhu, & Yu, 2015; Xue, Lee, & Guo,
2018), and training/experience effects (Koyama, Ortiz-Mantilla,
Roesler, Milham, & Benasich, 2017; Qiu et al., 2019; Salvia et al., 2019;
Wu et al., 2019). However, to date, there are only a handful of studies
that have applied these metrics to examination of achievement skills,
IQ, and/or their relationships. For reading, Xu et al. (2015) have ex-
amined fALFF, with controlling for IQ, and revealed that positive as-
sociations between fALFF in reading-related regions (e.g., the posterior
superior temporal gyrus) and semantic reading. For arithmetic, Jolles
et al. (2016) compared a group of children with mathematical diffi-
culties (i.e., lower arithmetic abilities) and the IQ-matched control
group, the first of which was characterized by higher fALFF in the in-
traparietal sulcus – a core region associated with number processing
(Dehaene, Piazza, Pinel, & Cohen, 2003) and arithmetic (Bugden, Price,
McLean, & Ansari, 2012; Dehaene, Molko, Cohen, & Wilson, 2004;
Jolles et al., 2016; Menon, 2010). Regarding ReHo, no study has ex-
plored its whole-brain patterns associated with either achievement or
IQ measures (but see Koyama et al., 2017 using a region of interest
analysis).
We opt to use data-driven ReHo and fALFF as the primary metrics,

rather than seed-based correlation analysis (SCA) that is the most
common way to examine resting-state functional connectivity. This is
because ReHo and fALFF require no prior knowledge or hypotheses,
unlike SCA that requires the selection of seeds (i.e., regions of interest).
Investigators typically select seeds based on previous task-evoked fMRI
findings in relevant cognitive domains: for example, Koyama et al.
(2011) have employed multiple seeds based on meta-analysis studies of
reading-related fMRI findings. This selection of seeds is investigator-
specific (e.g., seed location, seed size), making SCA vulnerable to bias.
In other words, SCA potentially overlooks brain regions that are not
selected by investigators, as well as brain regions that are not typically
activated during cognitive tasks of interest. For example, when ex-
amining auditory processing and its disorders, SCA would typically use
seeds located in the primary auditory cortex based on prior task-evoked
fMRI results (Bartel-Friedrich, Broecker, Knoergen, & Koesling, 2010;
Talavage, Gonzalez-Castillo, & Scott, 2014); however, Pluta et al.
(2014) have highlighted that ReHo in the precuneus, a core region of
the default mode network (Buckner, Andrews-Hanna, & Schacter, 2008;
Raichle et al., 2001), rather than the auditory cortex, is associated with
auditory processing disorders. Based on above-mentioned studies, we
hypothesize that the current study, which uses data-driven ReHo/
fALFF, could reveal regions outside the networks that had been re-
ported by previous fMRI studies (e.g., task-evoked fMRI, rs-fMRI using
SCA) of the achievement skills and IQ. This possibility can be even
enhanced given that we simultaneously examine both achievement and
IQ measures (e.g., IQ as a covariate of interest in F-tests), rather than
controlling for IQ (e.g., IQ as a covariate of non-interest) – the latter is a
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long-standing common or standard analytic practice in the neuroima-
ging literature of reading and arithmetic.

2. Materials and methods

2.1. Participants

Seventy-two young adults (28 males; mean age 21 ± 1.9 years, age
range = 18–25) were selected from a larger study (N = 159) that
primarily aimed to examine neural mechanisms of sequence learning
and overnight consolidation in adolescents and young adults. The in-
clusion criteria used here were as follows; (1) young adults between the
age of 18 and 30, (2) the completion of a battery of standardized tests
measuring cognitive abilities, at least word reading, arithmetic, and IQ,
(3) the completion of two rs-fMRI scans within the same MRI session,
(4) English as the first language, and (5) no demonstration of extreme
left-handedness assessed by the Edinburgh Inventory (Oldfield, 1971)
(i.e., extreme left-handedness was defined by the score falling between
−13 and−24; scores range from−24 to 24, showing the most extreme
left- and right-handedness, respectively), and (6) no excessive in-
scanner head motion, indexed by mean frame-wise displacement (FD)
(Jenkinson, Bannister, Brady, & Smith, 2002)> 0.2 mm, in either the
first or second rs-fMRI. Of 152 individuals who completed two rs-fMRI
scans, 18 individuals were excluded due to their excessive in-scanner
head motion in either scan. Demographic characteristics of the parti-
cipants are given in Table 1. Prior to participation, written informed
consent was obtained from all participants in accordance with the
guideline provided by Yale University’s Institutional Review Board with
the Human Investigation committee. Participants received monetary
compensation for their time and effort.

2.2. Behavioral measures

One-on-one assessment using standardized measures took place in a
quiet room, typically one week prior to the MRI session. Intellectual
abilities were assessed using the Wechsler Abbreviated Scale of
Intelligence Second Edition (WASI: Wechsler, 1999). In the analysis, we
used FSIQ, comprised of both Verbal Intelligence Quotient (VIQ) and
Performance Intelligence Quotient (PIQ). The Vocabulary and Simila-
rities subtests are combined to form VIQ, whereas the combination of
the Block Design and Matrix Reasoning subtests forms PIQ. The two
achievement skills (reading and arithmetic) were assessed using two
subtests of the Woodcock-Johnson Tests of Achievement Third Edition
(WJ-III) (Woodcock, Mather, & McGrew, 2007); (1) Letter Word Iden-
tification (LW) where participants were asked to identify and sound out

isolated letters and words from an increasingly difficult vocabulary list
and (2) Calculation (Calc) where participants were given a response
booklet and asked to complete written mathematical/numerical op-
erations at basic (e.g., addition, division) and higher (e.g., geometric,
logarithmic) levels. Standard scores were obtained using age-based
norms. Summary statistics for performance on the three standardized
measures (LW, Calc, and FSIQ) are provided in Table 1 and Fig. 1.
The current analysis included all participants without any cut-off

scores on the three measures of interest, mainly for two reasons; (1)
impairments with achievement skills, particularly reading, are con-
sidered to represent the lower tail of a normal distribution of the
abilities (Fletcher et al., 1994; Rodgers, 1983; Shaywitz, Escobar,
Shaywitz, Fletcher, & Makuch, 1992) (But see Rutter & Yule, 1975;
Stevenson, 1988) and (2) the Diagnostic and Statistical
Manual of Mental Disorders Fifth Edition (DSM-5:
AmericanPsychiatricAssociation. , 2013) has de-emphasized specific IQ
scores as a diagnostic criterion of Specific Learning Disabilities and
Intellectual Disabilities. Accordingly, there were some participants
whose standard scores fell below the average range (lower than 85,
defined as “weakness’). As shown in Fig. 1.A, for FSIQ, none of our
participants scored lower than 70 (two standard deviations below the
average). This indicates that none of the participants included in the
current study had intellectual disability. However, six participants’
scores fell into the 70–84 range, which can be classified as borderline
intellectual functioning (Alloway, 2010; Wieland & Zitman, 2016). For
reading, two participants demonstrated LW weakness (i.e., standard
score lower than 85), both of whom also scored lower than 85 on FSIQ.
For arithmetic, seven participants demonstrated Calc weakness, only
one of whom scored lower than 85 on FSIQ. No participant scored lower
than 85 on both LW and Calc, that is, no individual in our sample had
comorbid weakness in reading and arithmetic.

2.3. Principal Component Analysis (PCA) for LW, Calc, and FSIQ

Consistent with previous findings (Gagné & St Père, 2001; Mayes
et al., 2009), LW, Calc, and FSIQ were strongly correlated with each
other in our sample: LW with FSIQ (r(70) = 0.76, p < 0.01 in
Fig. 1.B), Calc with FSIQ (r(70) = 0.70, p < 0.01 in Fig. 1.B), and LW
with Calc (r(70) = 0.64, p < 0.01). Given these strong inter-correla-
tions among the three main measures, we performed PCA, into which
standard scores from the three measures were entered. For this analysis,
we used the “Scikit-learn 0.19.1” (Python library: Python 3.6.4). Ex-
tracted first principal component (PC1) scores were subsequently used
in one of statistical models to gain a better understanding of how PC1,
the largest shared variance among the three measures, is associated
with rs-fMRI metrics.

2.4. MRI procedure

Participants received explicit instructions and were placed comfor-
tably in the MRI scanner. To prevent excessive motion during scanning,
participants’ head in the head-coil was surrounded by memory foam
cushions. To protect their hearing in the MRI scanner, participants wore
over-ear headphones in addition to the disposable ear plugs. The MRI
session was primarily composed of an 8-min structural MRI scan, two
rs-fMRI scans (5 min for each scan), and 5-min task-evoked fMRI scans
using a serial reaction time task (SRTT). The first rs-fMRI scan was
sandwiched between the first and second SRTT scans, while the second
rs-fMRI scans took place immediately after the second SRTT scan.
During each rs-fMRI scan, participants were instructed to remain still
and keep their eyes open. The SRTT employed in the current study was
described elsewhere (Hung et al., 2019). Total duration of the MRI
session was approximately 45 min.

Table 1
Demographic and cognitive characteristics of the participants (N = 72: 28
males). “Range” describes the lowest and highest values/scores for each vari-
able in the sample of the current study. “Family Income” is coded into a 5-level
ordinal variable based on the amount of annual gross income (1 = Under
$25,000; 2 = $26,000–$50,000; 3 = $51,000–$75,000;
4 = $76,000–$100,000; 5 = Over $100,000). The handedness score ranges
from −24 (the most extreme left-handedness) to 24 (the most extreme right-
handedness). SD = Standard Deviation, s = standard score, WJ = Woodcock
Johnson, WASI = Wechsler Adult Intelligence Scale, FSIQ = Full-Scale IQ,
FD = Framewise Displacement, Rest = resting-state fMRI.

Mean SD Range

Age (years) 21 1.9 18.1–25.1
Family Income 2.9 1.5 1–5
Handedness 12.4 1.3 −12 to 24
WJ Letter Word (s) 103.2 11.2 76–124
WJ Calculation (s) 102.2 15.9 68–138
WASI FSIQ (s) 107.3 15.0 75–145
Mean FD Rest 1 0.077 0.041 0.024–0.191
Mean FD Rest 2 0.079 0.038 0.025–0.178
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2.5. MRI data acquisition

All MRI data were collected using a Siemens TimTrio 3.0 Tesla
scanner located at Yale School of Medicine’s Magnetic Resonance
Research Center. Each of the two rs-fMRI scans was comprised of 150
contiguous whole-brain functional volumes acquired using an echo-
planar imaging (EPI) sequence (effective TE = 30 ms; TR = 2000 ms;
flip angle = 80°; 32 axial slices; voxel-size = 3.4 × 3.4 × 4.0 mm;
field of view = 220 mm). A high-resolution T1-weighted structural
image was also acquired using a magnetization prepared gradient echo
sequence (MPRAGE, TE = 2.77 ms; TR = 2530 ms; TI = 1100 ms; flip
angle = 7°; 176 slices; acquisition voxel size = 1.0 × 1.0 × 1.0 mm;
field of view = 256 mm). For each individual, both structural
(MPRAGE) and functional (rs-fMRI) data were visually inspected for
excessive motion before data preprocessing. Via this visual inspection, 9
participants were excluded from the initial dataset (N = 159).

2.6. MRI data preprocessing

Data preprocessing was carried out using the Configurable Pipeline
for the Analysis of Connectomes (CPAC version 0.3.9.1 http://fcp-indi.
github.io/docs/user/index.html). To allow for stabilization of the
magnetic field, the first three volumes within each rs-fMRI dataset were
discarded. Our rs-fMRI data preprocessing included the following steps:
realignment to the mean EPI image to correct for motion, grand mean-
based intensity normalization (all volumes scaled by a factor of
10,000), nuisance regression, spatial normalization, temporal band-
pass filtering (0.01–0.1 Hz: this application was only for ReHo because
fALFF involves computation of the power across the entire frequency
spectrum), and spatial smoothing. For each individual’s rs-fMRI data,
mean FD was calculated, and participants who showed “excessive
motion” (mean FD > 0.2 mm) were excluded from further analyses.
Nuisance regression was performed to control for the effects of head

motion and to reduce the influence of signals of no interest. The re-
gression model included linear and quadratic trends, the Friston-24
motion parameters (6 head motion, their values from one time point
before, and the 12 corresponding squared items) (Friston, Williams,
Howard, Frackowiak, & Turner, 1996), and the signals of five principal
components derived from noise regions of interest (e.g., white matter,
cerebral spinal fluid) using a component-based noise correction method
(CompCor) (Behzadi, Restom, Liau, & Liu, 2007). Spatial normalization
included the following steps: (1) anatomical-to-standard registration
using Advanced Normalization Tools (ANTs; Avants et al., 2011); (2)
functional-to-anatomical registration using FLIRT (Jenkinson et al.,
2002) with a 6-degrees of freedom linear transformation, which was
further refined using the Boundary-based Registration implemented in

FSL (Greve & Fischl, 2009); and (3) functional-to-standard registration
by applying the transformation matrices obtained from step (1) and (2)
using ANTs. Finally, spatial smoothing was performed, via FSL, using a
Gaussian kernel (Full width at half maximum = 8 mm).

2.7. ReHo and fALFF

At the individual level, ReHo and fALFF maps were generated for
each of the two rs-fMRI datasets obtained, resulting in two ReHo and
two fALFF maps for each participant. We primarily focused on the first
rs-fMRI data and restricted the use of the second rs-fMRI data only to
SCA (see “Section 2.10”) and confirmatory analyses (see “Section
2.11”). This was because a potential effect of recent task performance
would be lesser on the first rs-fMRI than the second rs-fMRI (i.e., par-
ticipants undertook one SRTT scan prior to the first rs-fMRI, while they
had two SRTT scans prior to the second rs-fMRI).
ReHo, an index of local iFC, is defined as KCC for the time series of a

given voxel with those of its nearest neighboring voxels (Zang et al.,
2004). KCC for each voxel was calculated voxel-wise by applying a
cluster size of 26 voxels (faces, edges, and corners) according to the
following formula;

=W R n R
K n n

( ) ( ¯)
( )

i
2 2

1
12

2 3

where W was the KCC of given voxels, ranging from 0 to 1, Ri was the
rank sum of the ith time-point; R̄ = ((n + 1)K/2 was the mean of the
Ri, K was the number of time-series within a measured cluster (n = 27;
one given voxel plus the others inside the cluster), and n was the
number of ranks (corresponding to time-points). For fALFF that mea-
sures the intensity of intrinsic functional activity (Zou et al., 2008), we
computed the power spectrum at each voxel by transforming the time
series to the frequency domain, and then calculated the square root of
the amplitude at each frequency (which is proportional to the power at
that frequency). Finally, we divided the sum of the amplitude across the
low frequencies (0.01–0.1 Hz) by the sum of the amplitudes across the
entire frequency range. For each participant, ReHo and fALFF were
computed in the native space, registered in the MNI space, and then
smoothed. At the group level, we used FSL’s FEAT to perform whole-
brain voxel-wise general linear models, with a study-specific mask that
included voxels (in MNI space) present in at least 90% of participants.
Whole-brain correction for multiple comparisons was performed using
Gaussian Random Field Theory (Z > 3.1; cluster significance of
p < 0.05).

Fig. 1. Performance on three cognitive measures (N = 72). (A) Dot plot describing the mean and standard deviation of each measure – Letter Word Identification
(LW), Calculation (Calc), and Full-Scale IQ (FSIQ). The horizontal line represents the standard score of 85 (-1SD). (B) Scatter plot illustrating relationships between
FSIQ and the two achievement skills (LW and Calc).
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2.8. Group models

We performed the following three group models to examine both
ReHo and fALFF; (1) LW (i.e., standard scores) and FISQ entered as
covariates of interest into an F-test, (2) Calc (i.e., standard scores) and
FSIQ entered as covariates of interest into an F-test, and (3) PC1 entered
as the covariate of interest. In each group model, we additionally in-
cluded covariates of non-interest; age, sex, mean FD, and whole-brain
mean of each rs-fMRI metric (Yan, 2013). For both of the first and
second models, we used FSIQ although the literature has shown that
VIQ correlates more strongly with reading than does PIQ, whereas PIQ
correlates more strongly with arithmetic skills than does VIQ
(Ashkenazi, Rosenberg-Lee, Metcalfe, Swigart, & Menon, 2013; Strauss,
Sherman, & Spreen, 2006). The main rationale for using FSIQ was that
the correlation between FSIQ and LW (r(70) = 0.76, p < 0.01) was
not significantly different from the correlation between VIQ and LW (r
(70) = 0.77, p < 0.01) (Z = 0.29, p = 0.38) (Lenhard & Lenhard,
2014). Similarly, the correlation between FSIQ and Calc (r(70)= 0.70,
p < 0.01) was not significantly different from the correlation between
PIQ and Calc (r(70) = 0.67, p < 0.01) (Z = 0.93, p = 0.17). For the
third model, we performed PCA to detect a single factor (i.e., PC1)
underlying common variation among the three measures that were
significantly correlated with each other. Results of PCA showed that the
PC1 accounted for 81% of the total variance (Note that principal
component 2 accounted only for 12%). PC1 scores extracted for each
individual were significantly (p < 0.01) correlated with LW (r
(70) = 0.83), Calc (r(70) = 0.88), and FISQ (r(70) = 0.94), con-
firming that the PC1 is relevant to the achievement and intellectual
abilities in the current sample. Resultant clusters were labelled/defined
based on the Harvard-Oxford Cortical and Subcortical Structural At-
lases, as well as the Colin27 Subcortical Atlas modified from the one
described in Chakravarty, Bertrand, Hodge, Sadikot, and Collins
(2006).

2.9. Brain-behavior relationships

F-test results need to be tested if either measure or the combination
of measures is significant. Hence, we extracted the mean ReHo/fALFF
value across all voxels within each significant F-test result/cluster from
each participant, and then calculated R-squared and p values that re-
present brain-behavior relationships. As F-test results are also non-di-
rectional (i.e., positive or negative), we made post-hoc visualization by
plotting the mean ReHo/fALFF values extracted from each significant
result/cluster as a function of the achievement skills and FSIQ. In ad-
dition, ReHo and fALFF values extracted from each significant cluster
identified by the model with PC1 (i.e., positively and/or negatively
associated with PC1 scores) were plotted as a function of the achieve-
ment skills and FSIQ.

2.10. Seed-based correlation analysis (SCA)

We selected seed regions based on significant results from the
whole-brain ReHo/fALFF analyses with the first rs-fMRI data.
Importantly, we performed post-hoc SCA using the second rs-fMRI data
in order to avoid “double dipping” in our fMRI analysis (Kriegeskorte,
Simmons, Bellgowan, & Baker, 2009). Our SCA aimed to explore

whether and how global or longer-distance iFC of given seeds (i.e.,
significant results from local rs-fMRI metrics) would be associated with
LW, Calc, and/or FSIQ. At the individual level, the average time series
across the voxels within each seed was extracted and correlated with all
voxels within the group-specific mask, using Pearson's correlation.
Correlation values were transformed to Fisher Z scores to provide a
whole-brain iFC map of each seed for each participant. At the group
level, we employed the above-mentioned three models. The resultant
iFC maps were corrected for multiple comparisons using Gaussian
Random Field Theory (Z > 3.1; cluster significance: p < 0.05).

2.11. Confirmatory region of interest (ROI) analysis using the second rs-
fMRI data

We applied ROI analysis to the second rs-fMRI data collected from
the same sample, and then examined if results (i.e., brain-behavior
relationships) from the whole-brain analysis using the first rs-fMRI data
were significant in the second rs-fMRI data. This confirmatory ROI
analysis aimed to test intra-individual reliability of brain-behavior re-
lationships. For this purpose, we extracted the mean values of the
second rs-fMRI ReHo/fALFF from each of significant clusters detected
in the analyses using the first rs-MRI data. Subsequently, we calculated
R-squared and p values that represent brain-behavior relationships in
the second rs-fMRI data.

3. Results

3.1. ReHo results from the first rs-fMRI

Table 2 and Fig. 2 summarize significant ReHo results from the
three models. Both F-tests (i.e., the first and second models) highlighted
the thalamus with the peak voxels located in the left pulvinar (the “LW-
Thalamus” cluster for the F-test with LW & FSIQ; the “Calc-Thalamus”
cluster for the F-test with Calc & FSIQ). Additionally, the PC1 scores
were negatively associated with the thalamus (the “PC1-Thalamus”
cluster).

3.2. ReHo-behavior relationships

We plotted the mean ReHo values (i.e., the first rs-fMRI data) ex-
tracted from each cluster as a function of the corresponding cognitive
measures (e.g., ReHo values in the LW-Thalamus cluster as a function of
LW and FSIQ), as shown in the upper and middle scatter plots in Fig. 2.
First, the ReHo values from the LW-Thalamus cluster were negatively
associated with LW (R2 = 0.20, p < 0.001) and FSIQ (R2 = 0.35,
p < 0.001): these two associations, with one variable in common (i.e.,
ReHo in the LW-Thalamus), were significantly different (Z = 2.1,
p < 0.05); more strongly associated with FSIQ than LW. Second, the
ReHo values from the Calc-Thalamus cluster were negatively associated
with Calc (R2 = 0.32, p < 0.001) and FSIQ (R2 = 0.30, p < 0.001);
these two associations, with one variable in common (i.e., ReHo in the
Calc-Thalamus), were not significantly different (Z = 0.27, p = 0.78).
In addition, we visualized relationships for the PC1 result by plotting
the ReHo values from the PC1-Thalamus cluster as a function of each
measure (LW, Calc, and FSIQ). There were significant negative asso-
ciations for all three measures; LW (R2 = 0.21, p < 0.001), Calc

Table 2
Significant ReHo results from the three models. LW = Letter Word Identification, Calc = Calculation, FSIQ = Full-Scale IQ, PC1 = Principal
Component 1.

Contrast Brain Region Peak MNI Coordinates # of Voxels

LW & FSIQ (F-test) Thalamus/Left Pulvinar −12 −27 −3 171
Calc & FSIQ (F-test) Thalamus/Left Pulvinar −12 −27 −6 144
PC1 (Negative) Thalamus/Left Pulvinar −12 −27 −3 168
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(R2= 0.33, p < 0.001) and FSIQ (R2= 0.30, p < 0.001) (The bottom
scatter plot in Fig. 2). These three associations, with one variable in
common (i.e., ReHo in the PC1-Thalamus), were not significantly dif-
ferent between one another (Z = 1.14, p = 0.15 for LW and FSIQ;
Z = 0.41, p = 0.68 for Cal and FSIQ; Z = 1.43, p = 0.15 for LW and
Calc).

3.3. Common thalamus and ReHo results from the second rs-fMRI

As ReHo results from all the three models highlighted the thalamus,
we identified the overlap among the three thalamus clusters and then
created the “Common-Thalamus” cluster, which was located dom-
inantly in the left hemisphere (the image on the left in Fig. 3). In the
first rs-fMRI data, ReHo values from the Common-Thalamus cluster was
significantly associated with LW (R2 = 0.13, p < 0.01), Calc
(R2 = 0.21, p < 0.001), and FSIQ (R2 = 0.22, p < 0.001). These
three associations, with one variable in common (i.e., ReHo in the
Common-Thalamus), were not significantly different from one another
(Z = 1.47, p = 0.15 for LW and FSIQ; Z = 0.25, p = 0.80 for Cal and

FSIQ; Z = 1.09, p = 0.27 for LW and Calc). This pattern (i.e., no sig-
nificant differences in the associations) was seen at the thalamus cluster
derived from the PC1 – the largest shared variance among the three
measures.
To test reliability of our thalamus results, we performed con-

firmatory ROI analyses, using the second rs-fMRI data, for four clusters
identified by the whole-brain analysis using the first rs-fMRI data: (1)
LW-Thalamus, (2) Calc-Thalamus, (3) PC1-Thalamus, and (4) Common-
Thalamus. Results showed significant (p < 0.001) ReHo-behavior re-
lationships in the second rs-fMRI data: (1) the LW-Thalamus cluster
with LW (R2 = 0.19) and FSIQ (R2 = 0.24), (2) the Calc-Thalamus
cluster with Calc (R2 = 0.20) and FSIQ (R2 = 0.29), (3) the PC1-
Thalamus cluster with LW (R2 = 0.19), Calc (R2 = 0.24), and FSIQ
(R2 = 0.30), and (4) the Common-Thalamus cluster with LW
(R2 = 0.16), Calc (R2 = 0.20) and FSIQ (R2 = 0.21). Taken together,
the results from both the first and second rs-fMRI datasets suggest that
higher ReHo in the thalamus is reliably associated with lower LW, Calc,
and FSIQ.

Fig. 2. Significant ReHo results from the three models. Results from all the models, mapped on the MNI coordinates (x =−12, y =−27, z =−3), highlight the
thalamus, centered in the left pulvinar. Model 1 performs an F-test with two covariates of interests – Letter Word Identification (LW) and Full-Scale IQ (FSIQ). Model
2 performs an F-test with Calculation (Calc) and FSIQ. In Model 3, the first principal component (PC1) among three measures (LW, Calc, and FSIQ) is entered as the
covariate of interest. In scatter plots on the right, mean ReHo values extracted from the respective thalamus cluster are plotted as a function of LW, Calc, and FSIQ.
Images are displayed according to neurological convention (left is left). **p < 0.001.

Fig. 3. Common-Thalamus cluster and significant seed-based correlation analysis (SCA) results. The overlap among the three thalamus clusters is highlighted
in green (the left image). The result from an F-test with Letter Word Identification (LW) and Full-Scale IQ (FSIQ), mapped on the MNI coordinates (x = −46,
y = −52, z = 26), highlights intrinsic functional connectivity (iFC) between the Common-Thalamus cluster and left temporoparietal junction (L.TPJ). In the scatter
plot on the right, iFC values extracted from the thalamus-L.TPJ connectivity are plotted as a function of LW and FSIQ. Images are displayed according to neurological
convention (left is left). **p < 0.001, n.s. = not significant.
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3.4. fALFF results from the first and second rs-fMRI

As shown in Fig. 4, the F-test with LW and FSIQ highlighted the left
superior parietal lobule (L.SPL: peak voxel at x = −42, y = −54,
z = 51 in MNI). The fALFF values extracted from the L.SPL cluster
exhibited a significant positive association with LW (R2 = 0.25,
p < 0.01) and FSIQ (R2 = 0.06, p < 0.05); these two associations,
with one variable in common (i.e., fALFF in L.SPL), were significantly
different (Z = 3.55, p < 0.001); more strongly associated with LW
than FSIQ. These results remained significant in the second rs-fMRI
(R2= 0.24, p < 0.001 for LW; R2= 0.09, p < 0.05 for FSIQ). There
was no significant result from either the F-test with Calc and FSIQ or
PC1.

3.5. SCA with the common thalamus cluster

Across the three models (i.e., two F-tests and PC1), ReHo results
highlighted the thalamus, but there was no such a common region
identified by the fALFF analysis. Therefore, we used only the Common-
Thalamus cluster as the seeds in post-hoc SCA. As shown in Fig. 3, the F-
test with LW and FSIQ highlighted a significant cluster with the peak
voxel at x =−46, y =−52, z = 26 (MNI), which can be considered as
centered in left angular gyrus based on the Harvard-Oxford Cortical
Structural Atlas (i.e., the maximum probability of 0.25). However, we
labelled it as the left temporoparietal junction (L.TPJ) because it (1)
included both parietal and superior temporal regions, and (2) spatially
corresponded to a subregion of the left temporoparietal junction iden-
tified by rs-fMRI parcellation analysis (Igelstrom, Webb, & Graziano,
2015). Note that the closest similarity between the given two regions/
clusters was defined by the smallest Euclidean distance (d = 10.4)
calculated using the voxel peak MNI coordinates. The post-hoc analysis
and visualization revealed a significant negative relationship between
the thalamus-L.TPJ iFC and LW (R2 = 0.21, p < 0.001), that is, the
higher the iFC, the worse the reading. This negative iFC-behavior re-
lationship was not significant for FSIQ (R2 = 0.04, p = 0.08); the two
associations, with one variable in common (i.e., iFC), were significantly
different (Z = 3.27, p < 0.001).
We found no significant SCA results from either the model with F-

test with Calc/FSIQ or the PC1 model. This absence of significant SCA
results was somewhat surprising given that ReHo in the Common-
Thalamus cluster was significantly associated with all the three mea-
sures (LW, Calc and FSIQ). Thus, we performed post-hoc analyses to
examine whether and the degree of which iFC values in the thalamus-
L.TPJ connectivity would be associated with Calc and FSIQ scores. We
found a significant connectivity-behavior association only with Calc
(R2 = 0.10, p < 0.01) but not with FSIQ (R2 = 0.04, p = 0.08).

4. Discussion

The current study simultaneously examined the achievement
(reading, arithmetic) and IQ measures in young adults, aiming to
identify MRI correlates of their common factors. For this aim, we used

F-tests, into each of which an achievement measure and FSIQ were
entered, as well as investigating the effect of PC1 among the three
measures (reading, arithmetic, and FSIQ). The main finding, which was
reliable across these analytic models, is that lower ReHo in the tha-
lamus (the peak voxel in the left pulvinar) was associated with higher
performance on each of the three measures. This indicates that the
thalamus represents a neural correlate of the shared factor among
reading, arithmetic, and FSIQ. This ReHo result centered to the tha-
lamus is partially consistent with our hypothesis that our approach
could identify regions outside functional brain networks that had been
frequently reported by prior fMRI studies of reading arithmetic, and IQ.
In the literature, the thalamus may not be a core region implied for
reading, arithmetic, or IQ, but the neuroscientific community has in-
creasingly recognized potentially important role of the thalamus in
learning (Rose & Bonhoeffer, 2018) and language processes
(Klostermann, Krugel, & Ehlen, 2013; Llano, 2013), particularly reading
(Achal, Hoeft, & Bray, 2016; Diaz, Hintz, Kiebel, & von Kriegstein,
2012; Gaab, Gabrieli, Deutsch, Tallal, & Temple, 2007; Pugh et al.,
2013; Stein, 2018a). We discuss more details and implications of these
findings, as well as other findings, in the following sections.

4.1. ReHo in thalamus/pulvinar

ReHo results from all the three models suggest that higher ReHo in
the thalamus is associated with lower performance on word reading,
arithmetic, and FSIQ measures. This pattern of negative brain-behavior
relationships is consistent with previous rs-fMRI studies, which have
reported that higher ReHo in subcortical regions (and higher mean
ReHo in the entire brain) is associated with worse outcomes, such as
lower abilities (Dajani & Uddin, 2016; Kuhn et al., 2014; Zhao et al.,
2019). In particular, Zhao et al. (2019) have demonstrated that higher
ReHo in the thalamus was associated with severer symptoms in schi-
zophrenic patients. This finding, together with our ReHo finding, in-
dicates that higher ReHo in the thalamus may index lower functions,
possibly across different behavioral domains. Although ReHo is con-
sidered to index local functional coupling and reflects the degree of
local functional specialization (Jiang et al., 2015; Jiang & Zuo, 2016),
the underlying mechanism of ReHo-behavior relationships remains
largely unknown. In the next paragraphs, we will debate a possible
scenario that could explain the observed negative ReHo-behavior re-
lationships (i.e., the higher the ReHo, the worse the performance).
The brain adaptively reconfigures or changes its functional con-

nectivity between globally distributed regions/networks in response to
task demands (Cohen & D'Esposito, 2016; Cole, Bassett, Power, Braver,
& Petersen, 2014; Hearne, Cocchi, Zalesky, & Mattingley, 2017;
Krienen, Yeo, & Buckner, 2014). Yet, functional connectivity patterns
detected at rest correspond well with co-activation patterns during
tasks; only ~40% of connections change (Cole et al., 2014; Krienen
et al., 2014; S. M. Smith et al., 2009). Such relatively small but reliable
changes in functional network reconfiguration between rest and task
seem to contribute to individual differences in behavior. For example,
Schultz and Cole (2016) have demonstrated that smaller differences in

Fig. 4. Significant fALFF result. The result from an F-test with Letter Word Identification (LW) and Full-Scale IQ (FSIQ),mapped on the MNI coordinates (x =−42,
y = −54, z = 51), highlights the left superior parietal lobule (L.SPL). In the scatter plot on the right, fALFF values extracted from the L.SPL cluster are plotted as a
function of LW and FSIQ. Images are displayed according to neurological convention (left is left). **p < 0.001, *p < 0.05.
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functional connectivity between rest and task, which reflect more ef-
ficient reconfiguration (i.e., less energy required for the change/shift),
are associated with higher performance on a variety of cognitive tasks
(e.g., language, reasoning). This can be interpreted in such that, in high-
performing individuals, their functional connectivity patterns during
rest are “preconfigured” similar to those during tasks, and that greater
similarity may facilitate more efficient or less energy-costing re-
configuration in the presence of task demand.
Such reconfiguration efficiency or optimized preconfiguration at

rest is likely to vary significantly across individuals in the thalamus that
exhibits the most notable differences between functional connectivity at
rest (i.e., temporal correlations) and on task (i.e., co-activation pat-
terns) (Di, Gohel, Kim, & Biswal, 2013). Specifically, the thalamus is
more globally connected during task performance, but is more locally
connected at rest (Di et al., 2013). Based on these observations and the
aforementioned finding (Schultz & Cole, 2016), we consider that higher
ReHo in the thalamus at rest may reflect less optimized/efficient local
preconfiguration (i.e., more energy-costing reconfiguration in the pre-
sence of a task), which in turn is associated with lower performance. In
other words, individuals whose local intrinsic functional connectivity
patterns of the thalamus are more similar between rest and tasks are
likely to perform better on the achievement and IQ measures. Further
studies are needed to test this possibility by analyzing fMRI data col-
lected during both rest and relevant tasks (e.g., word reading) in the
same individuals.
A question arising here is the common role of the thalamus among

reading, arithmetic, and IQ measures. Recent efforts in the rs-fMRI field
have highlighted the thalamus as an integrative hub that is connected
with multiple cortical networks (Garrett, Epp, Perry, & Lindenberger,
2018; Greene et al., 2019; Hwang, Bertolero, Liu, & D'Esposito, 2017;
Seitzman et al., 2020). As such, meta-analysis of a large database of
fMRI activations has revealed that the thalamus is involved in multiple
cognitive functions (Hwang et al., 2017). Activation of the thalamus has
been sometimes (but not always) reported during tasks that require
higher cognitive processing, such as language (Crosson, 2013;
Klostermann et al., 2013; Llano, 2013), reading (Gaab et al., 2007;
Houde, Rossi, Lubin, & Joliot, 2010; Maisog, Einbinder, Flowers,
Turkeltaub, & Eden, 2008; Martin, Schurz, Kronbichler, & Richlan,
2015; Pugh et al., 2008; Pugh et al., 2013), arithmetic (Arsalidou &
Taylor, 2011), and intelligence/reasoning (Fangmeier, Knauff, Ruff, &
Sloutsky, 2006). Although the thalamus is not typically considered as a
core region for reading, arithmetic or intellectual abilities, thalamic
abnormalities (i.e., geniculate nuclei) have been noted in individuals
with reading disorders (Diaz et al., 2012; Stein, 2018b), as well as those
with ADHD (Ivanov et al., 2010; Li et al., 2012) that is often comorbid
with learning difficulties in reading and/or arithmetic (Mayes, Calhoun,
& Crowell, 2000; Wadsworth, DeFries, Willcutt, Pennington, & Olson,
2015).
Our ReHo results emphasize the left posterior thalamus, corre-

sponding to the location of the left pulivnar (the peak voxels from the
three models). Thus our discussion here focuses on the role of pulvinar
and its possible contribution to reading, arithmetic, and intellectual
skills. The pulvinar has been most intensively examined in its relation
with selective attention (Fischer & Whitney, 2012; Halassa & Kastner,
2017; Kastner et al., 2004; Smith, Cotton, Bruno, & Moutsiana, 2009) –
the ability to filter/suppress distracting information and enhance re-
levant information for goal-oriented task performance. Selective at-
tention is not only a survival instinct across all species (Krauzlis,
Bogadhi, Herman, & Bollimunta, 2018) but also implicated in higher
cognitive abilities unique to humans, including phonological processing
(Yoncheva, Maurer, Zevin, & McCandliss, 2014), reading (Commodari,
2017), and intelligence (Kirk, Gray, Ellis, Taffe, & Cornish, 2016;
Unsworth, Fukuda, Awh, & Vogel, 2014). The importance of selective
attention in reading, arithmetic, and language is extensively reviewed
and discussed elsewhere (Stevens & Bavelier, 2012). In particular, close
relationships between selective attention and reading (e.g., visual word

recognition) has been well-documented (Commodari, 2017; Graboi &
Lisman, 2003). For example, during visual word recognition, selective
attention enables a reader to compare the visual/orthographic re-
presentation of a written word to his/her mental lexicon (i.e., a list of
many relevant and irrelevant words stored in memory) until the match
is found. Without selective attention, book and web pages would be
merely full of visual clutter. Importantly, selective attention occurs in
the auditory (Pugh et al., 1996; von Kriegstein, Eger, Kleinschmidt, &
Giraud, 2003) and semantic domains (Rogalsky & Hickok, 2009), as
well as integrated domains (i.e., audiovisual semantic) (Li et al., 2016).
As such, selective attention in the auditory (or auditory semantic) do-
main, rather than the visual domain, may be more relevant to FSIQ
given that two subtests forming FSIQ (i.e., Vocabulary and Similarities)
are orally presented and require oral answers.
Returning to neurobiological mechanisms of selective attention,

which requires the involvement of multiple functions in a coordinate
fashion and efficient cortico-cortical communications (Yantis, 2008),
the pulvinar has been suggested to play a role in selective attention by
regulating cortical synchrony (Saalmann & Kastner, 2011; Saalmann,
Pinsk, Wang, Li, & Kastner, 2012; Zhou, Schafer, & Desimone, 2016).
Such cortical regulation of the pulvinar is most likely to achieved by its
extensive interconnection with cortical regions (Greene et al., 2019;
Hwang et al., 2017; Seitzman et al., 2020). Although the pulvinar has
been prominently examined and discussed in the visual domain (Kaas &
Lyon, 2007; Zhou et al., 2016), emerging evidence has suggested its
involvement in auditory attention (e.g., speech segmentation) (Dietrich,
Hertrich, & Ackermann, 2013, 2015; Erb, Henry, Eisner, & Obleser,
2012). Hence, selective attention, regulated by the pulvinar, is likely to
be a common latent factor associated with the reading, arithmetic, and
IQ measures. Here, we postulate that higher ReHo in the thalamus
(centered in the left pulvinar), reflecting less optimized local pre-
configuration at rest, may be associated with lower selective attention
across multiple domains, which may exert negative impact on the
achievement and IQ performance. This view could, in turn, contribute
to the debate as to why some (but not all) individuals with impaired
selective attention, such as ADHD (Brodeur & Pond, 2001; Mueller,
Hong, Shepard, & Moore, 2017), perform poorly on the achievement
and IQ tests (Frazier, Demaree, & Youngstrom, 2004). Validation of this
hypothesis deserves further investigation, particularly given that
learning difficulties with reading/arithmetic and attention deficits are
often understudied or underestimated in people with borderline in-
tellectual functioning (Al-Khudairi, Perera, Solomou, & Courtenay,
2019; Baglio et al., 2014; Di Blasi, Buono, Cantagallo, Di Filippo, &
Zoccolotti, 2019; Jansen, De Lange, & Van der Molen, 2013; Rose,
Bramham, Young, Paliokostas, & Xenitidis, 2009); such individuals are
not often granted eligibility to access specialized healthcare or social/
educational services they might need (Martinez & Quirk, 2009).
It is worth mentioning that ReHo-behavior relationships may be

true only in adults given the reported difference in the amplitude of
whole-brain ReHo between children and adults (i.e., lower in adults
than children) (Dajani & Uddin, 2016), which is possibly due to pruning
of local connections (Jiang et al., 2015). Furthermore, developmental
changes have been observed in thalamocortical iFC (Fair et al., 2010)
and its relationships with reading (e.g., negatively and positively as-
sociated with reading in adults and children, respectively) (Koyama
et al., 2011); these prior findings implicate possible child–adult dif-
ferences in patterns of ReHo in the thalamus. Furthermore, given that
the thalamus is vulnerable following preterm birth (Ball et al., 2012;
Ball et al., 2013; Smyser et al., 2010; Toulmin et al., 2015; Volpe, 2009)
and that smaller thalamic volumes at term-equivalent age predict
childhood neurodevelopmental deficits (in reading, arithmetic, and IQ)
in preterm-born individuals (Loh et al., 2017), early alterations in
thalamic functional connectivity may also indicate higher risk for later
neurodevelopmental disorders, including learning and intellectual dis-
abilities. It is of great interest to explore the nexus between the de-
velopment of the thalamus/pulvinar and neurodevelopmental
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outcomes; this effort would potentially add further evidence for brain
mechanisms underlying the comorbidity in reading and arithmetic
difficulties (Skeide, Evans, Mei, Abrams, & Menon, 2018; Willcutt et al.,
2013), which could co-occur with cognitive weakness in domain-gen-
eral skills, such as attention, working memory, and speed processing
(Gathercole et al., 2016; Willcutt et al., 2013) – these cognitive com-
ponents are often embedded in IQ tests.

4.2. fALFF in L.SPL

The result of the F-test with LW and FSIQ measures suggests that
higher fALFF in L.SPL characterizes better word reading and IQ. This
positive relationship between local intrinsic activity and reading/IQ is
in line with prior task-evoked activation seen in L.SPL during reading
(Martin et al., 2015; Meyler, Keller, Cherkassky, Gabrieli, & Just, 2008;
Peyrin, Demonet, N'Guyen-Morel, Le Bas, & Valdois, 2011; Reilhac,
Peyrin, Demonet, & Valdois, 2013; Vigneau, Jobard, Mazoyer, &
Tzourio-Mazoyer, 2005) and intelligence/reasoning tasks (Fangmeier
et al., 2006; Goel & Dolan, 2001; Jung & Haier, 2007; Wendelken,
2014). This finding might provide an additional support for evidence
that local intrinsic activity, represented by low-frequency oscillations
during rs-fMRI, predicts local task activation and relevant behaviors
(Kalcher et al., 2013; Mennes et al., 2011). It is well-documented that
SPL is a highly heterogeneous region in its patterns of functional con-
nectivity and activation (Caspers & Zilles, 2018; Mars et al., 2011;
Scheperjans, Eickhoff, et al., 2008; Wang et al., 2015). Wang et al.
(2015) have used a connectivity-based parcellation scheme and de-
tected multiple subregions of SPL, one of which is similar to the cy-
toarchitectonically defined area 7A (Scheperjans, Eickhoff, et al., 2008;
Scheperjans, Hermann, et al., 2008) and appears to correspond to the
L.SPL cluster identified in this study. This SPL subregion, particularly in
the left hemisphere, has been found to be associated with visuospatial
attention, reading, and reasoning (Wang et al., 2015), indicating that
the involvement of L.SPL in reading and reasoning may be mediated by
visuospatial attention.
SPL is part of the dorsal attention network (Corbetta & Shulman,

2002; Shomstein, 2012; Vossel, Geng, & Fink, 2014), which has a sig-
nificant overlap with task-positive networks (Dosenbach, Fair, Cohen,
Schlaggar, & Petersen, 2008; Dosenbach et al., 2007; Dosenbach et al.,
2006; Fox, Corbetta, Snyder, Vincent, & Raichle, 2006), including the
frontoparietal network. More recently, Dixon et al. (2018) have dif-
ferentiated the frontoparietal network in two subsystems, one of which
coactivates and is more strongly connected with the dorsal attention
network, including SPL. This attention-related subsystem is contrasted
to another subsystem that is prominently connected with distributed
components of the default mode network. These authors have further
explored associations between each subsystem and different cognitive
processes, finding that “reading” exhibits a strong positive association
with the attention-related subsystem (Dixon et al., 2018). Although
some processes (e.g., “working memory”), which can be components
measured by IQ tests, are also strongly associated with the attention-
related system, these associations are not as strong as the “reading”
association. These association patterns are consistent with our finding
that the correlation between fALFF in L.SPL and FSIQ were significant
but weaker than that for reading. Taken together, our fALFF result
suggests that higher local intrinsic activity in L.SPL indexes higher
reading and IQ, most likely due to the L.SPL’s involvement in visuos-
patial attentional control (Corbetta & Shulman, 2002; Wang et al.,
2015). This assumption needs to be tested in future research in which
aspects of attention (e.g., sustained attention, selective attention) are
linked to fALFF in L.SPL (and other attention-related regions).
To date, neurobiological mechanisms of fALFF may be the least

understood among rs-fMRI metrics, but recent efforts have revealed
that fALFF and ReHo exhibit high correlations with each other (Nugent,
Martinez, D'Alfonso, Zarate, & Theodore, 2015; Yuan et al., 2013) and
with cerebral blood flow (Z. Li, Zhu, Childress, Detre, & Wang, 2012) at

the whole-brain level. Nevertheless, these two local rs-fMRI metrics do
not always yield similar or consistent brain regions (and their re-
lationships with behavior in the same populations) (Xu et al., 2015;
Yang et al., 2015). This indicates that fALFF and ReHo can provide
complementary information about local intrinsic properties, and this is
the case in the present study in such that ReHo and fALFF revealed
different regions associated with reading (i.e., the thalamus for ReHo
and L.SPL for fALFF), as well as different brain-behavior relationships
(i.e., positive for ReHo in the thalamus but negative for fALFF in L.SPL).

4.3. SCA with the common-thalamus cluster

We found that iFC between the Common-Thalamus cluster and
L.TPJ exhibited a significant negative association with LW. That is,
individuals with weaker positive correlations (and stronger negative
correlations) between these subcortical-cortical regions tended to per-
form better on the reading measure. This SCA finding is largely con-
sistent with prior rs-fMRI work showing that connections between
subcortical (i.e., caudate, thalamus) and left temporoparietal/parietal
regions are negatively associated with reading skills in adults (Achal
et al., 2016; Koyama et al., 2011). L.TPJ has been widely reported in
reading research, particularly due to its hypoactivation in individuals
with reading difficulties (Maisog et al., 2008; Martin et al., 2015;
Richlan, Kronbichler, & Wimmer, 2009). However, L.TPJ is not specific
to reading but is involved in the number of different cognitive functions
(Bzdok et al., 2016; Igelstrom & Graziano, 2017), including social
reasoning (Samson, 2004) that relies on the default mode network
(Buckner et al., 2008; Li, 2014).
The term “TPJ” is an abstract label that has been commonly used in

the neuroimaging literature. Notably, there are differences in labeling
the location of TPJ across studies (e.g., different labels describe the
same or similar location). As such, Church, Coalson, Lugar, Petersen,
and Schlaggar (2008) have reported that, during reading tasks, adult
readers show no activation in the left angular gyrus, which is within
close proximity of (or overlap with) our L.TPJ cluster: the Euclidean
distance = 10.8 based on the peak voxel MNI coordinates. This task-
evoked fMRI finding implies that our SCA result of the thalamus-L.TPJ
iFC cannot be explained by task-evoked coactivation patterns, which
are thought to underlie iFC maps (Liu, Zhang, Chang, & Duyn, 2018; S.
M. Smith et al., 2009). Instead, it is possibly linked with the default
mode network considering that the L.TPJ cluster identified in this study
resembles most closely one of the L.TPJ subdivisions reported in
Igelstrom et al. (2015), which is strongly connected and coactivated
with the default mode network. Given that stronger negative correla-
tions between task-positive and default mode networks during rest can
reflect higher cognitive efficiency (Kelly, Uddin, Biswal, Castellanos, &
Milham, 2008), stronger negative iFC (and weaker positive iFC) be-
tween the thalamus (i.e., a task-positive region) and our L.TPJ cluster
(i.e., a L.TPJ subdivision as part of the default mode network) may
reflect improved cognitive efficiency; this is likely to facilitate auto-
maticity, which is an important component of skilled reading (Kuhn,
Schwanenflugel, & Meisinger, 2010; Logan, 1978; Wolf, 2018).
Finally, it is somewhat surprising that the F-test with Calc and FSIQ

yielded no significant result in SCA, despite a fact that thalamus cluster
used in SCA was commonly associated with the three measures in the
ReHo analysis. However, post-hoc analyses revealed that iFC values
extracted from the thalamus-L.TPJ connectivity were significantly as-
sociated with arithmetic scores (but not FSIQ). This may imply that
there was a possible association between the thalamus-L.TPJ iFC and
arithmetic, but it failed to survive correction for multiple comparisons
when examining at the whole-brain level (i.e., fMRI data comprising
numerous voxels). This result from the post-hoc analysis encourages a
future research to have a larger sample size and perform a whole-brain
analysis, testing if the thalamus-L.TPJ connectivity could be commonly
associated with reading and arithmetic. In addition, given that coacti-
vation patterns of the pulvinar are different according to task types
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(Barron, Eickhoff, Clos, & Fox, 2015), it will be of great interest to in-
vestigate global/long-distance functional connectivity of the thalamus/
pulvinar during different tasks, including reading, arithmetic, and in-
tellectual tasks.

5. Limitations

There are several limitations in the current study. The most evident
was a lack of task-evoked fMRI data in the domain of reading, ar-
ithmetic, and IQ/reasoning, which restricted direct comparisons of
ReHo-behavior relationships during rest and task. Our primary ReHo
finding sits in the thalamus, which is the region exhibiting the most
dynamic differences in functional network configuration between rest
and task (i.e., more globally connected during task than at rest). Thus,
examination of both intrinsic and task-evoked functional connectivity
of the thalamus in the same sample could enable us to illustrate com-
prehensive connectivity-behavior relationships (e.g., a possibility that
global/long-distance task-evoked connectivity of the thalamus is posi-
tively associated with cognitive abilities). Similarly, although we at-
tributed the ReHo result in the thalamus to the common involvement of
selective attention in the achievement and IQ measure, we adminis-
tered no selective attention skills to be linked to the ReHo result in the
thalamus. Given that results from both ReHo and fALFF (i.e., L.SPL in
the dorsal attention network) highlight regions involved in attention,
which is a prerequisite of learning (Merkley, Matusz, & Scerif, 2018;
Reynolds & Besner, 2006; Shaywitz & Shaywitz, 2008), future research
studies should consider the measurement of different aspects of atten-
tion (e.g., sustained attention, selective attention) and relate them to
brain’s functional profiles that characterize reading, arithmetic, and/or
IQ. Finally, our results should be interpreted with caution when
studying the developing brain (i.e., children); activation and con-
nectivity patterns of the regions identified in the current study are
known to be developmentally sensitive and differentially associated
with children and adults when reading (Church et al., 2008; Koyama
et al., 2011) and arithmetic (Rivera, Reiss, Eckert, & Menon, 2005)
abilities are examined.

6. Conclusions

We simultaneously examine both achievement (reading, arithmetic)
and IQ measures, using rs-fMRI metrics that characterize local intrinsic
functional properties. The main finding highlights that ReHo (i.e., local
functional connectivity) in the thalamus, particularly the left pulvinar
implied in selective attention, is a common neural correlate or con-
vergence site for cognitive variation in reading, arithmetic, and IQ
measures. Specifically, the higher the ReHo, the lower the performance
on all the three measures. Considering that the thalamus is more locally
connected at rest than during tasks, negative ReHo-behavior relation-
ships indicate that higher ReHo in the thalamus at rest may reflect less
optimized/efficient local preconfiguration (i.e., more energy-costing
reconfiguration in the presence of a task), which in turn is associated
with lower performance on each dimension. In addition, the fALFF
result suggests that higher local intrinsic functional activity in the left
superior parietal lobule (in the dorsal attention network) characterizes
better reading and IQ performance. To summarize, our findings provide
additional support to claims that attentional components are critical for
achievement skills and IQ. In particular, the ReHo finding that the
thalamus is a common locus for the three measures could provide a new
perspective on brain mechanisms underlying a type of comorbidity
between reading and arithmetic difficulties, which could co-occur with
weakness in general intellectual abilities.
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