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A B S T R A C T

EEG network modularity, as a proxy for cognitive plasticity, has been proposed to be a more reliable neural 
marker than power and coherence in predicting learning outcomes. The present study examined the associations 
between resting state EEG network modularity and both L1 Chinese and L2 English literacy skills among 90 Hong 
Kong first to fifth graders. The modularity indices of different frequency bands were highly correlated with one 
another. An exploratory factor analysis, performed to extract a general modularity index, explained 77.1% of the 
total variance. The modularity index was positively associated with Chinese word reading, Chinese phonological 
awareness, Chinese morphological awareness, and Chinese reading comprehension but was not significantly 
correlated with English word reading or English morphological awareness. Findings suggest that resting state 
EEG network modularity is likely to serve as a reasonable, reliable, and cost-effective neural marker of the 
development of first language but not second language literacy skills.   

1. Introduction

Literacy skills are very important in modern society. Poor literacy
skills may lead to unfavorable consequences for academic achievement, 
career success, and psychological well-being. Hence, identifying neural 
markers which facilitate or predict literacy skills has high practical 
significance in developmental cognitive neuroscience. Theoretically, 
identifying neural markers associated with literacy skills may help to 
determine which neural processes are involved in language develop-
ment and reading disability. Many previous studies have focused on 
examining neural markers of literacy skills measured while an individ-
ual is performing a task, such as a Chinese character or word decision 
(Lo, McBride, Ho, & Maurer, 2019; Lui, Lo, Maurer, Ho, & McBride, 
2020; Tong et al., 2016; Zhao, Maurer, He, & Weng, 2019), a one-back 
color repetition detection task (Zhao et al., 2014), and a word-symbol 
one-back task (Maurer et al., 2006). In contrast, relatively few studies 
have examined the neural markers identified when an individual is in a 
resting state. 

Theoretically, spontaneous neural activity during rest has been 

suggested to be a hallmark of the internal state of the brain (Sadaghiani, 
Hesselmann, Friston, & Kleinschmidt, 2010); spontaneous neural ac-
tivity captures some fundamental neurobiological characteristics of the 
neural system. These fundamental properties of the brain influence how 
the brain processes external information and generates behaviors 
(Sadaghiani et al., 2010) and have been found to be associated with 
various cognitive abilities. The present study assessed neural modu-
larity, i.e., the extent to which the brain is functionally organized into 
segregated modules (Gallen & D’Esposito, 2019); we also examined the 
associations of neural modularity with first and second language literacy 
skills. It has been suggested that resting state network modularity is a 
proxy for cognitive plasticity, which is highly predictive for learning 
outcomes in various cognitive domains (Gallen & D’Esposito, 2019). 
Cognitive mechanisms underlying language learning are modular in 
nature (Sparks & Ganschow, 1993). As a result, we expected that the 
network modularity assessed using resting state EEG paradigms should 
be predictive of literacy skill development. 
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1.1. Introduction to the resting state EEG paradigm 

Resting state electroencephalography (EEG) measures the neural 
activity of an “idling” brain, which means that the participant does not 
engage in an active task during the EEG recording. Spontaneous neural 
activity at rest is thought to reflect baseline perceptual and cognitive 
processing, which may allow the examination of fundamental neurobi-
ological characteristics of the neural system that are not associated with 
particular task-related strategies (Fraga González et al., 2016; Papa-
giannopoulou & Lagopoulos, 2016). Resting state EEG, which examines 
the dynamics of spontaneous neural activity, has also been suggested to 
provide meaningful information about long-range communication 
across brain areas and the underlying architecture of functional brain 
networks (Fraga González et al., 2018). In addition, resting state EEG is a 
cost-effective method to identify neural markers that could predict 
various human behaviors. EEG paradigms using reading-related tasks 
usually require a lot of trials for each experimental condition in order to 
achieve good reliability, while a resting state paradigm typically lasts for 
between 2 (e.g. Arns, Peters, Breteler, & Verhoeven, 2007), 3 (e.g. 
Benasich, Gou, Choudhury, & Harris, 2008; Gou, Choudhury, & Bena-
sich, 2011; Papagiannopoulou & Lagopoulos, 2016) and 5 min (e.g. 
Babiloni et al., 2012). A short EEG paradigm is particularly useful for 
infants and children who have difficulty in sitting still for a long time 
and performing complex cognitive tasks. 

Typical analyses for resting state EEG usually involve spectral power 
and coherence analyses. Power spectrum is obtained by transforming 
the EEG signals from the time domain into the frequency domain, i.e., 
frequency analysis, which is usually performed using the Fourier 
transformation. Coherence is basically the covariation of power spectra 
of two EEG signals. Coherence values lie between 0 and 1, and a high 
coherence value between two EEG channels suggests high cooperation 
and synchronization between underlying brain regions. EEG power 
alone does not provide any coupling information, while the coherence 
between two sites has been interpreted as evidence of a functional 
connection between the underlying cortical areas (Marosi et al., 1995). 
EEG power and coherence measures of different frequency bands have 
been linked to different cognitive processes. For example, high and low 
alpha power may represent inhibitory and excitatory cognitive processes 
respectively (Klimesch, Sauseng, & Hanslmayr, 2007). Gamma power 
has been linked to various higher-level cognitive processes such as 
attention, memory, and language (Benasich et al., 2008). For coherence, 
theta coherence has been linked to language-related mnemonic pro-
cesses (e.g., Weiss, Mueller, & Rappelsberger, 2000), alpha coherence 

has been linked to sensory processing (e.g., Weiss & Rappelsberger, 
1998), and beta and gamma coherence have been linked to semantic and 
syntactic processing (e.g., Weiss & Rappelsberger, 1998; also see Weiss 
& Mueller, 2003 for a review). Research findings about the relations 
among EEG power, coherence and language development, however, are 
not very consistent across studies. 

1.2. Relations among resting state EEG Power, Coherence, and language 
abilities 

As shown in Table 1, research findings among the fifteen studies 
examining the relationships between resting state EEG power and lan-
guage abilities that we could identify and review yielded mixed results. 
These mixed findings basically occurred across all frequency bands, 
including delta, theta, alpha, beta, and gamma. Perhaps the frequency 
band with the most inconsistent findings is the alpha band. Among the 
15 studies, 5 of them found lower resting alpha power in children with 
reading disabilities as compared to typically developing children 
(Babiloni et al., 2012; Clarke, Barry, McCarthy, & Selikowitz, 2002; 
Colon, Notermans, Weerd, & Kap, 1979; Harmony et al., 1995; Sklar, 
Hanley, & Simmons, 1972), 3 of them found the opposite result pattern, 
with higher resting alpha power in children with reading disabilities as 
compared to typically developing children (Duffy, Denckla, Bartels, & 
Sandini, 1980; Pinkerton, Watson, & McClelland, 1989; Schiavone et al., 
2014), and 7 of them found no difference in resting alpha power be-
tween children with reading disabilities and typically developing chil-
dren (Arns et al., 2007; Benasich et al., 2008; Garcia, Portellano, 
Cabanyes, & Gonzalex, 1989; Gou et al., 2011; Papagiannopoulou & 
Lagopoulos, 2016; Rumsey, Coppola, Denckla, Hamburger, & Kruesi, 
1989; Tierney, Strait, & Kraus, 2014). 

Findings regarding the relation between resting state EEG coherence 
and language abilities were also mixed. Sklar et al. (1972) found higher 
intra-hemispheric alpha coherence and lower inter-hemispheric theta 
and beta coherence in children (7–18 years old) with dyslexia as 
compared to children in a control group. Shiota, Koeda, and Takeshita 
(2000), however, found both higher intra-hemispheric alpha coherence 
and inter-hemispheric alpha and beta coherence in children with 
dyslexia than in typically developing children (7–14 years old). In 
another study comparing the resting state EEG coherence between two 
attention-deficit/ hyperactivity disorder combined types (AD/HD), with 
or without comorbid reading disabilities (RD), Barry, Clarke, McCarthy, 
and Selikowitz (2009) showed that the AD/HD group (8–12 years old) 
with reading disabilities showed lower intra-hemispheric delta 

Table 1 
Summary of findings of 15 studies examining the relationships between resting state EEG power and language abilities.  

Study Sample size Age (years) Delta Theta Alpha Beta Gamma 

1. Arns et al., 2007 38 8–16 negative negative no diff. negative  
2. Babiloni et al., 2012 37 11 no diff. no diff. positive no diff. no diff. 
3. Benasich et al., 2008 63 1.33, 2, 3 no diff. no diff. no diff. no diff. positive 
4. Clarke et al., 2002 60 8–12 negative negative positive positive  
5. Colon et al., 1979 93 7–11 no diff. negative positive   
6. Duffy et al., 1980 18 9–11  negative negative   
7. Garcia et al., 1989 22 8–11   no diff. positive  
8. Gou et al., 2011 40 1.33, 2, 3 no diff. no diff. no diff. no diff. positive 
9. Harmony et al., 1995 49 9–12 negative negative positive negative  
10. Papagiannopoulou & Lagopoulos, 2016 40 8.33 no diff. negative no diff. no diff.  
11.P inkerton et al., 1989 32 8–9 negative negative negative negative  
12. Rumsey et al., 1989 29 22 no diff. no diff. no diff. no diff.  
13. Schiavone et al., 2014 62 2.93 positive no diff. negative no diff.  
14. Sklar et al., 1972 25 7–18 positive negative positive negative  
15. Tierney et al., 2014 99 14–15 no diff. no diff. no diff. no diff. negative 

Note. For age of the participants, study 3 and study 8 were longitudinal studies with three waves. Study 2, 10, 12, 13 reported only the average age of the participants. 
For the frequency bands, “positive” indicates a positive relationship between resting state power and language abilities or lower power in participants with reading 
disabilities; “negative” indicates a negative relationship between resting state power and language abilities or higher power in participants with reading disabilities; 
“no diff.” indicates not significant association was found between resting state power and language abilities or no significant difference was found between participants 
with reading disabilities and the control group. 
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coherence in the left hemisphere and lower alpha coherence across 
hemispheres while there were no significant inter-hemispheric differ-
ences between the two AD/HD groups for all frequency bands. In 
addition, Marosi et al. (1995) have found a frequency-dependent effect 
such that children (7–11.2 years old) with poor reading and writing 
ability in general showed higher coherence in the delta, theta, and beta 
bands but lower coherence in the alpha band compared with children 
with good reading and writing abilities. Arns et al. (2007), however, 
found that children (8–16.3 years old) with dyslexia showed increased 
EEG coherence in the frontal, central, and temporal regions for all fre-
quency bands as compared to the control children. In one training study 
with Quadrato Motor Training (QMT), Ben-Soussan et al. (2014) showed 
that the participants (mean age = 30 years) with dyslexia had higher 
inter-hemispheric alpha coherence than the controls (mean age = 27 
years) both before and after training and there were no training effects 
on the Magnetoencephalography (MEG) coherence for either partici-
pants with dyslexia or controls. However, in another training study with 
neurofeedback training (NFT), Nazari, Mosanezhad, Hashemi, and 
Jahan (2012) found an interesting change toward normalization of EEG 
coherence for various frequency bands for 6 children (8–10 years old) 
with dyslexia. In particular, the lower than normal delta coherence was 
increased to near normal and the higher than normal theta and beta 
coherences were decreased to near normal after the NFT training. 

There is consensus that the heterogeneous findings of the associa-
tions among EEG power, coherence, and language abilities were prob-
ably caused by differences in the ages of the participants, degrees of 
language disability, and methodological differences in EEG data 
collection and analysis (Babiloni et al., 2012; Schiavone et al., 2014; 
Weiss & Mueller, 2003). For example, Tierney et al. (2014) proposed 
that resting gamma power follows a maturational trajectory that peaks 
at age 4 and decreases thereafter, and this explains why both Benasich 
et al. (2008) and Gou et al. (2011) found a positive relationship between 
resting gamma power and language abilities in preschoolers while they 
found a negative relationship between resting gamma power and lan-
guage abilities in adolescents. It is unclear whether the differences in 
participants and methodology can account for all the mixed findings. 
Nevertheless, a reliable neural marker that is not sensitive to the subtle 
methodological differences and can predict language abilities across 
populations, such as network modularity (Gallen & D’Esposito, 2019), is 
practically valuable. 

1.3. Graph analysis and network modularity 

Graph analysis is a relatively new technique in analyzing resting 
state EEG data; it allows modeling of the whole brain functional con-
nectivity network based on graph theory. Graph theory is a mathemat-
ical approach which uses graphs to represent networks and examines the 
network properties. A graphical representation of the brain network 
consists of a set of individual units called nodes and the connections 
between nodes called edges. Various indices can be computed to quan-
tify the network properties, indicating efficiency of the neural network 
such as the global and local efficiency of information transfer (see 
Bullmore & Sporns, 2009 for a review). There have been a few attempts 
to perform graph analysis on resting state EEG data and to examine the 
relationships between network properties and language abilities. Dimi-
triadis et al. (2013) performed graph analysis, specifically a detrended 
fluctuation analysis (DFA), on resting state MEG data obtained from 23 
children with reading difficulties and 27 typically developing children 
(7–14 years old): Reading impaired children showed reduced global 
efficiency in all frequency bands and reduced local efficiency in the beta 
band when compared with the control group. Fraga González et al., 
2016 performed graph analysis, specifically a minimum spanning tree 
(MST) analysis, on resting state EEG data obtained from 29 third-grade 
children with dyslexia (mean age = 8.46 years) and 15 third-grade 
control children (mean age = 8.75 years). Children with and without 
dyslexia did not differ significantly in the power and functional 

connectivity; children with dyslexia, however, showed lower leaf frac-
tion and higher diameter for the theta band, suggesting a less integrated 
network organization and less efficient communication between 
network nodes in children with dyslexia compared to controls. In a 
follow up study, Fraga González et al. (2018) performed again the MST 
analysis on resting state EEG data obtained from 28 participants with 
dyslexia (mean age = 23.14 years) and 36 typically reading adults 
(mean age = 22.22 years). Participants with dyslexia were found to 
show more interconnected nodes than typical readers, reflecting 
reduced presence of specialized sub-networks in participants with 
dyslexia compared to typically reading adults. 

Network modularity is one of the indices characterizing the brain 
network properties which can be used to quantify the extent to which 
the brain sub-networks, or modules, are segregated from other sub- 
networks. A neural network has high modularity if it has many con-
nections within its modules and has sparser connections between the 
modules. Network modularity has been proposed to represent cognitive 
plasticity. Hence, network modularity is presumed to be positively 
associated with learning outcomes because a highly modular network 
(1) has many connections within modules which allow faster processing 
and reduce network wiring costs and hence are more adaptable to 
changing external demands in learning a new task and (2) has few be-
tween module connections, so that each module is relatively indepen-
dent from other modules which leads to increased flexibility in learning 
(see Gallen & D’Esposito, 2019 for a review). Network modularity can 
not only be computed from functional magnetic resonance imaging 
(fMRI) data but also from EEG data. For example, Chennu et al. (2017) 
examined EEG network modularity on patients (5–73 years old) with a 
disorder of consciousness and found that patients with higher modu-
larity showed more positive clinical outcomes one year later. Gallen and 
D’Esposito (2019) have also suggested that network modularity is a 
more reliable neural marker than other types of brain measurements 
such as regional brain volume and EEG power since the relationship 
between network modularity and training-related cognitive control 
gains were reliably observed (1) across a variety of populations, ranging 
from patients to healthy individuals with different educational back-
grounds; (2) across several different interventions such as therapies, 
physical fitness interventions, and cognitive training; and (3) across 
studies adopting different methodologies in modeling the neural 
network and optimizing the modularity. If network modularity is a 
reliable neural marker in predicting cognitive plasticity and learning 
outcomes, it should be positively associated with language abilities too. 
However, to the best of our knowledge, there have been few, if any, 
studies that have examined the relationships between network modu-
larity and language abilities. 

1.4. Factors influencing first and second language development 

The question concerning what factors influence first language (L1) 
and second language (L2) development has been widely studied. For 
example, cognitive factors such as intelligence and working memory are 
associated with both L1 and L2 reading performance (Geva & Ryan, 
1993). However, compared to L1, cognitive factors explain only a small 
portion of variance in L2 reading performance (Geva & Siegel, 2000). 
This is probably because, apart from cognitive factors, L2 language 
learning is also affected by affective, social, and environmental factors. 
Gardner, Lalonde, and Moorcroft (1985) found that participants with 
higher integrative motivation learned L2 French vocabulary words in a 
paired associate learning paradigm better than did those with lower 
integrative motivation. In addition, anxiety is also a crucial factor 
influencing second language acquisition (for a review, see Horwitz, 
Horwitz, & Cope, 1986). Finally, the resources available to children, the 
amount of exposure to a second language, and the richness of the second 
language learning environment are also significant predictors of L2 
learning outcomes (Palfreyman, 2006; Paradis, 2011). Given this, if 
network modularity is measuring cognitive plasticity, it should 

K.F.H. Lui et al.                                                                                                                                                                                                                                 



Brain and Language 220 (2021) 104984

4

influence language learning and should be associated with the learning 
outcomes of L1 to a larger extent than with that of L2. 

1.5. The present study 

The present study was part of a large-scale longitudinal twin study 
conducted in Hong Kong examining both neural and genetic factors 
underlying early literacy development. The present study examined the 
relations between resting state EEG neural network modularity and lit-
eracy skills in both Chinese (the first language, L1) and English (the 
second language, L2). Participants were 90 pairs of Chinese twins from 
grades 1 to 5 who studied in Hong Kong. To conform to the independent 
observation assumption in the general linear model, only one child’s 
data from each twin pair was selected for the analyses. EEG activity was 
recorded for 3 min while the children were asked to keep their eyes open 
without performing any tasks. Among the 15 EEG resting state studies 
reviewed in Tables 1, 5 of them adopted an eyes-open design, 6 of them 
adopted an eyes-closed design and 4 of them adopted both. We chose the 
former design because asking children to keep their eyes open while 
fixated on a fixation cross may result in less eye movement artifacts than 
asking them to keep their eyes closed. A whole brain neural network 
modularity index was then computed for each individual and for each 
frequency band. As there were few previous studies about EEG network 
modularity and it was not clear from previous research what the func-
tional roles of the network modularity of different frequency bands are, 
we first explored the associations among the network modularity indices 
across frequency bands. In cases in which the correlations among the 
network modularity indices were high, common network modularity 
factors were extracted by performing an exploratory factor analysis. 
After that, the network modularity was correlated with the literacy skills 
in both the first and second languages. 

The literacy skills for both L1 Chinese and L2 English were assessed 
using behavioral tasks. For English, only basic word reading ability and 
morphological awareness were assessed. For Chinese, apart from word 
reading ability and morphological awareness, phonological awareness 
and reading comprehension were also assessed. It was hypothesized that 
the neural network modularity would be positively associated with 
Chinese reading performance and literacy skills since a higher neural 
network modularity indicates larger cognitive plasticity and better 
learning outcomes. For English, we did not have specific predictions. On 
the one hand, larger cognitive plasticity should lead to better learning 
outcomes in general and, hence, better English reading performance and 
literacy skills. On the other hand, in addition to cognitive plasticity, 
second language acquisition is also affected by affective, social, and 
environmental factors; hence, it was less clear to what extent neural 
network modularity would correlate with second language literacy 
skills. 

2. Method 

2.1. Participants 

Ninety-nine pairs of Chinese twins from grades 1 to 5 participated in 
the current study. Nine pairs were ultimately excluded from the analyses 
because both children in each pair yield less than 1-minute data after 
EEG pre-processing. To conform to the independent observation 
assumption in the general linear model, only one child’s data from each 
twin pair was selected for the analyses based on the data quality. The 90 
children, including 33 males and 57 females, ranged between 6.58 and 
12.42 years old (M = 8.17, SD = 0.99). All the participants were native 
Cantonese speakers, not previously diagnosed as having developmental 
dyslexia, and had normal or corrected to normal visual ability. Informed 
consent was obtained in written form from the parents. The study pro-
tocol was approved by the Survey and Behavioral Research Ethics 
Committee of the Chinese University of Hong Kong (Ref. CUHK8/CRF/ 
13G/2300035) and the Joint Chinese University of Hong Kong-New 

Territories East Cluster Clinical Research Ethics Committee 
(Ref. 2017.479). 

2.2. Procedure 

Children completed a behavioral session and an EEG testing session, 
on average, held within 2 months of each other. They completed the 
behavioral measures either in their homes or their primary schools. For 
the EEG session, they were individually tested in a sound-attenuated lab 
in the Department of Psychology of the Chinese University of Hong 
Kong. The EEG activity was collected using the HydroCel GSN EGI 128- 
channel system (EGI net station, Electrical Geodesics Inc., Eugene, 
Oregon). 

2.3. Behavioral measures 

2.3.1. Chinese word reading (CWR) 
The children were given items adapted from The Hong Kong Test of 

Specific Learning Difficulties in Reading and Writing (Ho, Chan, Tsang, 
& Lee, 2000), which includes 150 two-character words. The items were 
arranged in order of increasing difficulty. The task was stopped when the 
child failed to read 15 consecutive items. The total number of words they 
read correctly served as the indicator of their word reading performance. 

2.3.2. Chinese phonological awareness (CPA) 
Phonological awareness was tested using a task which included both 

syllable deletion and onset deletion items (Yang, McBride, Ho, & Chung, 
2019). For the syllable deletion section, the children were asked to take 
away one syllable from three-syllable phrases (e.g., dai6 mun4 hau2 
without mun4 would be dai6 hau2). This part consisted of 4 practice 
items and 19 testing items. Half of the items were real words and half 
consisted of nonsense syllables that conformed to the phonological 
constraints of Cantonese. In the onset phoneme deletion section, the 
children were asked to take away the initial phoneme of the Cantonese 
words. For example, tsa1 without the initial sound would be a1. This 
part consisted of 4 practice items and 22 test items. One point was given 
for each correct item and the maximum possible score was 41. 

2.3.3. Chinese morphological awareness (CMA) 
In the Morphological Construction Test (e.g., McBride-Chang, Shu, 

Zhou, Wat, & Wagner, 2003), for the first 27 items, scenarios were orally 
presented in three-sentence stories. One example is: “If we see a web 
weaved by a spider, we call that a spider web (zi1 zyu1 mong5). What 
should we call if we see a web weaved by an ant?” The correct answer, in 
this case, is ant web (maa5 ngai5 mong5). Thus, children were asked to 
actively construct new compounds for newly presented objects or con-
cepts based on previously acquired morphemes. For the remaining 19 
items, children were not given scenarios anymore. One point was given 
for each correct answer and the maximum possible score was 46. 

2.3.4. Chinese reading comprehension (CRC) 
In this task, children were asked to read in silence a total of three 

narrative or expository passages. The passage lengths varied between 67 
and 130 Chinese characters. For each passage, children were asked to 
answer questions in either the multiple choice or open-ended format. 
Two practice items were given to the participants before the testing 
ones. One point was awarded for each correct answer to each multiple- 
choice question and, at maximum, two points for each open-ended 
question which contained one or two main ideas. The full marks for 
this task were 24 points. 

2.3.5. English word reading (EWR) 
The English word-reading task was adopted from Tong and McBride- 

Chang (2010). It taps English word-reading skills for both Chinese- 
speaking children learning English as a second language and English-
–Chinese bilingual children studying English as a first language. Fifty 
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items were arranged according to children’s reading levels as well as the 
complexities of the word meanings and phoneme combinations. A 
stopping rule was applied if children read four consecutive words 
incorrectly. The total number of words they read correctly served as the 
indicator of their word reading performance. 

2.3.6. English morphological awareness (EMA) 
We assessed English compounding awareness with two sections 

including morpheme compounding and compounding production 
(McBride-Chang, Wagner, Muse, Chow, & Shu, 2005). In the first sec-
tion, children were first presented with the definition of a real com-
pound word and then asked to create a novel compound word using the 
same pattern, e.g., a dishwasher is a machine that you use to wash 
dishes. What should we call the machine that we use to wash spoons? 
(spoonwasher). There were 15 items in this section and one point was 
awarded to each correct answer. For the compounding production sec-
tion, children were asked to create a word for an object or concept orally 
without given examples in English, e.g., what do we call a monster that 
only eats pizza? (pizza-eating monster). This section contained 5 items 
and each response was scored as ranging from 0 to 4. The possible 
maximum score of this test was 35. 

2.3.7. Nonverbal IQ (NVIQ) 
Nonverbal IQ were assessed by the Raven’s Standard Progressive 

Matrices (Raven, Court, & Raven, 1976). There were 60 items in this 
standardized measure, with five sets (Sets A to E) of 12 items each. 
Following the test user manual, participants who were less than 8.5 
years old at the time of testing were administered the short form with 36 
items (Sets A to C) while older participants were given the full version. 
For each item, children were presented a geometric matrix with a 
missing piece and were required to select a piece out of six to eight 
choices to best complete the matrix. One point was awarded to each 
correct response. The maximum score was 60. 

2.3.8. Verbal working memory (WM) 
Backward digit span test was used to assess children’ verbal working 

memory. For each trial, a random sequence of one-syllable Cantonese 
digits was played via a MP3 player at a rate of one digit per second. 
Children were required to recall orally the sequence of digits in the 
reverse order. There were 16 trials of 8 different lengths for the digit 
sequence ranging from 2 to 9 (2 trials for each). The trials were pre-
sented in the order of increasing sequence length starting with a two- 
digit sequence. One practice trial of two-digit sequence was given 
before the actual test. The task was stopped when the children answered 
2 consecutive trials incorrectly. One point was awarded to each correctly 
backward recalled trial. The maximum score of this task was 16. 

2.4. Eyes-open resting-state paradigm 

In the EEG session, children participated in a three-minute eyes-open 
resting-state paradigm in which their EEG activity was recorded while 
they were asked to keep their eyes open and fixate on a fixation cross 
presented on a computer for three minutes without performing any 
tasks. They were seated at a distance of 80 cm from the stimuli pre-
sentation computer monitor and were also asked to sit as still as possible. 

2.5. EEG recording and preprocessing 

EEG was recorded using the HydroCel GSN EGI 128-channel system 
(EGI net station, Electrical Geodesics Inc., Eugene, Oregon) at a sam-
pling rate of 500 Hz and with the Cz electrode as the online reference. A 
0.1 Hz high-pass filter was applied for the acquisition. Electrode 
impedance levels were set at less than 50 kΩ. Preprocessing steps were 
carried out using EEGLAB v14.1.2 (Delorme & Makeig, 2004). The first 
10 s and the last 10 s of the continuous EEG data were firstly removed to 
exclude noisy data caused by body movements of the children at the 

beginning and the end of the paradigm. The data were then down-
sampled to 100 Hz to facilitate subsequent independent component 
analyses to produce better decomposition by cutting off unnecessary 
high-frequency information. An independent component analysis (ICA) 
was then performed on the continuous EEG data with an optimization 
algorithm - CUDAICA (Raimondo, Kamienkowski, Sigman, & Slezak, 
2012). Components related to eye movement artifacts were then 
removed using ADJUST (Mognon, Jovicich, Bruzzone, & Buiatti, 2011). 
After that, the continuous EEG data were filtered with a 40 Hz low-pass 
filter and then divided into adjacent intervals of four seconds. Finally, 
epochs with absolute voltage values larger than 100 µV at any electrodes 
were removed. Nine pairs of twins with less than 1-minute of data (15 
epochs) after these preprocessing steps were excluded from further 
analyses. 

2.6. EEG modularity analysis 

A modularity analysis was performed for the following frequency 
bands (Babiloni et al., 2012): delta1 (0.5–2 Hz), delta2 (2–4 Hz), theta 
(4–6 Hz), alpha1 (6–8 Hz), alpha2 (8–10 Hz), alpha3 (10–12 Hz), beta1 
(12–20 Hz), beta2 (20–30 Hz), and gamma (30–40 Hz). For each fre-
quency band, cross-channel phase coherence analyses, implemented in 
EEGLab, were performed for all pairwise combinations of the 128 
channels resulting in a 128 by 128 phase coherence matrix. For each 
frequency band, the corresponding phase coherence matrix was then 
used as input for computing a whole brain neural network modularity 
index using the heuristic Louvain algorithm (Blondel, Guillaume, Lam-
biotte, & Lefebvre, 2008). The algorithm aims at extracting the network 
structure with the highest network modularity through optimizing the 
modularity iteratively. The modularity of the extracted network is 
computed as the ratio between the density of connections within mod-
ules and that between modules. Following Chennu et al. (2017), the 
algorithm was repeatedly run 50 times to minimize the randomness of 
the iteration processes and then the outputs across the 50 runs were 
averaged to be the final neural network modularity index. 

2.7. Statistical analyses 

To conform to the independent observation assumption in the gen-
eral linear model, only one child’s data from each twin pair was selected 
for the analyses. For each twin pair, the child who attained more epochs 
than his or her co-twin after EEG pre-processing was selected. The re-
lations among network modularity index of the nine frequency bands 
were first examined by performing correlation analyses. As the corre-
lations were very high, an exploratory factor analysis was performed to 
extract a general factor underlying the modularity index. The effects of 
age and gender on the network modularity factor were then examined 
by performing a correlation analysis and an independent-sample t-test, 
respectively. Partial correlations between the general modularity factor 
and both the L1 Chinese and L2 English literacy skills after controlling 
for age and gender were finally obtained. Age was statistically controlled 
because age was highly associated with the literacy skills while gender 
was statistically controlled because a large gender difference in the 
network modularity was observed. In addition, generalized least squares 
regression models, with the second set of children included, were also 
performed to examine whether the same results can be replicated if the 
paired structure of the twin data was considered in the analysis. Finally, 
although the main purpose of the current study was not to examine the 
EEG power, EEG power analyses were performed and the results are 
reported in the Appendix. 

3. Results 

3.1. Descriptive and reliability 

To conform to the independent observation assumption in the 
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general linear model, only one child’s data from each twin pair was 
selected for the subsequent analyses. Means, standard deviations, 
ranges, and reliability coefficients for the tasks undertaken in the pre-
sent study are shown in Table 2. Generally, the reliabilities of the 
measures were acceptable with reliability coefficients ranging from 0.67 
to 0.99. 

3.2. Correlations between network modularity and literacy skills 

Correlational analyses were first performed in the network modu-
larity index of different frequency bands. As shown in Table 3, all the 
correlations were significant and higher than 0.5, rs(88) greater than 
0.8, ps less than 0.001. As all the correlations in the network modularity 
index of different frequency bands were very high, an exploratory factor 
analysis was performed to extract a general network modularity factor 
across frequency bands. The general network modularity factor 
explained 77.1% of the total variance. Table 4 shows the component 
matrix of the factor solution. 

The effects of age and gender on the general network modularity 
factor were then examined by performing a correlation analysis and an 
independent-sample t-test, respectively. Age was not significantly 
correlated with the general network modularity factor, r(88) = 0.081, p 
= .448. In contrast, a large gender difference in the general network 
modularity factor was found with females (M = 0.27, SE = 0.13) 
showing a significantly larger network modularity than males (M =
− 0.46, SE = 0.16), t(88) = 3.53, p < .001. Since a large gender differ-
ence in the network modularity was found and age was highly associated 
with the literacy skills (rs > 0.3, ps < 0.003), partial correlation analyses 
were performed to examine whether the general network modularity 
factor was associated with both L1 Chinese and L2 English literacy skills, 
statistically controlling for age and gender. To rule out the potential 

influences from higher level cognitive processes, a second set of partial 
correlation analyses was also performed by additionally controlling for 
nonverbal IQ and verbal working memory. Table 5 shows the results of 
both the zero-order correlation and the partial correlation analyses. 

As shown in Table 5, for zero order correlation analyses, network 
modularity was only significantly and positively associated with Chinese 
phonological awareness and Chinese reading comprehension. For par-
tial correlation analyses, network modularity was significantly posi-
tively associated with Chinese word reading, r(88) = 0.216, p = .043, 
Chinese phonological awareness, r(87) = 0.328, p = .002, Chinese 
morphological awareness (marginally significant), r(87) = 0.209, p =
.052, and Chinese reading comprehension performance, r(88) = 0.340, 
p = .001, suggesting that higher network modularity was associated 
with better performance in Chinese reading and literacy skills. For En-
glish, network modularity was not significantly correlated with word 
reading performance, r(88) = 0.132, p = .222 or morphological 
awareness, r(88) = 0.106, p = .326. Fig. 1 shows the scatter plots of all 
the partial correlations, statistically controlling for age and gender. The 
results of the second set of partial correlation analyses which addition-
ally controlled for nonverbal IQ and verbal working memory were 

Table 2 
Descriptive results and reliability for age and all behavioral literacy skills.  

Variable Valid 
N 

Reliability Mean (SD) Range Maximum 
possible 

Age 90 – 8.17 
(0.99) 

6.58–12.42 – 

NVIQ 90 0.67 26.79 
(8.62) 

11–51 60 

WM 90 0.95 4.83 
(1.93) 

1–11 16 

CWR 90 0.99 75.46 
(33.2) 

5–130 150 

CPA 89 0.99 26.9 (9.8) 7–41 41 
CMA 89 0.88 22.4 (6.9) 0–39 46 
CRC 90 0.82 9.6 (5.1) 0–21 24 
EWR 90 0.99 19.6 

(15.6) 
0–50 50 

EMA 90 0.82 15.5 (6.3) 0–31 35 

Note. NVIQ = nonverbal intelligence; WM = verbal working memory; CWR =
Chinese word reading; CPA = Chinese phonological awareness; CMA = Chinese 
morphological awareness; CRC = Chinese reading comprehension; EWR = En-
glish word reading; EMA = English morphological awareness. 

Table 3 
Correlations among the network modularity index of different frequency bands.   

V1 V2 V3 V4 V5 V6 V7 V8 V9 

1. delta1 – 0.93 0.77 0.70 0.57 0.60 0.69 0.57 0.54 
2. delta2  – 0.87 0.78 0.63 0.64 0.77 0.69 0.65 
3. theta   – 0.90 0.72 0.72 0.82 0.76 0.73 
4. alpha1    – 0.80 0.78 0.87 0.78 0.75 
5. alpha2     – 0.88 0.75 0.67 0.65 
6. alpha3      – 0.78 0.68 0.62 
7. beta1       – 0.86 0.80 
8. beta2        – 0.94 
9. gamma         – 

Note. Sample size = 90. All the correlations were larger than 0.5 and significant with p-values smaller than 0.001. 

Table 4 
Component Matrix of the exploratory factor analysis.   

General Network Modularity Factor 

1. delta1 0.803 
2. delta2 0.880 
3. theta 0.926 
4. alpha1 0.933 
5. alpha2 0.845 
6. alpha3 0.848 
7. beta1 0.932 
8. beta2 0.882 
9. gamma 0.846 

Note. The general network modularity factor explained 77.1% of the 
total variance. 

Table 5 
Partial correlations between the general modularity factor and the literacy skills.  

Measure N Zero Order Partial 1 Partial 2 

r p-value r p-value R p-value 

CWR 90 0.169 0.112 0.216* 0.043 0.261* 0.015 
CPA 89 0.243* 0.022 0.328** 0.002 0.339** 0.001 
CMA 89 0.189 0.077 0.209 0.052 0.218* 0.045 
CRC 90 0.228* 0.031 0.340** 0.001 0.344** 0.001 
EWR 90 0.138 0.194 0.132 0.222 0.141 0.196 
EMA 90 0.075 0.484 0.106 0.326 0.098 0.368 

Note. *p < .05, **p < .01. CWR = Chinese word reading; CPA = Chinese 
phonological awareness; CMA = Chinese morphological awareness; CRC =
Chinese reading comprehension; EWR = English word reading; EMA = English 
morphological awareness. The first partial correlation analysis (partial 1) 
controlled for only age and gender. The second partial correlation analysis 
(partial 2) controlled additionally for nonverbal IQ and verbal working memory. 
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qualitatively the same as the first set of partial correlation analyses, 
suggesting that the observed associations between network modularity 
and L1 Chinese literacy skills were unlikely to have been attributable to 
higher level cognitive processes. 

3.3. Generalized least squares regression with the co-twin 

Although the sample size of the second set of children was smaller 

(60 vs. 90) and the data quality was poorer (average epochs 27.6 vs. 
33.9) in comparison to the first set of children, we examined whether the 
same results could be replicated with this second set of children 
included. Generalized least squares (GLS) regressions were performed, 
regressing the L1 Chinese and L2 English literacy skills on the network 
modularity and the controlled variables (age, gender, nonverbal IQ, and 
verbal work memory), with the co-twin included in the model (Model 2 
suggested by Carlin, Gurrin, Sterne, Morley, & Dwyer, 2005). This 

Fig. 1. Scatter plots of the partial correlations between the general network modularity index and both L1 Chinese and L2 English literacy skills.  
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approach was recommended because it took into account the paired 
structure of the twin data. As shown in Table 6, the between-pair coef-
ficient for network modularity was significant for all L1 Chinese literacy 
skills, suggesting that network modularity tends to be positively asso-
ciated with L1 Chinese literacy skills even taking into consideration the 
paired structure of the twin data in the model. 

4. Discussion 

The present study examined the associations between neural 
network modularity computed from resting state EEG activity and both 
L1 Chinese and L2 English literacy skills of grade 1 to grade 5 Chinese 
children. The neural network modularity indices of different frequency 
bands were highly correlated with each other. The general neural 
network modularity index extracted among the indices of various fre-
quency bands through an exploratory factor analysis was also 

significantly and moderately correlated with the Chinese language 
measures, including Chinese word reading, Chinese phonological 
awareness, Chinese morphological awareness, and Chinese reading 
comprehension. The correlations showed that higher network modu-
larity was associated with better performance in Chinese reading and 
literacy skills. On the other hand, the general neural network modularity 
index was not significantly correlated with either English word reading 
or English morphological awareness. 

4.1. Resting state EEG network modularity as a proxy for cognitive 
plasticity 

The present study found that the whole brain network modularity 
computed from resting state EEG data was positively associated with 
various L1 Chinese literacy skills including word reading, phonological 
awareness, morphological awareness (marginally significant), and 

Table 6 
Generalized least squares regression with the co-twin.  

DV CWR CPA CMA CRC 

IV B t p B t p B t p B t p 

Gender − 9.05 − 1.87 0.064 − 4.9 − 3.12 0.002 − 2.2 − 1.89 0.060 − 2.2 − 3.05 0.003 
Age 1.40 6.80 0.000 0.13 2.00 0.047 0.21 4.24 0.000 0.19 6.48 0.000 
IQ − 0.50 − 1.70 0.091 0.23 2.41 0.017 0.08 1.12 0.262 0.06 1.49 0.137 
WM 3.49 3.11 0.002 0.88 2.40 0.018 0.45 1.66 0.099 0.44 2.66 0.009 
Mod(W) − 0.47 − 0.10 0.915 2.0 1.37 0.174 0.39 0.37 0.712 0.35 0.55 0.586 
Mod(B) 7.59 2.90 0.004 2.0 2.39 0.018 1.5 2.40 0.018 1.2 3.05 0.003  

EWR    EMA    

B t p    B t p    

Gender − 0.37 − 0.15 0.883    − 1.9 − 1.89 0.061    
Age 0.41 3.80 0.000    0.07 1.65 0.102    
IQ 0.35 2.25 0.026    0.19 2.97 0.004    
WM 0.50 0.85 0.400    0.44 1.83 0.069    
Mod(W) − 0.53 − 0.23 0.819    1.2 1.24 0.219    
Mod(B) 2.5 1.80 0.074    1.1 1.89 0.061    

Note. CWR = Chinese word reading; CPA = Chinese phonological awareness; CMA = Chinese morphological awareness; CRC = Chinese reading comprehension; EWR 
= English word reading; EMA = English morphological awareness; IQ = nonverbal IQ; WM = verbal working memory; Mod(w) = within-pair coefficient for network 
modularity; Mod(B) = between-pair coefficient for network modularity. 

Table A1 
Partial correlations between the EEG ERSP and the literacy skills.  

Frequency Region CWR CPA CMA CRC EWR EMA 

Delta Frontal 0.004 0.189 0.032 0.084 0.122 0.011 
Central 0.026 0.198 0.042 0.028 0.208 0.058 
Temporal 0.083 0.106 0.076 0.153 0.215* 0.059 
Parietal − 0.057 0.163 − 0.029 0.139 0.073 − 0.002 
Occipital − 0.130 0.180 0.017 0.023 0.030 0.054 

Theta Frontal 0.060 0.288* 0.004 0.236* 0.087 0.002 
Central 0.043 0.273* − 0.071 0.111 0.171 − 0.029 
Temporal 0.057 0.129 − 0.053 0.149 0.113 − 0.037 
Parietal 0.047 0.153 − 0.013 0.197 0.109 0.041 
Occipital 0.015 0.198 0.128 0.142 0.085 0.141 

Alpha Frontal 0.025 0.174 − 0.016 0.163 0.058 0.020 
Central 0.035 0.230* 0.071 0.180 0.186 0.110 
Temporal 0.018 0.186 0.005 0.149 0.207 0.090 
Parietal 0.019 0.184 0.012 0.183 0.137 0.102 
Occipital 0.028 0.161 0.095 0.163 0.051 0.076 

Beta Frontal 0.087 0.209 0.099 0.188 0.059 0.078 
central − 0.015 0.163 0.034 0.118 0.103 − 0.001 
temporal 0.089 0.130 0.001 0.144 0.110 0.001 
parietal − 0.016 0.152 − 0.046 0.093 0.078 0.024 
occipital 0.023 0.127 − 0.044 0.085 0.073 0.022 

Gamma frontal 0.116 0.040 0.010 0.090 − 0.054 0.009 
central − 0.072 0.005 − 0.108 0.061 0.014 − 0.070 
temporal 0.032 0.038 − 0.092 0.027 0.050 − 0.017 
parietal − 0.067 0.136 − 0.152 0.030 0.040 − 0.081 
occipital 0.059 0.058 − 0.054 − 0.041 0.006 − 0.017 

Note. *p < .05, **p < .01. CWR = Chinese word reading; CPA = Chinese phonological awareness; CMA = Chinese morphological awareness; CRC = Chinese reading 
comprehension; EWR = English word reading; EMA = English morphological awareness. 
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reading comprehension. These findings provide support for the theo-
retical argument that neural network modularity represents cognitive 
plasticity (Gallen & D’Esposito, 2019). Although the EEG data were 
collected at the scalp level, the phase coherence estimates of phase re-
lationships should be partially invariant to volume conduction (Chennu 
et al., 2017; Fraga González et al., 2018); hence, the modularity index 
computed based on the phase coherence matrix should be a valid indi-
cator for brain network modularity. A neural network with high 
modularity has many connections within modules which allow for faster 
processing (Coltheart, 1999) and reduce network wiring costs (Clune, 
Mouret, & Lipson, 2013). Meanwhile, a high modularity neural network 
also has few connections between modules which results in a neural 
network with relatively independent modules and so increases the 
flexibility in learning (Ellefsen, Mouret, & Clune, 2015). The higher 
modular organization of the neural network and larger cognitive plas-
ticity, in turn, lead to better learning outcomes in various cognitive 
domains, including the Chinese language acquisition assessed in the 
current study. This was consistent with previous behavioral studies 
suggesting a positive association between L1 Chinese literacy skills and 
different cognitive abilities including visual spatial skill (e.g., Lin, Sun, & 
Zhang, 2016; Liu, Chen, & Chung, 2015; McBride-Chang, Chow, Zhong, 
Burgess, & Hayward, 2005) and executive functioning (Zhang, 2016). In 
addition, high cognitive plasticity should be beneficial in general for 
different cognitive domains, consistent with the current findings 
showing that neural network modularity was associated with L1 Chinese 
language skills in different processing levels. 

4.2. Cognitive plasticity predicts only L1 Chinese language skills 

As Chinese is the first language of the children in the current study, 
the current findings suggest that first language acquisition is closely 
related to individual cognitive plasticity. The lack of significant corre-
lations between network modularity and English word reading perfor-
mance and morphological awareness suggests that second language 
learning may not benefit a lot from the highly modular neural system. 
This seems to support the claim that the modular systems of the brain 
may fail or function inefficiently in second language learning (Sparks & 
Ganschow, 1993). Another possible explanation is that second language 
learning may also be affected by affective factors such as motivation 
(Gardner et al., 1985) and anxiety (Horwitz et al., 1986), as well as 
social factors such as resources available to children (Palfreyman, 2006; 
Paradis, 2011). In Hong Kong, all children learn English in school from 
an early age, but families and schools differ tremendously in terms of 
how they value learning this language and the resources they have 
available for facilitating such learning. 

Another possible explanation for the neural network modularity 
being positively associated with L1 Chinese language skills but not L2 
English language skills, however, is that Chinese and English are quite 
different in the properties of the writing system. In a behavioral study, 
Tavassoli (2002) showed that spatial memory was marginally better for 
Chinese characters and words in native Chinese speakers than for En-
glish words in native English speakers (Experiment 1), and spatial 
memory for symbols was better in native Chinese speakers than in native 
English speakers (Experiment 2). Chinese characters are more visually 
complex than English words and with a greater grapheme inventory size 
than English with about 5000 commonly used characters (Lee, 2000). In 
addition, the orthography-phonology association is relatively arbitrary 
in Chinese. Perhaps Chinese skills are more related to cognitive plas-
ticity than English language skills due to these differences in the writing 
system. The data from the current study are not able to differentiate 
these two different accounts of the results. It is also possible that both 
factors play a role in influencing the associations between language and 
cognition. Future research can examine the association between neural 
network modularity and the development of various L1 languages to 
provide additional information. 

4.3. Resting state EEG network modularity as a reliable neural marker 

The current findings also provide support for the suggestion that 
neural network modularity is a reliable neural marker (Gallen & 
D’Esposito, 2019). The present study has shown that it can be used to 
predict L1 Chinese reading acquisition for typically developing children 
across the primary school grades. In contrast to the inconsistent findings 
of the previous resting state EEG power studies (as shown in Table 1), 
the current findings were consistent with studies by Fraga González 
et al. (2016) and Fraga González et al. (2018), which performed graph 
analysis on resting state EEG data and found a less integrated network 
organization and reduced presence of specialized sub-networks in chil-
dren and adults with dyslexia as compared to typically reading children 
and adults, respectively. The clear theoretical interpretation for the 
neural network modularity in terms of cognitive plasticity is intriguing 
and provides theoretical evidence supporting the reliability and validity 
of the neural network modularity as a neural marker in predicting 
learning outcomes across cognitive domains. 

Compared to EEG power and coherence, which were shown to be 
frequency dependent, network modularity appears to be relatively fre-
quency independent. The general neural modularity index extracted was 
able to account for 77.1% of the total variance of the neural modularity 
indices across frequency bands ranging from delta (0.5–4 Hz) to gamma 
(30–40 Hz). This is consistent with findings from a previous study 
(Joudaki, Salehi, Jalili, & Knyazava, 2012) showing that the relation-
ships between various graph metrics of EEG data, including network 
modularity and network size, were highly similar across frequency 
bands. This implies that the cognitive plasticity measured by the neural 
network modularity is frequency independent and probably relatively 
general across cognitive domains. As a result, the positive associations 
between network modularity and learning outcomes have been reliably 
observed across studies examining different cognitive domains (Gallen 
& D’Esposito, 2019). Meanwhile, it is a cost-effective neural marker 
which can be assessed using a short (e.g., 3 min in the current study) and 
simple EEG paradigm. Taken together, resting state EEG network 
modularity is practically valuable as a reliable, valid, and cost-effective 
neural marker in predicting learning outcomes in various cognitive 
domains. 

It is also worth noting that the sample size of the current study was 
relatively large in comparison to previous studies examining the re-
lationships between resting state EEG power and language abilities. The 
sample size of the 15 studies, summarized in Table 1, ranged from 18 to 
99 with a mean sample size of 47. Therefore, the sample size of the 
current study with 99 pairs of twins was more than double the mean 
sample size of previous studies. In addition, the current study was 
conducted on a twin sample which allowed us to select the child with 
higher quality of EEG data from each twin pair. Taken together, the 
current study has found evidence from a relatively large sample with 
good data quality supporting an intriguing possibility that resting state 
EEG network modularity can serve as a reliable neural marker to predict 
literacy skills in the first language of Chinese. Future research, however, 
is needed to attempt to replicate the findings in different samples who 
are learning to read in a different first language. 

4.4. Limitations 

There are, however, two limitations to note for the present study. 
First, correlation does not imply causation. The correlations found be-
tween neural network modularity and Chinese reading performance 
may not guarantee that higher neural network modularity is the cause of 
better literacy development. Future studies should assess both the neural 
network modularity and reading performance longitudinally and 
examine these relations in the development of both. Second, there were 
fewer English reading measures included in the current study than the 
Chinese reading measures. In addition, more robust effects were found 
for Chinese phonological awareness and Chinese reading 
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comprehension which were not assessed in English. Therefore, one 
should be cautious in interpreting the non-significant associations be-
tween neural network modularity and L2 English language acquisition. 
Nevertheless, the present study underscores ways in which behavioral 
and neural measures can be considered together to understand cognitive 
development fully. 

4.5. Conclusion 

The current study found that the whole brain network modularity 
index computed based on resting state EEG data, collected from Chinese 
primary school children, was positively associated with L1 Chinese lit-
eracy measures, including word reading, phonological awareness, 
morphological awareness, and reading comprehension but not L2 En-
glish word reading and morphological awareness. The neural network 
modularity appeared to be frequency independent and associated with 
Chinese reading performance at both the word level and text level, 
suggesting that it may represent the general cognitive plasticity of an 
individual. It was associated with L1 Chinese measures but not L2 En-
glish measures, perhaps at least in part because L2 literacy acquisition 
tends to be more affected by affective and social factors. It is also 
possible that Chinese and English literacy skills have differential prop-
erties that influence this association. Nevertheless, the current findings 
were highly consistent with previous behavioral studies showing 
stronger cognitive correlations for L1 Chinese than L2 English and pre-
vious graph analysis studies showing reduced presence of specialized 
sub-networks in children and adults with dyslexia. Taken together, the 
present study has suggested that resting state EEG network modularity is 
a potentially reliable and valid neural marker in predicting L1 Chinese 
literacy development. 
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Appendix A. EEG power analyses 

EEG data from individual trials were submitted to time–frequency 
analysis using fixed-window Fast Fourier Transforms (FFTs) imple-
mented in EEGLab. The estimates of the event-related spectral pertur-
bation (ERSP in decibel, Makeig, 1993) were then averaged across trials 
for the following frequency bands: delta (0.5–4 Hz), theta (4–6 Hz), 

alpha (6–12 Hz), beta (12–30 Hz), and gamma (30–40 Hz) and for the 
following regions of interest: frontal area (Fp1, Fp2, AF3, AF4, AF7, AF8, 
AFZ, F1, F2, F3, F4, F5, F6, F7, F8, Fz), central area (C1, C2, C3, C4), 
temporal area (T7, T8, T9, T10), parietal area (P1, P2, P3, P4, P5, P6, P7, 
P8, Pz) and occipital area (O1, O2, OZ). The partial correlations, sta-
tistically controlling for age and gender, of EEG ERSP with Chinese and 
English literacy skills were then examined. As shown in Table A1, only 5 
out of 150 correlations were significant. It can be concluded that there 
were in general no associations between EEG ERSP and literacy skills. 
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