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1  |  INTRODUC TION

Word recognition is a fundamental skill to reading comprehen-
sion (Zhang et al., 2012) which is important to academic, career, 
and life success. The development of word reading expertise and 

the corresponding neural network is an important issue in devel-
opmental cognitive neuroscience. In the present study, we fo-
cused on early neural markers of Chinese character recognition. 
Predicting current and future behavior from brain features has 
been argued to be an initial and important step in neuroscience 
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Abstract
Research on what neural mechanisms facilitate word reading development in non-
alphabetic scripts is relatively rare. The present study was among the first to adopt a 
multivariate pattern classification analysis to decode electroencephalographic signals 
recorded for primary school children (N = 236) while performing a Chinese character 
decision task. Chinese is an ideal script for studying the relationship between neu-
ral discriminability (i.e., decodability) of the orthography and behavioral word read-
ing skills since the mapping from orthography to phonology is relatively arbitrary 
in Chinese. This was also among the first empirical attempts to examine the extent 
to which decoding performance can predict current and subsequent word reading 
skills using a longitudinal design. Results showed that neural activation patterns of 
real characters can be distinguished from activation patterns for pseudo-characters, 
non-characters, and random stroke combinations in both younger and older children. 
Topography of the transformed classifier weights revealed two distinct cognitive 
sub-processes underlying single character recognition, but temporal generalization 
analysis suggested common neural mechanisms between the distinct cognitive sub-
processes. Suggestive evidence from correlational and hierarchical regression analy-
ses showed that decoding performance, assessed on average 2 months before the 
year 2 behavioral testing, predicted both year 1 word reading performance and the 
development of word reading fluency over the year. Results demonstrate that decod-
ing performance, one indicator of how the neural system is functionally organized in 
processing characters and character-like stimuli, can serve as a useful neural marker in 
predicting current word reading skills and the capacity to learn to read.
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to understand how the brain gives rise to cognition and behavior 
(Rosenberg et al., 2018). We particularly sought to determine the 
extent to which neural indicators could predict behavioral perfor-
mance in both timed and untimed word recognition longitudinally. 
There have been a few previous attempts (e.g., Leppänen et al., 
2010; Maurer et al., 2006, 2009; Pugh et al., 2014; van Zuijen et al., 
2013) to understand the utility of neural markers for explaining 
word reading longitudinally. In the present study, we adopted mul-
tivariate	pattern	classification	analysis	(MVPA),	which	is	arguably	a	
more sensitive method in detecting subtle but widespread effects 
to decode electroencephalography (EEG) signals collected from 
primary school children when they were performing a Chinese 
character decision task. Chinese is a complex script with about 
5000 commonly used characters (Lee, 2000) and the mapping 
from orthography to phonology is relatively arbitrary in Chinese; 
hence, the neural system's ability to recognize the orthography of 
each Chinese character may be particularly important for Chinese 
reading development. The decoding performance, reflecting a dif-
ference between distributed but unique neural activation patterns 
in processing of different types of Chinese character and charac-
ter-like stimuli, was our primary focus. We looked both at this per-
formance in relation to children's current word reading skills and 
their timed and untimed word reading skills longitudinally, 1 year 
later.

1.1  |  Differences in cognitive processes and the 
neural network between word and nonword reading

Single word reading is a complex process involving several levels 
of cognitive sub-processes, such as visual/orthographic recogni-
tion of words, activation of the corresponding phonological forms, 
and activation of the meanings of words. The classical dual-route 
theory of reading aloud (Coltheart et al., 1993) proposes that there 
are two separate cognitive routes responsible for reading of words 
and nonwords, respectively. The lexical route enables skilled read-
ers to directly recognize known written words and to determine 
the corresponding spoken words without the phonological analysis 
process for the constituent graphemes. In contrast, the nonlexical 
route enables readers to read aloud a written stimulus, either a word 
or nonword, by converting the graphemes to associated phonemes 
through established grapheme and phoneme association rules of the 
language.

Research using various neuroimaging techniques has shed light 
on the corresponding neural network. Pugh et al. (2001) suggested 
a neural reading network with two left hemisphere posterior sys-
tems. The occipito-temporal (ventral) system may be responsible 
for the early visual word identification process, which is a fast and 
automatic process without heavy dependence on attentional re-
sources. The temporo-parietal (dorsal) system, in contrast, may be 
responsible for an effortful phonological analysis that is slow and 
attention-demanding, for mapping the orthography of words onto 
corresponding phonological forms.

Subsequent studies have further suggested that the occipi-
to-temporal system contains a so-called visual word form area 
(VWFA;	Cohen	et	al.,	2002;	Sandak	et	al.,	2004)	which	appears	to	
be a critical region specialized for visual word form representation. 
In	 one	 study,	 for	 example,	 the	VWFA	 showed	 stronger	 activation	
to words than to non-pronounceable consonant strings and showed 
stronger activation to alphabetic strings than to checkerboards 
(Cohen	et	al.,	2002).	A	more	recent	meta-analysis	on	cross-linguis-
tic effects in word reading (Bolger et al., 2005) suggested that the 
VWFA	is	critical	to	word	recognition	across	writing	systems,	includ-
ing English and Chinese. Taken together, findings indicate that the 
neural system is functionally organized for processing of words and 
word-like stimuli and shows different neural activation patterns in a 
highly distributed fashion across the brain in response to words and 
nonwords, regardless of the writing system.

1.2  |  Temporal dynamics of word reading processes

Studies using high-temporal resolution techniques such as mag-
netoencephalography (MEG) and EEG have shed light on the time 
course of word reading. The visual word identification process re-
sponsible by the occipito-temporal system occurs approximately 
150–200 ms after stimulus onset (Salmelin et al., 1996; Tarkiainen 
et al., 1999). The neural responses in this early stage show a pref-
erence for letter strings as compared to symbol strings and differ 
between fluent and dyslexic readers; these are correlated with 
participants'	word	 reading	 speed.	A	 subsequent	 event-related	 po-
tential	(ERP)	study	found	that	an	ERP	component	N170,	which	indi-
cates fast and automatic visual recognition process, was larger for 
orthographic than nonorthographic stimuli in the left hemispheric 
occipito-temporal	 sites	 (Bentin	et	 al.,	1999);	hence,	 the	N170	may	
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be closely related to the visual encoding process of the orthographic 
form of the printed word. In addition, Bentin et al. (1999) found that 
an	ERP	component	N350,	distributed	in	the	temporo-parietal	areas,	
was elicited by phonological legal but not by phonologically illegal 
stimuli,	and	an	ERP	component	N450,	activated	 in	areas	 including	
the fronto-central regions, distinguished not only phonologically 
legal and illegal words but also meaningful and meaningless words. 
A	more	 recent	ERP	 study	on	Chinese	 character	 and	word	 reading	
(Lo et al., 2019) has also revealed a very similar time course of word 
reading	as	compared	to	that	found	in	alphabetic	scripts.	The	N170	
and	 N400	 components	 have	 been	 shown	 to	 be	 differentially	 ac-
tivated by words and nonwords across several studies (e.g., Brem 
et al., 2005; Maurer et al., 2005; Sánchez-Vincitore et al., 2018 for 
N170;	see	Lau	et	al.,	2008	for	a	review	for	N400).

These findings from electrophysiological studies are consistent 
with the two left hemisphere posterior systems model proposed by 
Pugh et al. (2001), which assumes that single word reading is com-
prised of an earlier (peak around 170–200 ms) orthography encod-
ing process occurring in the occipito-temporal sites and later (peak 
around 400 ms) phonological and semantic analysis processes oc-
curring in the temporo-parietal areas and fronto-central regions. 
Taken together, these findings suggest that the difference in neural 
activation patterns in response to words (or word-like stimuli) and 
nonwords is highly distributed both spatially and temporally.

1.3  |  Development of the neural reading 
network and word reading expertise

The development of the occipito-temporal system is likely to be criti-
cally dependent on word reading acquisition (Shaywitz et al., 2002). 
Simos et al. (2001) found that children (8–15 years old) lacked a clear 
temporal distinction in engaging in the occipito-temporal and tem-
poro-parietal systems, and the activations to word reading in the for-
mer system tend to be bilaterally symmetrical in children but appeared 
to become progressively specialized in the left hemisphere with in-
creasing reading experience. Studies that have examined the ERP 
component	N170	have	viewed	the	early	orthography	encoding	stage	
of word reading as a special case of perceptual expertise (e.g., Maurer 
& McCandliss, 2007). Two cross-sectional studies (Tong et al., 2016; 
Zhao	et	al.,	2019)	have	showed	that	the	N1	(how	the	N170	is	called	
in children) response was different between Chinese characters, 
pseudo-characters,	and	non-characters	and	this	N1	specialization	was	
related to children's word reading skills. In a longitudinal study, Maurer 
et	al.	(2006)	showed	that	larger	N1	for	words	than	symbol	strings	was	
not observed for kindergarten children who had not yet started learn-
ing to read but was found for the same children after they had mas-
tered basic reading skills in second grade. This perceptual expertise 
framework	has	been	used	to	account	for	the	N170	responses	that	are	
increased by numerous classes of visual stimuli associated with per-
ceptual expertise, such as faces (Rossion et al., 2003), birds (Tanaka & 
Curran, 2001), cars (Gauthier et al., 2003), and also words, even those 
that are not required to be read (Maurer et al., 2005).

In contrast to the perceptual expertise framework, sev-
eral meta-analyses on word reading (e.g., Houdé et al., 2010; 
Turkeltaub et al., 2002) have suggested that adults and children 
(5.8–15 years old) engage very similar word reading networks, in-
cluding the frontal, temporo-parietal, and occipito-temporal sys-
tems. Specifically, children have been found to engage in the visual 
word form area situated at the left occipito-temporal junction in 
word	 reading.	According	 to	 these	meta-analytic	 studies,	 the	de-
velopment of the occipito-temporal system is relatively indepen-
dent of word reading acquisition. Moreover, Maurer et al. (2006) 
have	 found	 the	N170	expertise	effect	only	 in	 contrasting	words	
to	symbol	strings	but	have	not	found	clear	N170	specialization	for	
words	 over	 pseudowords.	 Also,	 they	 did	 not	 include	 consonant	
strings, which would allow for more fine-grained contrasts of per-
ceptual expertise in word reading (Zhao et al., 2014). Longitudinal 
research	on	this	topic	is	scarce,	especially	for	Chinese	scripts.	As	
suggested by a recent review (Vandermosten et al., 2016), more 
longitudinal studies should be conducted to examine whether the 
development of the occipito-temporal system depends on word 
reading acquisition.

In contrast, some studies have suggested that the development 
of the temporo-parietal system for phonological and semantic 
analysis occurred much earlier than the development of the occipi-
to-temporal system and was less dependent on word reading acqui-
sition (Friedrich & Friederici, 2006; Pugh et al., 2001; Rämä et al., 
2013) while others have suggested that the system continues to 
be involved in word reading through adulthood (Turkeltaub et al., 
2003). In addition to the dorsal–ventral model of reading acquisi-
tion, Turkeltaub et al. (2003) has further asserted that word reading 
development is associated with increased activity in the left inferior 
frontal and middle temporal areas and decreased activity in the right 
inferotemporal area. To conclude, research findings regarding the 
development of the neural reading network and its associations with 
the development of behavioral word reading skills have been mixed. 
It is not clear whether and at what age the neural mechanisms of the 
cognitive sub-processes underlying word reading in children can be 
dissociated temporally. It is also unclear whether and how much the 
development of each neural mechanism of the cognitive sub-pro-
cesses is associated with the development of word recognition skills. 
Since the neural reading network and the difference in neural acti-
vation patterns in processing words and nonwords are highly distrib-
uted	both	spatially	and	temporally,	the	present	study	applied	MVPA,	
which is arguably a more sensitive method in detecting subtle but 
widespread effects, to decode high-temporal resolution EEG data 
recorded for grade 1 to grade 5 Chinese children to examine these 
questions.

1.4  |  A general introduction of multivariate pattern 
classification analysis

The application of multivariate pattern classification analysis or "brain 
decoding" methods to the analysis of neuroimaging data has become 
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prevalent in the field of cognitive neuroscience (Grootswagers et al., 
2017; Haynes, 2015; Pereira et al., 2009). The common practice is 
to test whether we can predict which experimental condition the 
participant is in based on their patterns of brain activation. The de-
coding process involves training a classifier (e.g., a support vector 
machine) to associate brain activation patterns with the experimen-
tal conditions using a subset of the data, and then using the trained 
classifier to predict the experimental conditions for new data that 
were not used for training. If the classification accuracy is signifi-
cantly higher than chance, we can conclude that some information 
relevant to the experimental manipulation exists in the data.

Compared with the prevalence in fMRI, only a relatively small 
number of studies have applied decoding methods to the analysis 
of time series neuroimaging data such as MEG and EEG data. Most 
of them have focused on decoding the neural signals of visual per-
ception such as face perception (Cauchoix et al., 2014; Sandberg 
et al., 2013), object categorization (Carlson et al., 2011, 2013; 
Nieuwenhuijzen	 et	 al.,	 2013),	 object	 recognition	 (Isik	 et	 al.,	 2014),	
position perception (Hogendoorn et al., 2015), communicative ges-
tures perception (Redcay & Carlson, 2015), and auditory perception 
(King et al., 2014) including music perception (Schaefer et al., 2011) 
and	speech	perception	 (Ding	&	Simon,	2012).	A	few	of	 them	have	
focused on decoding the mental representation of semantic cate-
gories (Chan et al., 2011; Murphy et al., 2011; Simanova et al., 2010, 
2014; Sudre et al., 2012), decision outcomes (Bode et al., 2012), and 
memory contents (Jafarpour et al., 2013; Wolff et al., 2015). Few 
studies have applied decoding methods to classify across words, 
pseudowords, and nonwords.

Multivariate pattern classification analysis can examine the neu-
ral activation pattern distributed across multiple time points and 
spatial	locations	simultaneously.	Hence,	MVPA	is	usually	a	more	sen-
sitive method in detecting subtle and widespread effects that were 
previously	undetectable	using	univariate	techniques.	As	a	multivar-
iate	technique,	MVPA	pools	together	weak	information	across	time	
points and electrodes. For example, Cauchoix et al. (2014) found no 
modulation of the two early face processing components (P100 and 
N170)	 in	 most	 of	 the	 occipitotemporal	 channels	 using	 traditional	
ERP analyses but revealed significant face category information at 
a very early time window (94 ms poststimulus onset) and across 
occipitolateral	 channels	 using	MVPA.	Typically,	 the	neural	 activity	
will be normalized across features for each trial before training and 
testing	of	the	classifier;	 therefore,	MVPA	targets	neural	activation	
patterns distributed across the brain but not the difference in neural 
activation levels in a few channels between conditions. Electrodes 
in isolation cannot provide as much information as their combined 
effects,	and	the	electrode	contributions	assessed	by	MVPA	are	qual-
itatively different from those measured using classical univariate 
analyses (Cauchoix et al., 2012). In addition, by considering relation-
ships	between	all	features	concurrently,	MVPA	needs	not	correct	for	
multiple comparisons for the number of features to control for false 
positives, so it has a larger statistical power than traditional univari-
ate techniques in analyzing the same data (Chan et al., 2011). Finally, 
MVPA	 can	 perform	 at	 the	 single	 trial	 level	 in	 individual	 subjects;	

this is better than examining the event-related potentials averaged 
across trials and participants when there is a certain amount of inter-
individual variability across trials for the spatiotemporal activation 
patterns in one or more conditions (Salmelin et al., 1996).

1.5  |  The present study

The present study was part of a large-scale longitudinal twin study 
conducted in Hong Kong examining both neural and genetic factors 
underlying early development of word reading skills. We applied mul-
tivariate pattern classification analysis to decode category informa-
tion related to different types of character-like stimuli in single trial 
EEG data with a relatively large sample size. EEG activity was recorded 
when the children were performing a Chinese character decision task 
(Tong et al., 2016) in which they were required to judge whether the 
stimulus was a Chinese character. The children also completed a 1-min 
Chinese word reading task and an untimed Chinese word reading task 
twice across 1 year. The 1-min and untimed word reading tasks meas-
ured two components skills of word reading—word reading fluency 
and word reading accuracy, respectively (Cheng et al., 2017; Ho et al., 
2017). Chinese is a complex script with about 5000 commonly used 
characters (Lee, 2000) which are usually formed from radicals con-
sisting of multiple strokes. In addition, the mapping from orthography 
to phonology is relatively arbitrary in Chinese, so that orthographic 
awareness is important to the Chinese word reading performance (Ho 
et al., 2002; Lin et al., 2011). Due to these properties, the neural sys-
tem's ability to differentiate Chinese characters from non-characters 
may be crucial for Chinese character and word reading development. 
As	a	result,	Chinese	is	an	ideal	language	for	studying	the	relationship	
between neural discriminability (i.e., decodability) of the orthography 
and behavioral word reading skills.

Three types of analyses were performed. First, decoding analy-
ses were performed to classify pairwise between EEG activity of the 
four types of stimuli (i.e., Chinese characters, pseudo-characters, 
non-characters, and stroke combinations) within each individual. 
Based	on	the	previous	studies	which	showed	differential	VWFA	ac-
tivations	(Bolger	et	al.,	2005)	and	N170	responses	(Tong	et	al.,	2016;	
Zhao et al., 2019) to Chinese characters and non-characters, we ex-
pected that the decoding performance would be significantly above 
chance in the orthographic recognition stage, reflecting differences 
in neural mechanisms in processing real characters and stimuli with 
different degrees of similarity to real characters. For the phonolog-
ical analysis stage, the nonlexical route of the classical dual-route 
theory of reading aloud may not apply for Chinese non-characters 
since the mapping from orthography to phonology is relatively ar-
bitrary in Chinese. However, there should still be differences in the 
neural responses between Chinese characters and non-characters, 
given that the phonological form of the former but not the latter is 
activated in the neural system. The decoding accuracy between real 
characters and stroke combinations, hence, was expected to be the 
highest since the two conditions differed dramatically in both or-
thographic and phonological forms. The topography of the classifier 
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weights was plotted across time to examine how the contributing 
features were distributed temporally and spatially. The decoding 
performance and topography were compared between younger and 
older children to examine the age effects on the neural mechanisms 
of the cognitive sub-processes underlying word reading.

Second, decoding analyses were performed using temporal gen-
eralization by training the classifier on a particular time window and 
then testing it in different time windows. If the classifier trained 
on one time window can successfully predict the types of stimuli 
for data at other time windows, the neural activation patterns for 
the stimuli should be similar between the trained and tested time 
windows, suggesting the same cognitive sub-process across time. In 
contrast, if the temporal generalization performance is not signifi-
cantly above chance, the neural activation patterns for the stimuli 
should change between time windows, suggesting different cogni-
tive sub-processes across time. The temporal generalization analy-
sis can provide insights about whether the cognitive sub-processes 
underlying single character recognition can be temporally disassoci-
ated in primary school children.

Third, correlations and regression analyses were performed to 
test whether decoding performance could serve as a neural marker in 
explaining the development of word reading fluency and accuracy. In 
the hierarchical regression analyses, the individual differences in word 
recognition skills in the previous year was statistically controlled to en-
sure that the additional variance explained by decoding performance 
reflects the extent to which the development of word read skills over 
the past year is related to the neural system's ability to differentiate 
real Chinese characters and different types of character-like stimuli. 
Since word reading fluency and accuracy are two different compo-
nents skills of word reading, their associations with neural discrimin-
ability of Chinese characters are possibly different. Given that word 
reading fluency indicates automatization of reading processes to a 
larger degree, while word reading accuracy indicates more controlled 
aspects of reading, we expected that word reading accuracy would 
show relatively stronger associations with neural discriminability be-
tween different types of character-like stimuli that are more similar to 
each other (e.g., real characters vs. pseudo characters) than those that 
are more distinct (e.g., real characters vs. stroke combinations). Still, 
overall associations between neural discriminability and reading might 
be strongest for reading fluency given previous studies that focused 
on	N1	print	tuning	and	reading	(Maurer	et	al.,	2007;	Tong	et	al.,	2016).

2  |  METHOD

2.1  |  Participants

One hundred twenty-one pairs of Chinese twins from grades 1 to 
5 participated in the current study in the first year. One child did 
not complete all the tasks and two children scored on fewer than 
10 trials for at least one condition of the Chinese character decision 
task after EEG data preprocessing. The three pairs of twins involved 
were hence discarded from analyses. The remaining 236 children 

included 108 males and 128 females. They were 5.39–9.76 years old 
(M = 7.36, SD = 0.92) in the first year and were 7.08–10.17 years 
old (M = 8.28, SD = 0.82) when they completed the EEG testing. 
Seven twin pairs quit the study in the second year. The remaining 
222 children included 103 males and 119 females and were 6.69–
10.99 years old (M = 8.44, SD = 0.98) in the second year. The chil-
dren were divided into two age groups for analyses based on their 
year 2 age: (a) 106 younger group children from 6.67 to 8 years old 
(M = 7.61, SD = 0.37, 51 males); (b) 116 older group children from 
8.08	to	10.92	(M	=	9.11,	SD	=	0.80,	52	males).	All	children	were	na-
tive Cantonese speakers, not previously diagnosed as having de-
velopmental dyslexia, and had normal or corrected to normal visual 
ability. Informed consent was obtained in written form from the par-
ents. The study protocol was approved by the Survey and Behavioral 
Research Ethics Committee of the Chinese University of Hong Kong 
(Ref. CUHK8/CRF/13G/2300035) and the Joint Chinese University 
of	Hong	Kong-New	Territories	East	Cluster	Clinical	Research	Ethics	
Committee (Ref. 2017.479).

2.2  |  Procedure

Participants completed the two behavioral sessions, both includ-
ing a 1-min Chinese word reading task and an untimed Chinese 
word reading task, across the period of 1 year. The behavioral ses-
sion completed in the first year is referred to as wave 1 and the 
behavioral session completed in the second year is referred to as 
wave 2 throughout this paper. The children completed the behav-
ioral measures either in their home or their school. Participants 
completed an EEG session for a Chinese character decision task 
scheduled on average 2 months before the wave 2 behavioral test-
ing. For the EEG session, the children were individually tested in 
a sound-attenuated laboratory in the Chinese University of Hong 
Kong. The Chinese character decision task was presented using 
an E-prime program and the EEG activity was collected using the 
HydroCel	GSN	EGI	128-channel	system	(EGI	net	station;	Electrical	
Geodesics Inc.).

2.3  |  One-minute Chinese word reading task

In this task, a list of 90 Chinese two-character words was presented 
to the children. They were asked to read aloud the words one by 
one as accurately and as quickly as possible. They were instructed 
to read the next word when they did not know how to read a word. 
The number of words they read correctly within 1 mi served as the 
indicator of their word reading fluency.

2.4  |  Untimed Chinese word reading task

In this task, a list of 150 Chinese two-character words was presented 
to the children. They were asked to read aloud the words one by one 
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as accurately as possible. The testing stopped when the children had 
made 15 consecutive errors or had finished reading all the words. 
The total number of words they read correctly served as the indica-
tor of their word reading accuracy.

2.5  |  Chinese character decision task

Participants performed a Chinese character decision task during the 
EEG recording. The task stimuli were presented via an E-prime pro-
gram. In each trial, a fixation cross was presented on the screen for a 
random interval varying from 400 to 600 ms followed by the presen-
tation of the target stimulus for 1500 ms. Participants were seated 
at a distance of 80 cm from the computer monitor and were required 
to judge whether the stimuli were real characters or not as fast and 
as accurately as possible by pressing button "1" or "4," respectively, 
on an response box. Responses had to be made within the 1500 ms 
stimulus presentation time window or otherwise considered as in-
correct.	A	blank	screen	then	appeared	for	1000	ms;	this	served	as	
the inter-trial interval.

The stimulus for each trial was randomly selected from four 
types of stimuli including real Chinese characters, pseudo-char-
acters, non-characters, and random stroke combinations. Figure 1 
shows	examples	of	the	four	types	of	stimuli	and	an	example	trial.	All	
real characters were left right compound characters with a semantic 
radical	on	the	left	and	a	phonetic	radical	on	the	right.	All	real	char-
acters were selected from a published wordlist in Hong Kong and 
were typically learned from grade 1 to grade 3 (Chinese Language 
Education Section, 2009). The pseudo-characters were created by 

combining a semantic and a phonetic radical following the correct 
orthographic rules in Chinese while the non-characters were cre-
ated by reversing the positions of the semantic and phonetic radi-
cals of a real character. The stroke combinations, adopted from Su 
et al. (2015), were composed of two non-existing radicals that were 
formed by randomized strokes. The total number of strokes of the 
four types of stimuli was matched to control for the visual complex-
ity across conditions.

Participants performed a practice block of 10 trials followed by 
performing 6 test blocks with 40 trials each. The number of stimuli 
of each condition was equal within each block, which resulted in 60 
trials for each condition.

2.6  |  EEG recording and preprocessing

Electroencephalography	was	recorded	using	the	HydroCel	GSN	EGI	
128-channel system (EGI net station; Electrical Geodesics Inc.) at 
a sampling rate of 500 Hz and with the Cz electrode as the online 
reference. Electrode impedance levels were set at less than 50 kΩ. 
There was a 12 ms timing delay between the event trigger and the 
actual stimulus onset created by the amplifier's internal anti-aliasing 
filter which was corrected in the following preprocessing.

Preprocessing	steps	were	done	using	EEGLAB	v14.1.2	(Delorme	
& Makeig, 2004). Continuous EEG data were first filtered with a 
0.3–30 Hz band-pass filter and then downsampled to 250 Hz. Only 
channels from the standard EEG montage 10–10 system were in-
cluded in the further analyses. Bad channels were further removed 
with the PREP pipeline (Bigdely-Shamlo et al., 2015). Independent 

F I G U R E  1 Examples	of	target	stimuli	for	each	experimental	condition	(a)	and	a	sample	trial	sequence	of	the	real	Chinese	character	
condition (b)
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component	 analysis	 (ICA)	was	 then	 performed	 on	 the	 continuous	
EEG	 data	 with	 an	 optimization	 algorithm	 –	 CUDAICA	 (Raimondo	
et al., 2012). Components related to eye movement artifacts were 
then	removed	using	ADJUST	(Mognon	et	al.,	2011).	Trials	were	then	
epoched from 150 ms pre-stimulus onset to 850 ms post-stimulus 
onset. Epochs with an absolute amplitude larger than 80 μV were 
removed from further analyses. On average, 28 epochs (7 per con-
dition) were removed for each participant. Finally, potentials were 
referenced to the common average and baseline corrected using the 
pre-stimulus interval.

2.7  |  Multivariate pattern classification analyses

After	the	preprocessing	steps,	trials	with	correct	responses	were	
subjected to multivariate pattern classification analyses using the 
linear support vector machine (SVM) classifier. The SVM classifier 
was trained to distinguish between any two types of stimuli (pair-
wise) among the four using a 10-fold cross-validation. The data 
were randomly partitioned into 10 portions with an equal number 
of trials. Each time the classifier was trained using 90% of trials 
and then tested on the remaining 10% of trials. This training and 
testing process was repeated 10 times with each portion of data 
being used in training for nine times and in testing for 1 time. To 
improve the signal-to-noise ratio and examine the time course of 
the classification accuracy, a sliding time window approach was 
adopted to classify across five time points (20 ms) simultaneously. 
The step size of the moving time window was two time points 
(8 ms) which resulted in three overlapping time points between 
adjacent time windows. Whether the classification accuracy 
of each time window was significantly above chance (50%) was 
tested by the Student's t-test with subjects as a random factor. To 
conform to the independent observation assumption in the gen-
eral linear model, only one child's datum from each twin pair was 
randomly selected for the t-test. However, to minimize the noise 
caused by random selection, we repeated the selection process 
and performed the t-test for 1000 times and averaged the 1000 
t-statistics as the final t-statistic. Multiple comparisons across 
time windows were corrected by the threshold-free cluster en-
hancement	method	(TFCE;	Smith	&	Nichols,	2009).	Two	types	of	
decoding analyses were performed including (a) the usual decod-
ing analysis using data from the same time window in training and 

testing and (b) a temporal generalization decoding analysis using 
data from one time window in training and data from another time 
window in testing.

2.8  |  Regression analyses

Two hierarchical regression analyses were performed to examine 
whether decoding performance could predict the development of 
word reading fluency and accuracy, respectively. The regression 
analyses treated the wave 2 word reading performance as the de-
pendent variable, and then included age in Block 1, wave 1 word 
reading performance in Block 2, and then further all pairwise de-
coding performance (neural markers) in Block 3 to examine whether 
early character sensitivity at time 1 could predict unique variance 
in word reading performance after controlling for age and individ-
ual difference in word reading performance over 1 year. Both the 
change in explained variance from Block 2 to Block 3 and p-values 
for	 individual	predictors	were	examined.	As	 there	were	 two	word	
reading measures and six decoding predictors, the Bonferroni-
adjusted p-values were also examined.

3  |  RESULTS

3.1  |  Behavioral results

3.1.1  |  Chinese	character	decision	task

Table 1 shows the mean accuracy and RT for trials with correct 
responses for each condition and age group combination. Two two-
way	mixed	model	ANOVAs	with	the	experimental	condition	as	the	
within-subject factor and age group as the between-subject factor 
were performed on accuracy and RT separately. To conform to the 
independent observation assumption in the general linear model, 
only one child's datum from each twin pair was randomly selected 
for the analyses. The main effect of condition was significant 
for both accuracy, F(3,107) = 228.62, p < 0.001, ηp

2 = 0.865, and 
RT, F(3,107) = 80.09, p < 0.001, ηp

2 = 0.692. Follow-up contrasts 
showed significantly higher accuracy and faster RT in the stroke 
combinations condition than all other conditions and found sig-
nificantly lower accuracy and slower RT in the pseudo-characters 

Stimuli category
Accuracy 
(younger)

Accuracy 
(older) RT (younger) RT (older)

Real characters 0.85 (0.11) 0.85 (0.13) 814.3 (113.3) 745.3 (114.1)

Pseudo-characters 0.48 (0.27) 0.56 (0.26) 887.0 (165.2) 797.2 (153.1)

Non-characters 0.84 (0.10) 0.88 (0.10) 846.1 (140.0) 749.5 (137.4)

Stroke combinations 0.93 (0.10) 0.95 (0.07) 764.1 (115.0) 681.8 (107.3)

Note: Younger group children were 6.67–8 years old and older group children were 8.08–
10.92	years	old	in	completing	the	year	2	testing.	Numbers	inside	the	parentheses	showed	the	
standard deviations.

TA B L E  1 Mean	accuracy	and	RT	for	
trials with correct responses for the 
Chinese character decision task for the 
two age groups
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condition than all other conditions for both groups, all ps < 0.001. 
The main effect of age was marginally significant for accuracy, 
F(1,109) = 3.31, p = 0.072, ηp

2 = 0.03, and significant for RT, 
F(1,109) = 13.53, p < 0.001, ηp

2 = 0.11, with higher accuracy and 
faster RT in the older group for all experimental conditions. The 
Condition × Group interaction was not significant for either accu-
racy F(3,107) = 0.89, p = 0.449, ηp

2 = 0.024, or RT F(3,107) = 0.93, 
p = 0.431, ηp

2 = 0.03.

3.1.2  |  Chinese	word	reading	performance

Table 2 shows the number of words the children read correctly in 
both word reading tasks for both age groups. Two two-way mixed 
model	 ANOVAs	 with	 Time	 (wave	 1	 vs.	 wave	 2)	 as	 the	 within-
subject factor and age group as the between-subject factor were 
performed on the two word reading tasks separately. The main 
effect of Time was significant for both 1-min, F(1,109) = 109.06, 

TA B L E  2 Amount	of	words	correctly	read	in	the	two	word	reading	tasks	for	the	two	age	groups

Task

Wave 1 Wave 2 Improvement

Younger group Older group Younger group Older group Younger group Older group Combined

COM 42.7 (18.1) 60.2 (18.9) 58.5 (20.1) 72.0 (20.4) 15.8 (14.3) 11.8 (13.6) 13.7 (14.0)

CWR 50.3 (27.1) 85.5 (31.9) 81.6 (26.5) 105.5 (25.1) 31.3 (15.5) 20.7 (12.0) 25.8 (14.8)

Note: Numbers	inside	the	parentheses	showed	the	standard	deviations.
Abbreviations:	COM,	Chinese	one-minute	word	reading;	CWR,	Chinese	untimed	word	reading.

F I G U R E  2 Within-individual	classification	accuracies	of	all	pairwise	combinations	of	the	four	stimuli	categories	(a:	younger	children;	b:	
older children). Discs above the x-axis	indicated	the	time	points	where	classification	accuracies	were	significantly	above	chance.	Appendix		D	
shows the classification accuracy plots faceted by age group
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p < 0.001, ηp
2 = 0.500, and untimed word reading performance, 

F(1,108) = 389.21, p < 0.001, ηp
2 = 0.783 with significantly better 

performance in wave 2 than wave 1. The main effect of age was also 
significant for both 1-min, F(1,109) = 20.25, p < 0.001, ηp

2 = 0.157, 
and untimed word reading performance, F(1,108) = 34.20, 
p < 0.001, ηp

2 = 0.240, with a significantly better performance for 
older than younger children. The Time × Group interaction was 
not significant for the 1-min word reading task F(1,109) = 2.19, 
p = 0.142, ηp

2 = 0.020, but significant for the untimed word reading 
task F(1,108) = 16.13, p < 0.001, ηp

2 = 0.130, with a larger improve-
ment of word reading performance from wave 1 to wave 2 for the 
younger than the older group.

3.2  |  Within-individual decoding results

Figure 2 shows the decoding accuracies for all pairwise classifications 
for	the	two	age	groups,	respectively.	As	shown,	for	both	age	groups,	all	

the six pairwise classifications yielded significantly above chance (0.50) 
accuracies at certain time points across the trial (ps < 0.05). The same 
decoding accuracy plots were also organized by the pairwise classifica-
tions	and	presented	in	Appendix	D.	To	examine	the	effects	of	stimuli	and	
age	on	the	classification	performance,	a	two-way	mixed	model	ANOVA	
with Stimuli (six pairwise classification analyses) as the within-subject 
factor and age group as the between-subject factor was performed. 
The main effect of Stimuli was significant, F(5,105) = 49.16, p < 0.001, 
ηp

2 = 0.701, with the highest classification accuracy found in classify-
ing between real characters and stroke combinations and the lowest 
classification accuracy found in classifying between pseudo-characters 
and non-characters. In general, classification analyses involving the 
stroke combinations showed higher accuracies as compared to those 
not	involving	the	stroke	combinations.	Neither	the	main	effect	of	age	
nor the interaction effect were significant, F(1,109) = 0.929, p = 0.337, 
ηp

2 = 0.008, and F(5,105) = 0.473, p = 0.796, ηp
2 = 0.022, respectively. 

As	shown	in	Table	3,	follow-up	t-tests revealed no significant age group 
differences for any of the pairwise classification analyses.

TA B L E  3 T-tests results in comparing the decoding performance between the two age groups

Accuracy (young) Accuracy (old) t-score p-value Cohen's d

Real-Stroke 0.5604 (0.0297) 0.5670 (0.0367) 1.04 0.301 0.20

Pseudo-Stroke 0.5517 (0.0355) 0.5509 (0.0343) −0.12 0.904 0.02

Nonchar-Stroke 0.5347 (0.0263) 0.5383 (0.0238) 0.749 0.455 0.14

Real-Nonchar 0.5230 (0.0287) 0.5277 (0.0239) 0.929 0.355 0.18

Real-Pseudo 0.5144 (0.0222) 0.5154 (0.0175) 0.229 0.819 0.05

Pseudo-Nonchar 0.5092 (0.0209) 0.5124 (0.0221) 0.800 0.426 0.15

Note: Decoding performance of each pairwise classification was computed by averaging the classification accuracies across all post-stimulus time 
windows.	Numbers	inside	the	parentheses	showed	the	standard	deviations.	Real	represents	the	real	character	condition,	Pseudo	represents	the	
pseudo-character	condition,	Nonchar	represents	the	Non-character	conditions,	Stroke	represents	the	random	stroke	combinations	condition.

F I G U R E  3 Topography	of	the	transformed	classifier	weights	in	classifying	between	real	characters	and	pseudo-characters	across	time	
windows for both the younger children (a) and older children (b). For each topography, transformed classifier weights were averaged across 
time points within the time window
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3.3  |  Topography and temporal generalization 
decoding results

The topography of the transformed classifier weights in classifying 
between real characters and pseudo-characters was examined to 
see if the underlying neural processes of Chinese character recog-
nition were qualitatively different between the younger and older 
children.	As	shown	in	Figure	3,	both	groups	showed	left-lateralized	
activation patterns around the occipito-temporal channels start-
ing at the 100–200 ms time window. The activation patterns then 
appeared to shift to the parietal and fronto-central channels at the 
200–300 ms time window and finally became bi-lateralized at 300–
500	ms	time	windows.	As	the	two	age	groups	did	not	differ	signifi-
cantly in most of the decoding analyses and showed qualitatively the 
same pattern of topography, we combined the two age groups in the 
subsequent analyses.

The temporal generalization decoding analysis was performed 
to classify between real characters and stroke combinations. The 
unified and larger cluster in Figure 4b suggested that decoding per-
formance for the sub-processes reflected certain common neural 
mechanisms.	As	a	result,	for	the	correlational	and	regression	analy-
ses, the decoding performance for each individual was calculated by 
averaging the classification accuracies across all post-stimulus time 
windows. More details of the topography and temporal generaliza-
tion	analyses	were	included	in	Appendices	A	and	B,	respectively.

3.4  |  Correlations among decoding performance, 
age, and reading skills

In order to consider the longitudinal associations among the neural 
and behavioral markers of literacy, we first examined the correla-
tions among wave 2 age, decoding performance, and both wave 1 
and	wave	2	one-minute	and	untimed	word	reading	performance.	As	
shown in Table 4, the word reading skills were all significantly and 
positively correlated with each other, rs > 0.69, ps < 0.001, and the 
decoding performances were in general significantly and positively 
correlated among themselves (9 correlations out of 15 were signifi-
cant). More importantly, both wave 2 one-minute and untimed word 
reading performance were significantly and positively correlated 
with some decoding performances, suggesting that better neural 
indicators of decoding performance tend to be associated with bet-
ter behavioral word reading skills. More details of the correlation 
analyses	were	included	in	Appendix		C.

3.5  |  Decoding performance predicts improvement 
in word reading performance

Two hierarchical multiple regression analyses were performed sepa-
rately to explain variability in 1-min word reading and the untimed 
word reading performance at wave 2 after controlling for age and 
wave	1	word	 reading	performance.	As	 there	were	many	significant	

correlations among the decoding performances, variance inflation 
factors (VIFs) of the six decoding performances were computed to 
examine the multicollinearity issue. Multicollinearity among predic-
tors are typically considered to be acceptable, if the VIFs are smaller 
than	5.	As	the	VIFs	of	the	six	predictors	ranged	from	1.23	to	1.82,	we	
conclude that multicollinearity is not a problem in our analysis. Table 5 
shows the results. For word reading fluency, decoding performance 
additionally explained 4.8% variance, ΔR2 = 0.048, F(6,102) = 2.316, 
p = 0.039. Specifically, decoding performance in classifying between 
pseudo-characters and stroke combinations significantly predicted 
word reading fluency, β = 0.219, t = 2.794, p = 0.006. For word read-
ing accuracy, decoding performance additionally explained 1.8% 
variance; the statistical test was marginally significant, ΔR2 = 0.018, 

F I G U R E  4 (a)	Temporal	generalization	classification	accuracies	
between real characters and stroke combinations. (b) Statistical 
significance of the temporal generalization classification accuracies. 
Red color indicates significantly above chance accuracy, after 
controlling for multiple comparisons using the Bonferroni 
correction
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F(6,102) = 2.316, p	 =	 0.080.	As	 two	 regression	 analyses	were	 per-
formed and each included six decoding predictors, we also examined 
the Bonferroni-adjusted p-values to control for the overall type I 
error	rate.	After	adjusting	the	p-values for the two regression analy-
ses, decoding performance marginally significantly predicted word 
reading fluency, ΔR2 = 0.048, F(6,102) = 2.316, p = 0.078, but was 
not significantly associated with word reading accuracy ΔR2 = 0.018, 
F(6,102) = 2.316, p	=	0.160.	After	adjusting	the	p-values for the six 
predictors, the decoding performance in classifying between pseudo-
characters and stroke combinations was still significantly associated 
with word reading fluency, β = 0.219, t = 2.794, p = 0.036. Taken to-
gether, there is suggestive evidence that a larger difference in the 
neural system in reacting to different types of character-like stimuli 
was associated with better learning and improvement on word read-
ing fluency, but not word reading accuracy, across 1 year in children.

4  |  DISCUSSION

4.1  |  Decodability of EEG signals of Chinese 
characters in children

The present study adopted multivariate pattern classification analy-
sis to decode EEG signals recorded for children in grades 1–5 while 
performing a Chinese character decision task. Within-individual 
decoding analysis showed that the neural activation patterns 
in children's early processing of real characters could be signifi-
cantly distinguished from their processing of pseudo-character, 
non-character, and stroke combinations for both younger children 
(6.67–8 years old) and older children (8.08–10.92 years old). The 
decoding performance between real characters and stroke combi-
nations was highest in general and had the earliest onset time for 

significantly above chance performance. For older children, the 
onset time for significant performance in classifying between real 
characters and stroke combinations occurred as early as 100 ms 
after stimulus presentation which was shortly after visual processing 
had begun. In addition, although the orthographic forms between 
real characters and pseudo-characters are highly similar, the neu-
ral activation patterns in response to the two could still be distin-
guished in the decoding analysis, suggesting that the EEG signals 
of single Chinese characters and other character-like stimuli were 
decodable	 in	children.	Thus,	MVPA	 is	a	powerful	 technique	 in	de-
coding the neural activation patterns of Chinese characters at the 
single trial level. In group comparisons, older and younger children 
did not show significant differences in their performances across all 
the pairwise classification analyses. In the correlation analyses, age 
was only weakly correlated with the decoding performance in clas-
sifying between real characters and non-characters. It seems that 
the neural discriminability of Chinese characters and character-like 
stimuli does not increase obviously as age increases. This is probably 
because the characters used had been selected to be relatively easy 
to both younger and older children (curriculum specified they were 
to	have	been	 learned	by	grade	3).	As	 shown	 in	 the	behavioral	 re-
sults, the difference in performance between the younger and older 
children was small (<0.1 accuracy for all conditions). Taken together, 
this may suggest that neural discriminability is more related to word 
reading skills than to neural maturation in this age range.

4.2  |  Distinct and common neural mechanisms 
between the cognitive sub-processes

The topography of the transformed classifier weights in classify-
ing between real characters and pseudo-characters showed clear 

TA B L E  4 Correlations	among	age,	decoding	performance,	and	reading	skills

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

V1.	Age	(Wave	2) — 0.08 0.21* 0.11 0.08 0.09 0.08 0.54** 0.66** 0.39** 0.56**

V2. Real-Pseudo — 0.38** 0.22* 0.27** 0.09 0.05 0.18 0.14 0.19* 0.13

V3.	Real-Nonchar 0.37** — 0.30** 0.32** 0.08 0.04 0.28** 0.21* 0.24* 0.27**

V4. Real-Stroke 0.23* 0.29** — 0.13 0.60** 0.35** 0.26** 0.17 0.27** 0.19*

V5.	Pseudo-Nonchar 0.27** 0.31** 0.12 — 0.19* 0.03 0.01 0.03 0.13 0.07

V6. Pseudo-Stroke 0.09 0.07 0.59** 0.18 — 0.40** 0.24* 0.13 0.36** 0.20*

V7.	Nonchar-Stroke 0.04 0.02 0.35** 0.02 0.41** — 0.13 0.13 0.09 0.13

V8. Wave 1_COM 0.17 0.21* 0.24* −0.04 0.22* 0.10 — 0.83** 0.78** 0.81**

V9. Wave 1_CWR 0.12 0.10 0.13 −0.03 0.10 0.11 0.75** — 0.69** 0.91**

V10. Wave 2_COM 0.17 0.17 0.26** 0.11 0.35** 0.06 0.73** 0.63** — 0.74**

V11. Wave 2_CWR 0.09 0.18 0.17 0.04 0.19* 0.10 0.73** 0.86** 0.69** —

Note: Values presented above the diagonal are Pearson's correlation coefficients without controlling for age and values presented below the diagonal 
are partial correlation coefficients controlling for age. Real represents the real character condition, Pseudo represents the pseudo-character 
condition,	Nonchar	represents	the	Non-character	conditions,	Stroke	represents	the	random	stroke	combinations	condition.
Abbreviations:	COM,	Chinese	one-minute	word	reading;	CWR,	Chinese	untimed	word	reading.
*p < .05, 
**p < .01. 
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left-lateralized neural activation patterns at the occipito-temporal 
channels at the 100–300 ms time windows and bi-lateralized ac-
tivation patterns at the parietal and fronto-central channels at the 
300–500 ms time windows for both age groups, suggesting two 
distinct cognitive sub-processes underlying single character read-
ing. Consistently, the classification accuracy (Figures 2 and 4a) also 
showed two peaks with peak latency at about 250 and 450 ms, respec-
tively. These two apparent sub-processes underlying single Chinese 
character reading were highly consistent with the interpretation of an 
orthographic encoding process occurring earlier (peak around 170–
200 ms) in the occipito-temporal sites and the phonological and se-
mantic analysis processes occurring later (peak around 400 ms) in the 
temporo-parietal and fronto-central regions, as suggested in some 
previous studies (e.g., Lau et al., 2008; Maurer et al., 2005; Pugh et al., 
2001). However, the temporal generalization analysis did not obvi-
ously disassociate the two cognitive sub-processes underlying single 
character recognition as generalization from one sub-process to the 
another was also statistically significant, resulting in a large cluster 
of significant decoding performance (Figure 4b). Results suggest that 
there should be some shared neural mechanisms between the cog-
nitive sub-processes. It is likely that the phonological and semantic 
analysis processes are required in order to activate the orthographic 
forms of characters before one can map the orthographic form onto 
the corresponding phonological and semantic forms.

4.3  |  Potential mechanisms underlying the 
decoding performance

The decoding performance was found to be significantly above 
chance, indicating that there is category-level information related to 
each type of stimulus in the neural activation patterns which allows 
the	MVPA	algorithm	to	differentiate	across	different	experimental	
conditions. In other words, different neural activation patterns re-
sulted in processing of different types of stimuli, and better decod-
ing performance implies larger differences in the neural activation 
patterns between conditions. However, what are the exact neural 
mechanisms or characteristics captured by the decoding perfor-
mance? One possibility is that the decoding performance in the 
current study reflects the extent to which the brain is functionally 
organized in processing stimuli with different degrees of similar-
ity	 to	 real	Chinese	characters.	According	 to	 the	dual-route	 theory	
(Coltheart et al., 1993), the dorsal–ventral reading network (Pugh 
et al., 2001), and findings from previous neuroimaging studies (e.g., 
Cohen et al., 2002; Lau et al., 2008; Maurer et al., 2005), the human 
neural system shows different neural mechanisms in various cog-
nitive sub-processes, including the orthographic encoding process 
and the phonological and semantic analysis processes, in process-
ing words, pseudo-words, and nonwords. In this sense, better de-
coding performance may reflect larger differences in these neural 
processes.

Alternatively,	 decoding	 performance	 may	 reflect	 some	 more	
general mechanisms or brain characteristics. This is also likely given 

that we found shared mechanisms between the cognitive sub-pro-
cesses as well as many significant correlations among the decoding 
performances of different pairwise classification analyses. One ex-
ample can be the issue of network modularity which is defined as 
the extent to which each brain subnetwork is segregated from other 
brain modules (Gallen & D'Esposito, 2019). Higher network modu-
larity indicates higher functional specialization of different brain 
modules which may lead to better functional organization in pro-
cessing of stimuli with different degrees of similarity to real Chinese 
characters.

Another	possibility	is	that	better	decoding	performance	reflects	
better neural representation of orthographic forms of Chinese char-
acters and character-like stimuli. If this is true, we should be able 
to discriminate the neural representation of individual characters 
from each other even when they are of the same type of stimuli such 
as real characters. Unfortunately, we do not have enough trials for 
each	individual	character	to	perform	MVPA	for	such	within-category	
classifications. Future studies should include more trials for each 
character and test this possibility. Given the high complexity of the 
orthographic forms of Chinese characters, it is intriguing to pursue 
the issue of whether neural representations of individual characters 
can be decoded in young children and how the neural discriminabil-
ity of individual characters affects their word reading development.

4.4  |  Decoding performance predicts word reading 
development

An	important	characteristic	of	the	design	of	the	current	study	 is	
that children's word reading development was assessed using a 
longitudinal design in which the word reading tasks were admin-
istered to each child twice across 1 year. Many studies examin-
ing the relationships between neural markers and word reading 
skills performed only simple correlation at a single time point (e.g., 
Rämä et al., 2013; Shaywitz et al., 2002; Tong et al., 2016) and 
thus are not able to conclude a causal relationship between the 
two because a potential confound in such analyses is the initial 
differences in word reading performance. In the current study, the 
association between the decoding performance and word recog-
nition development was examined by regressing the wave 2 word 
reading performance on decoding performance while statisti-
cally controlling for age and wave 1 word reading performance. 
The neural decoding performance was found to be significantly 
associated with wave 2 word reading performance when wave 1 
word reading performance was not statistically controlled. This 
is not surprising since better decoding performance may indicate 
better functional organization of the brain for character reading 
and, hence, behaviorally more accurately and efficiently in recog-
nizing and reading the words. This is also consistent with many 
of the previous studies that found associations between neural 
processes underlying word reading and reading skills measured at 
a single time point (e.g., Maurer et al., 2005; Tong et al., 2016; 
Turkeltaub et al., 2003).
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More importantly, neural decoding performance was found to 
be significantly associated with wave 2 word reading fluency even 
when statistically controlling for age and wave 1 word reading flu-
ency. Specifically, this neural decoding performance explained an ad-
ditional	4.8%	of	word	reading	fluency.	Although	the	association	did	
not survive a Bonferroni correction and was marginally significant 
(Bonferroni-adjusted p-value = 0.078), this is still promising given 
that age and wave 1 word reading fluency together had already ex-
plained about 60.3% variance of the wave 2 word reading fluency. In 
contrast, the additional variance of word reading accuracy explained 
by decoding performance was only 1.8%. The statistical test was 
marginally significant before Bonferroni correction and did not sur-
vive the correction (Bonferroni-adjusted p-value = 0.160). This was 
consistent with our prediction that the association between neural 
discriminability and word reading should be stronger for reading flu-
ency	than	accuracy	given	previous	N1	print	tuning	studies	(Maurer	
et	al.,	2007;	Tong	et	al.,	2016).	Nevertheless,	we	found	suggestive	
evidence that are consistent with results from a longitudinal study 
(Maurer	et	al.,	2006)	which	 found	a	N170	expertise	effect	only	 in	
children in second grade but not the same children in kindergar-
ten. It should be noted, however, that the present study made use 
of	a	more	powerful	statistical	technique	(i.e.,	MVPA)	 in	a	different	
script (i.e., Chinese). Perhaps partly as a consequence, the current 
study has showed that not only decoding performance between real 
characters and stroke combinations but also decoding performance 
between real characters and pseudo-characters, as well as that be-
tween real characters and non-characters, can predict word reading 
skills longitudinally. One possible reason for the suggestive associa-
tion between decoding performance and word reading development 
over the year is that a highly functionally specialized neural network 
may be easier to further refine for specialization in adapting to 
learning of new characters. This is consistent with the idea of brain 
modularity, which suggests that highly modular networks will lead 
to larger neural plasticity due to the relatively few between-module 
connections (Gallen & D'Esposito, 2019). One limitation to note for 
the current study relates to the timing of the EEG testing. Ideally it 
should have been conducted at about the same time as the wave 
1 behavioral testing; however, for various practical reasons, it was 
conducted on average 2 months before wave 2 behavioral testing. 
As	the	association	between	decoding	performance	and	word	read-
ing development did not survive the Bonferroni correction, further 
research is needed in order to attempt to replicate the findings. 
Nevertheless,	this	association	suggests	that	decoding	performance	
is potentially a useful neural marker both for predicting current and 
subsequent word reading skills.

5  |  CONCLUSION

The	present	study	was	among	the	first	to	apply	MVPA	to	decode	
category information specific to Chinese characters in single trial 
EEG data, particularly with a view to longitudinal prediction of 
behavioral	 word	 reading.	 Neural	 activation	 patterns	 of	 Chinese	

characters can be decoded and significantly distinguished from 
those of the pseudo-characters, non-characters, and stroke com-
binations in both younger and older children. Topography of the 
transformed classifier weights showed two temporally and spa-
tially distinctive cognitive sub-processes underlying single char-
acter reading while the temporal generalization method found 
significant generalization across time, suggesting common mecha-
nisms between the sub-processes. The decoding performance in 
general was significantly correlated across categories but not cor-
related with age. Given that the Chinese characters included were 
easy and the behavioral performance in the character decision 
task was comparable between age groups, the lack of significant 
correlations with age may suggest that basic neural discriminabil-
ity of Chinese characters does not change obviously with neural 
maturation in this age range. The association between decoding 
performance and word reading development suggests that decod-
ing performance is potentially a useful neural marker to indicate 
both current word recognition skills and also subsequent capacity 
to learn to read words.
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APPENDIX A

Topography of transformed classifier weights
As	 a	 significant	 age	 group	difference	was	 found	 in	 classifying	be-
tween real characters and pseudo-characters, the topography of 
the transformed classifier weights in classifying between these two 
types of stimuli was examined to see if the underlying neural pro-
cesses of Chinese character recognition were qualitatively different 
between the younger and older children. The classifier weights were 
reconstructed by multiplying them with the covariance of the data 
matrix (Haufe et al., 2014). Larger transformed classifier weights 
indicated that the channel contained more information specific to 
the experimental conditions; hence, the neural activity picked up by 
the channel was used to a larger extent in classifying between the 
experimental conditions. Topographic differences in the EEG indi-
cate different underlying neural sources (Michel & Murray, 2012), 
suggesting	different	cognitive	sub-processes.	As	shown	in	Figure	3,	
both groups showed left-lateralized activation patterns around the 

occipito-temporal channels starting at the 100–200 ms time win-
dow. The activation patterns then appeared to shift to the parietal 
and fronto-central channels at the 200–300 ms time window and 
finally became bi-lateralized at 300–500 ms time windows. The 
apparent sub-processes underlying Chinese character recognition 
found in the topography were highly consistent with those sug-
gested by previous studies, including the fact that the orthographic 
encoding process occurred earlier (peak around 170–200 ms) in the 
occipito-temporal sites and the phonological and semantic analy-
sis processes occurred later (peak around 400 ms) in the temporo-
parietal and fronto-central regions (Bentin et al., 1999; Pugh et al., 
2001;	Salmelin	et	al.,	1996;	Tarkiainen	et	al.,	1999).	As	the	two	age	
groups did not differ significantly in most of the decoding analyses 
and showed qualitatively the same pattern of topography, we com-
bined the two age groups in the subsequent analyses.

APPENDIX B

Temporal generalization decoding results
The temporal generalization decoding analysis was performed to clas-
sify between real characters and stroke combinations, for slightly 
shorter	epochs	 (−100	 to	600	ms)	 than	 that	of	 the	above	same	time	
window	decoding	analysis	(−150	to	850	ms)	to	examine	whether	the	
sub-processes underlying Chinese character recognition can be dis-
sociated. These two types of stimuli were selected to maximize the 
differences between stimulus categories in terms of both orthography 
and	phonology.	A	slightly	shorter	epoch	length	was	adopted	because	
the decoding performance dropped significantly after 500 ms (as 
shown in Figure 2) and the decoding performance of temporal gener-
alization was expected to be lower than the standard same time win-
dow	analysis.	As	the	two	age	groups	did	not	differ	significantly	in	most	
of the decoding analyses and showed qualitatively the same pattern of 
topography, we combined the two age groups in the subsequent anal-
yses. Figure 4 shows the temporal generalization classification accu-
racy averaged across participants and the significance in comparison 
to chance level. The diagonal basically represents decoding results of 
the standard same time window decoding analysis, so it is reasonable 
that the decoding accuracy drops gradually away from the diagonal.

In Figure 4a, two clusters of highly significant classification per-
formance were observed as highlighted in the two black squares, 
suggesting at least two separate sub-processes underlying Chinese 
character reading. The first cluster in roughly the 200–300 ms time 
window seems to represent the orthography encoding process while 
the second cluster in roughly the 350–500 ms time window seems to 
represent the phonology and semantic analysis processes. However, 
the statistical significance pattern, as shown in Figure 4b, revealed 
a much larger cluster ranging from 150 to 600 ms instead of two 
smaller clusters as suggested in Figure 4a. The unified and larger 
cluster suggested that decoding performance for the sub-processes 
reflected	 certain	 common	neural	mechanisms.	As	 a	 result,	 for	 the	
correlational and regression analyses, the decoding performance for 
each individual was calculated by averaging the classification accu-
racies across all post-stimulus time windows.
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APPENDIX C

Correlations among decoding performance, age, and reading skills
In order to consider the longitudinal associations among the neural 
and behavioral markers of literacy, we first examined the correlations 
among wave 2 age, decoding performance of all pairwise classifica-
tion analyses, and both wave 1 and wave 2 one-minute and untimed 
word reading performance. In Table 4, values presented above the 
diagonal are zero order correlation coefficients and values presented 
below the diagonal are partial correlation coefficients controlling 
for	 age.	 As	 shown,	 age	was	 significantly	 and	 positively	 correlated	
with all wave 1 and wave 2 word reading performances, rs > 0.39, 

ps < 0.001, but only significantly correlated with the decoding per-
formance in classifying between real characters and non-characters 
among all the classification analyses, r(109) = 0.206, p = .03. The 
word reading skills were all significantly and positively correlated 
with each other, rs > 0.69, ps < 0.001, and the decoding performances 
were in general significantly and positively correlated among them-
selves (9 correlations out of 15 were significant). Finally, both wave 
2 one-minute and untimed word reading performance were signifi-
cantly correlated with some decoding performances. One-minute 
word reading was positively correlated with decoding performance 
between real characters and pseudo-characters, r(109) = 0.190, 
p = .045, decoding performance between real characters and 
non-characters, r(109) = 0.239, p = .011, decoding performance 

FIGURE D1 Within-individual classification accuracies of all pairwise combinations of the four stimuli categories (a: Real-Stroke; b: Pseudo-
Stroke;	c:	Nonchar-Stroke;	d:	Real-Nonchar;	e:	Real-Pseudo;	f:	Pseudo-Nonchar).	Discs	above	the	x-axis indicated the time points where clas-
sification accuracies were significantly above chance
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between real characters and stroke combinations, r(109) = 0.274, 
p = .004, and decoding performance between pseudo-characters 
and stroke combinations, r(109) = 0.356, p < .001. Untimed word 
reading was positively correlated with decoding performance be-
tween real characters and non-characters, r(109) = 0.266, p = .005, 
decoding performance between real characters and stroke com-
binations, r(109) = 0.189, p = .047, and decoding performance be-
tween pseudo-characters and stroke combinations, r(109) = 0.202, 
p = .034. The pairwise decoding analyses that were highly correlated 
with word reading performance appeared to be those with higher 
decoding accuracies such as decoding between real characters and 

stroke combinations and decoding between pseudo-characters and 
stroke combinations. The partial correlation results controlling for 
age were qualitatively the same as the zero order correlation results. 
All	 the	 significant	 correlations	were	 positive,	 suggesting	 that	 bet-
ter neural indicators of decoding performance tend to be associated 
with better behavioral word reading skills.

APPENDIX D

Classification accuracy plots faceted by age group


