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a b s t r a c t 

Decades of research have led to several competing theories regarding the neural contributors to impaired reading. 
But how can we know which theory (or theories) identifies the types of markers that indeed differentiate between 
individuals with reading disabilities (RD) and their typically developing (TD) peers? To answer this question, we 
propose a new analytical tool for theory evaluation and comparison, grounded in the Bayesian latent-mixture 
modeling framework. We start by constructing a series of latent-mixture classification models, each reflecting one 
existing theoretical claim regarding the neurofunctional markers of RD (highlighting network-level differences in 
either mean activation, inter-subject heterogeneity, inter-region variability, or connectivity). Then, we run each 
model on fMRI data alone (i.e., while models are blind to participants’ behavioral status), which enables us to 
interpret the fit between a model’s classification of participants and their behavioral (known) RD/TD status as an 
estimate of its explanatory power. Results from n = 127 adolescents and young adults (RD: n = 59; TD: n = 68) show 

that models based on network-level differences in mean activation and heterogeneity failed to differentiate be- 
tween TD and RD individuals. In contrast, classifications based on variability and connectivity were significantly 
associated with participants’ behavioral status. These findings suggest that differences in inter-region variability 
and connectivity may be better network-level markers of RD than mean activation or heterogeneity (at least in 
some populations and tasks). More broadly, the results demonstrate the promise of latent-mixture modeling as a 
theory-driven tool for evaluating different theoretical claims regarding neural contributors to language disorders 
and other cognitive traits. 
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. Introduction

Reading disability (RD) is the most common neurodevelopmen-
al disorder, with an estimated prevalence of 10-15% of children
 Fletcher et al., 2007 ; Lyon, 1995 ). It is a life-long disorder, with detri-
ental effects lasting into adolescence and adulthood ( Bruck, 1992 ;

haywitz et al., 1999 , 2003 ). Neuroscientists have long been interested
n the neurofunctional markers of poor reading. Works comparing the
rain activity during reading of participants with RD to typically de-
eloping (TD) readers can be traced back to early studies using EEG
 Colon et al., 1979 ; Sklar et al., 1972 ), a line of work that became
ore prevalent with the advent of hemodynamic tools in the 1990 ′ s

 Rumsey et al., 1992 ; Salmelin et al., 1996 ; Shaywitz et al., 1998 ). Since
hen, a large and constantly growing number of studies followed up on
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hese earlier observations with the aim of unveiling the neural contrib-
tors to impaired reading. 1 

There is no doubt that the increase in the amount of functional
euroimaging data on reading disabilities is laudable. Among other
dvantages, a large amount of data enables data accumulation across
tudies and highly powered meta-analyses (e.g. Paulesu et al., 2014 ;
ichlan et al., 2009 ). Yet a large number of studies also brings a unique
hallenge: Decades of research resulted in numerous observations of dif-
erences between individuals with RD and their TD counterparts, leading
o several different theoretical claims regarding the neural markers of
6511, USA. 

R "reading disability") on publications from 1996 to 2019 shows that the av- 
rage number of publications per year grew from 4.0 in 1996-2000, to 37.2 in 
015-2019. 
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mpaired reading. Yet, there are reasons to believe that some of these
bservations may not be replicable, and consequently that the theories
hat were construed based on them have limited explanatory power. This
s because a large number of studies increases the risk that at least some
bservations reflect Type-I errors (a problem that is further exacerbated
y multiple comparisons per study, e.g., Lindquist and Gelman, 2009 ,
nd flexibility in analytical practices, e.g. Botvinik-Nezer et al., 2020 ;
ong et al., 2019 ). 2 Moreover, the generally limited sample sizes in neu-

oimaging studies means that many positive findings might not reflect
rue effects (e.g., Button et al., 2013 ; Szucs and Ioannidis, 2017 ). How
an we then identify from all reported observations, and from the the-
ries that were built in light of these findings, the markers that indeed
ifferentiate between readers with and without RD? 

The aim of the current paper is to provide a formal framework that
irectly evaluates the predictive power of different theoretical claims
egarding neurofunctional markers. In a nutshell, we do so by adopt-
ng a Bayesian latent-mixture approach, a sub-type of generative model-
ng where classification models are constructed in a theory-driven man-
er (see details below). Here we adapt the latent-mixture modeling ap-
roach to build a series of classification models, each reflecting one theo-
etical claim regarding the markers that distinguish between individuals
ith and without RD in functional magnetic resonance imaging (fMRI)
ata of reading. That is, each of the models we build "translates" a the-
retical claim regarding neurofunctional markers of RD into an explicit
nd formal generative model: By ’explicit’ we mean a model where all
ssumptions are clearly stated, and by ’generative’ we mean a model that
pecifies and estimates a set of latent parameters that presumably gave
ise to the observed data. Then, each model is fitted to fMRI data from
ifferent individuals (some with and some without RD), while being
lind to individuals’ actual (i.e., behavioral) RD status. This procedure
esults in a group classification parameter for each individual, reflecting
he model’s certainty in classifying a person into the RD vs. TD group.

e then compare the group classification parameter estimated by each
odel to the actual group classification of each participant, to exam-

ne which model(s) produces group classification (based on fMRI data
nly) that fits participants’ actual group membership. This enables us to
raw conclusions regarding the explanatory power (or lack thereof) of
he different theoretical claims that each of these models represents. 

Before diving into details, we wish to emphasize from the onset the
ajor differences - as well as commonalities - between our approach and

tandard analytical frameworks. The vast majority of functional neu-
oimaging studies are set to test a specific hypothesis or theory, most
ommonly using univariate statistics (e.g., is activation in region X dif-
erent between individuals with and without RD?). The univariate ap-
roach differs from our framework in two major aspects. First, univari-
te analysis is meant to test a single a priori hypothesis, and is therefore
ot suited for evaluating and contrasting multiple competing theories. In
ontrast, in our use of the latent-mixture modeling framework we eval-
ate and compare the predictive power of different theories. The second
ifference is that univariate statistics are more powerful when examin-
ng predictions that are confined to specific regions or a small number of
egions (or else a correction for multiple corrections is needed, resulting
n reduced power). The latent-mixture models we use, however, is par-
icularly geared towards examining network-level (rather than region-
pecific) markers. 

Other approaches to neurofunctional data analysis are multivariate
nd data-driven, including in particular Machine Learning algorithms
see Hoeft et al., 2011 ; Tamboer et al., 2016 for applications in the
ontext of RD). What is shared between these data-driven approaches
nd our latent-mixture approach is that both focus on network-level dif-
erences. Indeed, we apply the latent-mixture approach to test claims
2 To clarify, we do not claim that all reasons behind the limited replicability 
n the field are statistical in nature. Other relevant factors include variability in 
esign, diagnostic criterion, and potentially, the studied language. 
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bout brain activity across wide networks, or even the whole brain
but see General Discussion for suggested extensions to examine specific
egions-of-interests, ROIs). Crucially, the central difference between our
pproach and Machine Learning and other data-driven approaches (e.g.,
onnectome-based predictive analysis, Shen et al., 2017 ) are that the
pproaches from the latter class are not meant to test or evaluate the-
ries: The signal that they look for as differentiating between groups
f individuals (e.g., RD/TD) is not defined or constrained by theory. In-
tead, data-driven predictive frameworks aim to maximize classification
erformance by revealing the parts of the signal that best differentiates
etween the relevant groups of individuals - yet this signal may very
ell be non-transparent theoretically. In contrast, our approach does not
im to maximize classification performance, but instead to directly eval-
ate and compare theories (i.e., to maximize theoretical transparency).
ethodologically, this is reflected by the fact that our models classify

ndividuals based on theorized neural differences between TD and RD
eaders while being blind to their actual (i.e., behavioral) group status.

. Directly testing theories using a Bayesian latent-mixture 

odeling framework 

The Latent-mixture approach we utilize here is a sub-type within the
roader Bayesian generative modeling framework. As such, it shares
any of its basic attributes with Bayesian modeling more generally (in-

luding the specification of prior distributions, the update of priors given
ata to estimate posterior distributions, and the interpretation of poste-
ior distributions as reflecting researchers’ current beliefs). For readers
ho are not familiar with the basics of Bayesian inference, we provide
 brief overview of the approach in the Supplementary Materials S1.
mportantly, we chose the Latent-mixture modeling approach because,
s we explicate below (see Methods , sub-section Bayesian Latent-mixture

odels ), it is particularly suited for evaluating competing theories re-
arding which parameters contribute to the classification of individuals
nto two groups of subjects (in the current case – individuals with and
ithout RD). Also note that related implementations of this approach
ere previously used in different domains using behavioral data (e.g.,
rtega et al., 2012 ; Siegelman et al., 2019 ). 

In the current paper we applied the Bayesian latent-mixture frame-
ork to investigate the neurofunctional markers of reading disabilities.
hus, we built a series of latent-mixture models, each of them reflect-

ng one theoretical claim regarding the markers that differentiate indi-
iduals with and without RD in fMRI data. After running each model
n fMRI data acquired during a word recognition task from individu-
ls with and without RD, we examined which latent-mixture model(s)
lassified individuals (based on their fMRI data) in a way that matched
heir actual (known, behavioral) RD status. Statistically, we did so by
xamining for each model whether a produced classification parameter,
stimated by the model for each participant, was related to their actual
ehavioral status (see methodological details below). Importantly, since
he models were blind to the subjects’ actual TD/RD classification, this
omparison evaluated directly which model could successfully classify
articipants into RD and TD sub-groups based on neuroimaging data
lone. And since each model was built to reflect one theoretical claim
egarding neurofunctional markers of RD, we could infer from these re-
ults which claim(s) indeed have explanatory power in differentiating
etween RD and TD participants. 

. Candidate theoretical claims 

The first step in our approach is to refine from the literature candi-
ate theories that are then translated into generative classification mod-
ls. In this first paper, we chose to focus on a few candidate theories –
et we emphasize that these are not meant to provide an exhaustive list
f all theoretical claims in the literature. Rather, they are meant to rep-
esent a few common and/or plausible theoretical claims, both as a way
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R  
f estimating these theories’ explanatory power in the context of RD and
ore broadly to evaluate and exemplify our novel approach. 

All the candidate theories below share the notion that there are
eurofunctional differences between individuals with and without RD,
hich should be captured by hemodynamic changes as measured in

MRI, consistent with observations of robust structural abnormalities in
D readers (e.g., Eckert et al., 2016 ; Richlan et al., 2013 ). The crucial
ifference between these candidate theories is that each of them high-
ights a different type of signal as the marker that differentiates between
he two groups. Thus, broadly speaking, the candidate theoretical claims
e examined can be categorized into four sets, according to the neu-

ofunctional contributors they emphasize as differentiating between RD
nd TD individuals: (1) claims regarding differences in mean activation;
2) claims regarding differences in heterogeneity (i.e., variability across
ubjects); (3) claims regarding differences in intra-subject (inter-region)
ariability; and (4) claims regarding differences in functional connectiv-
ty. Note that these theoretical claims are not mutually exclusive (i.e.,
ore than one model may successfully identify RD individuals) – and

ndeed below we present analysis of the added value provided by multi-
le successful models. In the rest of this section, we briefly review these
our categories and the relevant literature that motivated our selection.

e stress from the outset that some of the claims we test originated
rom mechanistic accounts, whereas others are motivated by empirical
ndings or more intuitive explanations; in this paper, we are agnostic to
he claims’ origins, but focus instead on their operational predictions. 

.1. Differences in mean activation 

The majority of work into neurofunctional markers of RD exam-
nes differences in group-level (or mean) activation between individ-
als with impaired vs. typical reading. Thus, a large number of studies
ocumented functional differences between these two groups of indi-
iduals during reading as reflected in fMRI data (see, e.g., D’mello and
abrieli, 2018 for review). From this wide breadth of data, converg-

ng evidence points to decreased activation for individuals with RD in a
etwork of left-hemispheric regions that are considered canonical hubs
f typical reading, including occipito-temporal, temporo-parietal, and
nferior frontal regions (e.g., Hoeft et al., 2007 ; Paulesu et al., 2014 ;
ugh et al., 2001 ; Shaywitz et al., 1998 ), while also suggesting that in-
ividuals with RD may show increased activation in right-hemispheric
egions (e.g., Hoeft et al., 2011 ; Simos et al., 2002 ; Waldie et al., 2013 ).
here are also reports of increased activation in RD in non-canonical
egions that are not part of the typical reading network ( Richlan et al.,
009 ; Shaywitz et al., 1998 ). Thus, while RD/TD group differences are
onsistently observed, whether the difference has to do with higher or
ower activation in RD may vary by hemisphere and region. Nonethe-
ess, the most frequent findings are reduced signal in RD for canoni-
al and left-hemispheric regions, along with increased signal for right-
emispheric regions, and we test these claims here. 3 

To do so, we represented theoretical claims regarding differences
n group-level activation in a series of ’mean-activation’ models. These
odels classify participants to groups of RDs vs. TDs based on network-
ide differences in mean activation over a network of regions (e.g., RDs

how less activation compared to TDs in left-hemispheric ’canonical’ re-
ions of reading but more activation in non-canonical regions; RD show
ess activation in the left hemisphere but increased activation in the
ight; etc.). 

.2. Differences in inter-subject heterogeneity 

A different potential marker we examined does not have to do with
ifferences in mean activation, but rather with the extent of heterogene-
3 Note that while we had a directional prediction in mind, our models were 
uilt in a way that makes them sensitive to activation differences in either di- 
ection. See below for full specification of models. 
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3 
ty (i.e., inter-subject variability) in groups of RD and TD participants.
he motivation for this model traces back to behavioral studies, showing
hat RD individuals are characterized – despite being concentrated in a
imited part of the lower tail of the reading skill distribution – by sub-
tantial heterogeneity in various reading and non-reading tasks and also
y comorbid conditions that could impact reading (e.g., Pennington and
ishop, 2009 ; Zoubrinetzky et al., 2014 ). This observation raises the pos-
ibility that individuals with RD also show increased heterogeneity in
erms of patterns of brain activation (i.e., more variability around a cen-
ral tendency compared to TD individuals), potentially reflecting RD’s
reater likelihood to utilize highly varied and/or idiosyncratic networks.
n this regard then, even the absence of a mean difference in activation
etween TD and RD in a region could reflect a pattern of highly vari-
ble circuit building in RD. Given the intuitive appeal of this notion that
D may fail to show activation in nomothetic analyses given greater
ariation, and despite the fact that previous studies have not directly
xamined variance differences, we investigate this possibility here. In
um, a potential marker of RD is a more heterogeneous brain activa-
ion than in TD (i.e., greater inter-individual variability in RD vs. TD),
hich we examine via a model that classifies individuals into two groups

hat are similar in their activation means but differ in inter-subject vari-
bility (i.e., a "heterogeneous" group, which supposedly include the RD
eaders, and a "homogeneous" group, which supposedly consist of TD
ndividuals). 

.3. Differences in within-subject variability 

In addition to inter-subject variability as captured by the model
bove, we also examined a candidate theory according to which RD and
D individuals differ in terms of intra -subject variability ( Hancock et al.,
017 ; Hornickel and Kraus, 2013 ; Malins et al., 2018 ). This was moti-
ated in part by EEG research which found that individuals with RD dif-
er from TD in instant-to-instant variance during assessment of complex
uditory brainstem measures ( Hornickel and Kraus, 2013 ; Neef et al.,
017 ), as well as in cortical activity ( Centanni et al., 2018 ). In line with
hese findings, a recent paper suggested that this increased instance-
o-instance variation may reflect a putative neural noise deficit in RD,
temming from abnormal balance of excitatory and inhibitory expres-
ion ( Hancock et al., 2017 ). With regard to fMRI findings, a recent
tudy found that good and poor readers differ in intra-subject vari-
nce, with TD readers showing increased trial-by-trial variability in the
ars triangularis sub-section of the left inferior frontal gyrus, perhaps
eflecting a more adaptive or flexible state ( Malins et al., 2018 ). In
hort, there are intriguing findings that point to the importance of mod-
ls rounded in variance but evidence is limited and may differ across
maging modalities. This focus on within-subject variability has become
rominent in other clinical domains ( Dinstein et al., 2015 ; Easson and
cIntosh, 2019 ) and merited analysis in the current paper. Following

his line of reasoning, we simulated a model according to which RD and
D individuals differ in the extent of variability across regions (i.e., intra-
ubject inter-region variability). This is because both the potential uti-
ization of non-reading regions and neural noise (among other factors)
ay result in increased inter-region variability in RD. This model thus

lassifies individuals into two groups, one comprising individuals who
re characterized by increased variability across regions (which we pre-
icted should include RD readers), and the other by lesser inter-region
ariance (the presumably TD group). 

.4. Differences in functional connectivity 

A last category of models we considered reflects common claims that
D is associated not (only) with differences in activation – either in

erms of mean activation or between/within-subject variability – but
ather with differences in functional connectivity between regions. Thus,
ndings demonstrate differences between RD and TD groups in func-
ional connectivity between various hubs of the reading network, most



N. Siegelman, M.R. van den Bunt, J.C.M. Lo et al. NeuroImage 242 (2021) 118476 

t  

v  

i  

1  

B  

S  

2  

i  

w  

t  

b

4

 

o  

t  

R  

fi  

c  

o  

o  

k  

-  

a  

w  

m  

i  

o  

a  

t  

i  

o  

m  

c  

5

5

 

s  

y  

v  

U  

w  

i  

t  

p  

I  

r  

h  

t  

w  

2  

d  

t  

s  

p  

t  

i  

s  

d  

e  

i  

t  

A  

w  

o  

t  

r  

t  

w  

c  

d  

a  

s

5

 

o  

1  

w  

F  

a  

o  

s  

m  

a  

(  

i  

F  

l  

e  

t  

f  

S  

e  

t  

t  

i  

a  

@  

o  

f  

s  

m  

S  

t  

o  

u  

t  

t
 

i  

w  

g  

m  

t  

m  

t  

i  

r

5

 

f  

i  
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i  
ypically in the left hemisphere (see, e.g., Koyama et al., 2013 for re-
iew). These include several reports of disrupted connectivity in RD
ndividuals in connections to/from the angular gyrus ( Horwitz et al.,
998 ; Pugh et al., 2000 ), the inferior frontal gyrus ( Richards and
erninger, 2008 ), and the occipitotemporal region ( Koyama et al., 2013 ;
haywitz et al., 2003 ; van der Mark et al., 2011 ; and see Finn et al.,
014 for a whole-brain analysis). Based on these findings, we exam-
ned whether functional connectivity differentiates between individuals
ith and without RD by building a model that classifies individuals into

wo groups of subjects that show either greater or lesser network-level
etween-region connectivity. 

. The current study 

The structure of the remainder of the paper is as follows. In the Meth-
ds section, we describe our general design and procedure (participants,
ask, acquisition parameters, and preprocessing procedure). Then, in the
esults section, we go over each candidate theory, describe the speci-
cation of a Bayesian latent-mixture model built to reflect it, and the
lassification results of this model. In reviewing the results, we focus
n the relations between a classification parameter obtained from each
f the models we fitted to the fMRI data and participants’ behavioral
nown RD/TD status. This enables us to examine which of the model(s)
 and consequently, the theoretical claims it reflects - indeed differenti-
tes between RD and TD individuals. At the end of the Results section,
e present data on the added predictive value of each of two different
odels that were characterized by successful classification, to exam-

ne whether each highlights unique markers of RD in relation to the
ther (or whether their classification overlaps), as well as the results of
nalyses examining the predictive value of models fitted to activation
o non-print stimuli. Then, in the General Discussion, we discuss the
mplications of our findings both from the narrower perspective of the-
ries regarding neurofunctional contributors to RD, and from a broader
ethodological perspective regarding the utility of our theory-driven

lassification approach in neuroimaging research of language disorders.

. Methods 

.1. Participants and behavioral RD/TD classification 

The results we present below are based on data from a community
ample of n = 127 adolescents and young adults (age range: 13.5-25.2
ears, mean age = 19.9; 72 males and 55 females). All participants pro-
ided informed consent and the ethics protocol was approved by Yale
niversity’s Institutional Review Board. A subset of this sample (n = 59)
as also used in an earlier publication on memory consolidation focus-

ng on a different fMRI task not reported here ( Landi et al., 2018 ). All
hese participants passed fMRI quality controls (see below), and com-
leted behavioral assessment using the two sub-tests of the TOWRE-
I ( Torgesen et al., 2012 ): Sight Word Efficiency (timed test of word
eading) and Phonemic Decoding Efficiency (pseudoword reading). Be-
avioral (i.e. actual) group membership was defined using a conven-
ional in-study criterion of < 90 standard score in either word or pseudo-
ord naming sub-tests (see e.g., Arrington et al., 2019 ; Siegelman et al.,
020 ). Per this criterion, our sample included 59 participants who were
efined as RD and 68 defined as TD. Table 1 presents basic charac-
eristics of the two groups (reading skills, age, gender, and mean in-
canner motion). fMRI task. Functional volumes were acquired while
articipants completed a task in which they processed visual and audi-
ory stimuli. The task consisted of four conditions: i) printed real words;
i) spoken real words; iii) printed symbol strings; and iv) noise-vocoded
poken words. This design has been shown to be sensitive to individual
ifferences in reading skills ( Chyl et al., 2018 ; Malins et al., 2016 ). In
ach trial, subjects were presented with four stimuli in rapid succession
n one of the four conditions. For the visual conditions, items within
etrads were present on the screen for 250 ms, with an ISI of 200 ms.
4 
uditory items had a mean duration of 536 ms (SD = 110.2 ms) and
ere presented within tetrads with an SOA of 800 ms. At the beginning
f the session, subjects were instructed to attend to the stimuli and told
hey would be given a short recognition memory test at the end of each
un to motivate paying attention. Across all trials in the experiment,
he time between trial onsets was jittered between 4 and 13 s. The task
as performed in two runs, each lasting 5 minutes and 2 seconds. All

onditions were presented in each run, with 48 trials per run in a pseu-
orandom order. No condition could repeat more than three times in
 row. In total, this resulted in 24 trials (each trial being a tetrad of
timuli) per condition. Stimuli were presented using E-Prime. 

.2. Acquisition of MRI data 

Images were acquired using a Siemens TIM-Trio 3T magnetic res-
nance imaging system (Siemens AG, Erlangen, Germany) with a
2-channel head coil. Prior to functional imaging, sagittal localizers
ere run (matrix size = 240 × 256; voxel size = 1 × 1 × 4 mm;
oV = 240/256 mm; TR = 20 ms; TE = 6.83 ms; flip angle = 25°). Next,
natomical scans were acquired for each participant in an axial-oblique
rientation parallel to the intercommissural line (MPRAGE; matrix
ize = 176 × 256 × 256; voxel size = 1mm 

3 ; FoV = 256 mm; TR = 2530
s; TE = 3.66 ms; flip angle = 7°). Following this, T2 ∗ -weighted im-

ges were collected in the same orientation as the anatomical volumes
32 slices; 4 mm slice thickness; no gap) using single-shot echo planar
maging (matrix size = 64 × 64; voxel size = 3.4375 × 3.4375 × 4 mm;
oV = 220 mm; TR = 2000 ms; TE = 30 ms; flip angle = 80°). To al-
ow for stabilization of the magnetic field, the first four volumes within
ach run were discarded. Participants completed two runs in the func-
ional task, which had a combined duration of 10 minutes and 4 seconds.
MRI processing. Data were preprocessed using AFNI ( Cox, 1996 ; RRID:
CR_005927). Prior to running the afni_proc.py pipeline on the data of
ach subject, the @SSwarper program was run for brain extraction of
he anatomical image and to apply the nonlinear warp of the anatomy
o MNI space. Functional images were preprocessed by first correct-
ng for slice acquisition time ( 3dTshift ). Then, functional images were
ligned with the anatomical images using the warps computed by the
SSwarper program (using the tlrc_NL_warped_dsets and volreg_tlrc_warp

ptions). These steps were combined into a single transform that also
orced a 3 mm isotropic voxel size on the data. All images were then
moothed ( 3dmerge ) using a Gaussian kernel with a full width at half
aximum of 8 mm (i.e., twice the between-plane distance of 4 mm;

kudlarski et al., 1999 ) and data were scaled ( 3dcalc ) so that each voxel’s
ime series had a mean of 100 for each run allowing the interpretation
f EPI values as a percentage of the mean. During this scaling step, val-
es in excess of 200 (meaning a > 100% signal increase) were clipped;
his is the default value for scaling in AFNI and was selected to retain
he precision of scaled short values. 

Single trial estimates were obtained using a General Linear Model
ncluding nuisance regressors for the six motion parameters. This model
as specified using the stim_times flag for 3dDeconvolve in AFNI. The re-
ression used a generalized least-squares time-series fit, with a restricted
aximum likelihood estimation of the temporal auto-correlation struc-

ure ( 3dREMLfit ). The hemodynamic response function was approxi-
ated using a gamma function. When performing the GLM, any volume

hat exceeded the thresholds of 0.3 mm Euclidean movement and/or
f more than 10% of the voxels were flagged as outliers (using the
egress_censor_outliers flag) and were censored from further analysis. 

.3. ROI selection for the canonical and non-canonical networks 

As described below, our models used a categorization of ROIs into
our different networks; left canonical; left non-canonical; right canon-
cal and right non-canonical. Left canonical ROIs were based on a re-
ent meta-analysis that reports peak activation coordinates for reading
n adults ( Martin et al., 2015 ). Left non-canonical areas were selected
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Table 1 

Basic characteristics of the two participant groups. 

RD group TD group Comparison 

TOWRE:Sight Word Efficiency a M = 82.19, SD = 7.51 M = 103.04, SD = 8.87 t (125) = 14.19, p < .001 
TOWRE:Phonemic Decoding Efficiency a M = 88.29, SD = 14.02 M = 103.78, SD = 9.56 t (125) = 7.35, p < .001 
Age M = 18.95, SD = 2.64 M = 20.69, SD = 2.56 t (125) = 3.77, p < .001 
Gender 38 Males; 21 Females 34 Males; 34 Females 𝜒2 

(1) = 2.67, p = .10 

Proportion motion-censored TRs b M = 0.10, SD = 0.14 M = 0.07, SD = 0.10 t (125) = 1.37, p = .17 

a Values are standard scores. b defined as the proportion of volumes that exceeded a thresholds of 0.3 mm Euclidean 
movement and/or with more than 10% of voxels marked as outliers by the regress_censor_outliers flag. 

Table 2 

MNI coordinates of the canonical left (and right) 
reading ROIs, derived from Martins et al. (2015) . 

Region 
MNI coordinates 

x y z 

Inferior Frontal Gyrus (BA45) (-)52 20 18 
Inferior Frontal Gyrus (BA44) (-)52 18 14 
Precentral Gyrus (-)46 2 42 
Middle Frontal Gyrus (-)42 4 48 
Fusiform Gyrus (-)42 -68 -22 
Inferior Occipital Gyrus (-)44 -74 -4 
Middle Occipital Gyrus (-)42 -86 -2 
Inferior Temporal Gyrus (-)48 -62 -20 
Supplementary Motor Area (-)4 24 56 
Intra-Parietal Sulcus (-)42 -48 48 
Temporal Pole a (-)52 4 -10 

a Group-level activation for printed words in this left- 
canonical ROI did not reach significance, and it was 
therefore not included in the corresponding input 
matrix. 
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4 Although the motivation for the scaling was methodological, we note that 
applying it may have led to over-weighing of ROIs that are less active on average. 
In other words, because input matrices included scaled values, less activated 
ROIs may have contributed more to the classification than they would when 
using classification based on raw values. We leave it to future work to explore 
these alternative procedures, while noting that using raw values requires careful 
consideration of models’ convergence and use of proper prior distributions for 
different ROIs. 

5 Note that our input matrix included estimated activation for print overall 
(i.e., printed words vs. fixation contrast) rather than more specific contrasts 
(e.g., printed words vs. printed symbol strings; printed words vs. spoken words). 
We opted for this more general contrast in order to maximize the signal strength 
and the number of ROIs included in the analysis: More specific contrasts were 
associated with weaker signal overall and significant activation in a smaller 
number of regions. 
rom a functional brain topography based on resting-state connectiv-
ty ( Power et al., 2011 ). All left hemispheric coordinates that did not
verlap with the canonical regions and were not within 2 mm of the
entral sulcus were included as left non-canonical ROIs. Note that this
et of non-canonical regions include a large number of (cortical and sub-
ortical) ROIs, many of them not specific to reading or language. The
etworks in the right hemisphere were mirror images of the left net-
orks. As a result of this procedure, canonical networks consisted of 11
OIs per hemisphere (see Table 2 for coordinates) and the non-canonical
etworks of 120 ROIs per hemisphere. We then created spheres with a
adius of 3mm centered on these coordinates as ROIs, and obtained for
ach participant the mean beta across all trials in a given condition for
ach of these ROIs. 

.4. Input matrix (for mean-, heterogeneity-, and variability-based models) 

The preprocessing procedure yielded a 127 × 262 matrix: Each value
n this matrix was the mean estimated beta across trials in a given con-
ition for each of the 127 subjects in each of the 262 ROIs (11 canoni-
al + 120 non-canonical in each hemisphere). Our central analysis be-
ow focuses on the print condition. In the input to these analyses, we
ubsetted the columns of this matrix to include only ROIs that showed
ignificant group-level responses to print ( p < 0.01). This was done to
ncrease the signal-to-noise ratio in the input and improve model conver-
ence (preliminary analyses revealed that many of the models failed to
onverge without such censoring). As a result, the print-activation input
atrix included 140 ROIs: 10 canonical regions in each hemisphere, 57

eft-hemispheric non-canonical, and 63 right-hemispheric non-canonical
see Figure in Supplementary Materials S2 for location of ROIs). All
alues in these remaining ROIs were scaled and centered within ROI
again to facilitate convergence, and to have a more interpretable scale
5 
n which to define prior distributions 4 ). As a last step, we removed out-
iers with mean beta values farther than 3 SDs from the mean of each
OI. The resulting matrix served as the input to models 1-3 below (i.e.,
ean activation models, heterogeneity model, and intra-subject vari-

bility model). 5 Additional models were run on parallel matrices re-
ecting activation in two other task conditions - the false-font and the
poken-word condition; the goal of these additional analyses was to ex-
mine whether models’ performance was specific to print processing or
ould be generalized to other types of materials (i.e., non-print visual
timuli and/or auditorily presented words). The procedure of the cre-
tion of these matrices was identical. However, note that the subsetting
rocedure was always based on condition-specific values, and therefore
he matrices for different conditions included different ROIs (see more
elow). 

.5. Processing and input matrix for connectivity-based model 

For the connectivity-based analysis, we had to create another input
atrix, this time including connectivity values (rather than mean acti-

ation). There are multiple options for how to calculate functional con-
ectivity, including resting state and task-based connectivity (e.g., psy-
hophysiological interaction, Friston et al., 1997 ), and beta-series corre-
ations ( Rissman et al., 2004 ) methods, all with its own (dis)advantages.
n this study we decided to use the full time-course during the task, for
wo main reasons: i) the number of trials (maximum of 24 per condi-
ion, and often less because of movement) was relatively limited for
urely task-based connectivity analyses, and ii) recent work showing
hat cognitive tasks that are related to the skill of interest (here read-
ng/language) amplify trait-relevant individual differences in functional
onnectivity patterns during the entire experiment ( Greene et al., 2018 ).

To obtain connectivity metrics we examined the EPI values of the
ntire time-course of the experiment (i.e., across all conditions of the
xperiment, not just print trials), correlating each ROI with each other
OI, resulting in a 262 × 262 matrix per participant. Then, for each ROI
e averaged the r -to- z transformed correlation with other ROIs that are

n the same subnetwork resulting in a 127 (participants) by 262 (mean
onnectivity for each ROI with other ROIs in its sub-network) matrix.
ote that to increase the comparability with the activation-based mod-
ls fitted to print data (which becomes relevant when comparing the
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Fig. 1. Voxel-by-voxel significant activation ( p < .001) for the print condition. 
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dded classification value across these models, see below), in the anal-
sis below we again subsetted the columns of this matrix to include the
ame 140 ROIs used in the print-models. 6 We again scaled values within
olumns and removed outliers farther than 3 SDs from each column’s
ean. 

.6. Processing and input matrix for connectivity-based model 

In the latent-mixture modeling approach, two competing (i.e., la-
ent) models are specified (Groups 1 and 2) and are pitted against each
ther, using a larger model that contains the two competing models and
 binary classification parameter (z i ). This classification parameter ex-
mines, for each individual, whether their data are more likely under the
pecification of Group 1 or under Group 2. 7 Operationally, the model
s structured in a way that in each Monte Carlo Markov Chain (MCMC)
teration z i can be either 0 or 1: z i = 0 reflects classification to Group
 (i.e., data more likely under sub-model 1), and z i = 1 reflects classifi-
ation to Group 2. Then, similarly to all Bayesian models, the distribu-
ion of the classification parameter z i across iterations can be taken as
 proxy of the posterior distribution of this parameter ( Kruschke, 2014 ;
ee and Wagenmakers, 2013 ). Specifically, in the latent-mixture case,
he posterior distribution reflects the certainty in classifying subject i
s following sub-model 2 (compared to sub-model 1): The mean of z i 
cross iterations is the model’s certainty in classifying subject i as a
ember of Group 2 (e.g., �̄� 𝑖 = 1 reflects full certainty in classification as
roup 2; �̄� 𝑖 = 0 reflects full certainty in classification as Group 1). Note

hat latent-mixture models allow for individual differences or mixture in
he data (hence their name): that is, a situation where some individuals
n the sample are classified as members of Group 1, whereas others of
roup 2. 

We re-iterate that in all analyses presented below, models were only
tted to fMRI data; only after the z i parameter was estimated for each
ubject (under each model) we compared it to the actual group mem-
ership of participants. This means that in contrast to common ap-
roaches (e.g., Machine Learning), our approach does not require cross-
alidation. In other words, in contrast to typical approaches where mod-
ls are trained on both predictors (in the current case, fMRI data) and
utcome (RD/TD status), in our approach parameters are estimated only
n the predictors, which eliminates the risk of overfitting and hence ob-
iates the need for cross-validation. 

In the Results section, we describe the performance of a series of
atent-mixture models each built to reflect one of the theories laid out in
he Introduction. For readability, we describe each model’s specification
long with its classification performance. Note that the different models
ere built to maximize their similarity to one another, with minimal

hanges implemented to reflect the critical difference(s) regarding the
ource of RD/TD classification (i.e., all models share many assumptions,
xcept for those related to the type of signal they view as the source of
D/TD classification). This was done to ensure that all models have a
imilar potential to pick up on meaningful individual differences. 
6 In this connectivity matrix values represented the mean connectivity be- 
ween each of the 140 ROIs and all other regions in the same sub-network, 
egardless of whether they were included in the subset of 140 ROIs. A slightly 
ifferent approach is to confine connectivity estimates only to the subset of 140 
OIs (i.e., calculate the connectivity between each of the 140 ROIs and all other 
egions in the same sub-network that were also part of the 140-ROI subset). 
unning the models described below on this modified input matrix resulted in 
ualitatively similar results. 
7 The latent-mixture modeling approach requires a binary criterion. In all our 
nalysis below, we therefore use a binary split of participants into RD and TD 

ub-groups. Our choice here is driven by methodological considerations and 
hould not be taken to reflect a theoretical claim regarding whether individuals 
ith RD constitute a qualitatively distinct subgroup or simply the lower end of 

he reading skill continuum. 
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.7. Specification and estimation of Bayesian models 

MCMC samples were run using JAGS ( Depaoli et al., 2016 ), version
.3.0, and the rjags package in R ( Plummer, 2016 ), version 4-10. In all
stimations we used three separate MCMC chains with random start-
ng points. Each chain included 2000 iterations after 5000 burn-in it-
rations; the goal of the burn-in iterations was to ensure that samples
ere taken from the posterior distribution only after the MCMC proce-
ure was sufficiently stable. To check whether the 3 chains converged
o similar posterior distributions we used the Gelman-Rubin diagnostic
easure ( Gelman and Rubin, 1992 ). Lower values reflect high agree-
ent across chains, with values under 1.1 generally interpreted as good
odel convergence. Convergence estimates for the models below were

enerally under this threshold, both for group-level parameters and for
he majority of subject-level classification parameters (see Supplemen-
ary Materials S3 for full information). Full codes with the specification
f Bayesian models, the data fed to the models (i.e., input matrices), and
lready-fitted posterior distributions (which were used in the results be-
ow) are available via the project’s OSF page, at: https://osf.io/2vrwa/ .

. Results 

.1. Analysis of basic print activation 

Before turning to the main analysis (using the Bayesian latent-
ixture models), we first examined the activation of the print vs. fix-

tion cross contrast in our sample (across all subjects). Fig. 1 shows
he voxel-by-voxel activation map for this contrast, at a threshold of
 < .001. As can be seen, we observed strong bilateral print-related
ctivation across reading-related areas including the fusiform gyri, su-
erior temporal, inferior parietal and frontal gyri, extending into sub-
ortical structures such as the thalamus and putamen. This is expected
or this print contrast and in line with previous findings with this task
 Chyl et al., 2018 ; Malins et al., 2016 ). In addition, the mean beta for
OIs in the left ( 𝛽 = 0.135) and right ( 𝛽 = 0.128) canonical reading net-
orks were stronger than in the left ( 𝛽 = 0.040) and right ( 𝛽 = 0.041)
on-canonical networks. These results corroborated that we were ad-
quately measuring activation for print and were distinguishing well
etween canonical and non-canonical regions. 

.2. Bayesian latent-mixture models: specification of models and 

lassification performance 

As mentioned above, our central focus in this paper is the evaluation
f a series of latent-mixture classification models built in light of four

https://osf.io/2vrwa/
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Fig. 2. Visual depiction of activation-based models. Panel A: models’ architecture. The notation follows that of Lee and Wagenmakers (2013) : White nodes: un- 
observed (i.e., to-be-estimated) parameters; grey nodes: observed data or known values; rounded rectangles: loops (running over subjects/trials). The subscript i 
to refer to subjects and j to refer to ROIs (e.g., 𝛽 ij - activation for the subject i in ROI j ). The four sub-networks of regions (i.e., the left canonical network, left 
non-canonical network, right canonical network, and right non-canonical networks) are shown in different quartiles within dashed boxes and are marked with dif- 
ferent superscripts (Left side: left hemisphere, marked L ; Right side: right hemisphere, marked with R ; Top: canonical regions, marked with C ; Bottom: non-canonical 
regions, marked with nC ). Panel B: central priors in the left-right mean activation model (model 1A). In the left-canonical and left non-canonical networks, Group 1 ′ s 
population means can a priori be any standard value between -3 and + 3 ( 𝜇𝐿𝐶 

𝑔𝑟 1 ∼ 𝑈 (−3 , 3 ), 𝜇𝐿𝑛𝐶 
𝑔𝑟 1 ∼ 𝑈 (−3 , 3 )), a range which presumably includes any reasonable true 

value (i.e., an uninformative prior). Group 2 ′ s means in the same networks are expected to be smaller than that of Group 1, and are thus defined as the population 
mean of Group 1 minus a difference parameter ( 𝜇𝐿𝐶 

𝑔𝑟 2 ← 𝜇𝐿𝐶 
𝑔𝑟 1 - 𝑑 

𝐿𝐶 ; 𝜇𝐿𝑛𝐶 
𝑔𝑟 2 ← 𝜇𝐿𝑛𝐶 

𝑔𝑟 1 - 𝑑 
𝐿𝑛𝐶 ). The difference parameters can a priori take any positive value up to 3 standard 

deviations ( 𝑑 𝐿𝐶 ∼ 𝑈 (0 , 3 ), 𝑑 𝐿𝑛𝐶 ∼ 𝑈 (0 , 3 )). In the right hemisphere, in contrast, the population means for Group 2 are higher than for Group 1 (in both canonical and 
non-canonical ROIs): Group 2 ′ s means follow an uninformative prior ( 𝜇𝑅𝐶 

𝑔𝑟 2 ∼ 𝑈 (−3 , 3 ), 𝜇𝑅𝑛𝐶 
𝑔𝑟 2 ∼ 𝑈 (−3 , 3 )), and the population mean for Group 1 is smaller by a differ- 

ence parameter from these values (i.e. 𝑑 𝑅𝐶 ∼ 𝑈 (0 , 3 ), 𝑑 𝑅𝑛𝐶 ∼ 𝑈 (0 , 3 ); and 𝜇𝑅𝐶 
𝑔𝑟 1 ← 𝜇𝑅𝐶 

𝑔𝑟 2 - 𝑑 
𝑅𝐶 , 𝜇𝑅𝑛𝐶 

𝑔𝑟 1 ← 𝜇𝑅𝑛𝐶 
𝑔𝑟 2 - 𝑑 

𝑅𝑛𝐶 ). Priors that are not listed for the left non-canonical, 
right-canonical, and right non-canonical sub-networks are identical in their specification to the left-canonical network. See Supplementary Materials S4 for further 
details, and the project’s OSF page for full codes. 
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ets of theories regarding the classification of RD vs. TD individuals from
MRI data. In this section we review, for each model, the major assump-
ions that went into it – in the main text we provide a more intuitive ex-
lanation, yet detailed descriptions are available in the Supplementary
aterials S4. Then, we report each model’s classification performance,

ocusing on whether the classification produced by the model matched
ndividuals’ actual (i.e., behavioral) group membership. 

.2.1. Mean-activation models 

Model specification. Here we describe a series of models that classify
ndividuals into two groups based on differences in mean activation (see
ig. 2 , Panel A, for the general architecture). Building upon observations
f mean hemispheric differences between TD and RD individuals (see
ntroduction), the first mean-activation model we specified was a model
7 
e refer to as Model 1A: left-right model . The priors of this model are
hown in Fig. 2 panel B. 

Recall that the left-right model classifies individuals into two groups –
roup 1 has a greater mean activation in the left hemisphere compared

o the Group 2 (in both canonical and non-canonical regions), and Group
 has a greater mean activation in the right hemisphere than Group 1
again, in both canonical and non-canonical sub-networks). This is re-
ected in the constraints on the models’ parameters that express the
opulation means in each of the four sub-networks – see Fig. 2 and its
aption, and details in Supplementary Materials S4. Importantly, the
atent-mixture model estimates, for each individual, whether they be-
ong to Group 1 or Group 2. This is done based on the crucial classifi-
ation parameter 𝑧 𝑖 , a dichotomous parameter that in each iteration of
he model can be either 0 or 1. If 𝑧 𝑖 = 0, then the subject’s mean activa-
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Fig. 3. Results of the left-right mean activation 

model (model 1A) . Panel A: histogram of the 
group classification parameter (z i ) and esti- 
mated population means (means of posterior 
distributions). Population means’ estimates in 
green were constrained to be larger than those 
in red. Panel B: mean group classification pa- 
rameter in the two subject groups (RD and TD 

individuals). Panel C: individual-level distribu- 
tion of the group classification parameter (y- 
axis: estimated z i values; x-axis: ranks of z i ) 
and behavioral RD/TD status (in color). The 
horizontal line presents the median estimated 
z i across individuals, used as a threshold for 
the dichotomous classification. Panel D: cross- 
tabulation of dichotomous classification suc- 
cess. Counts of successful classification (on the 
diagonal) are in bold/underline font. (For in- 
terpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.). 
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8 We used here and below the non-parametric Mann-Whitney test rather than 
a t-test because the classification parameter (z i ) was not distributed normally 
across participants. The results were qualitatively similar when using a two- 
sample t-test (all significant tests remained significant; all insignificant tests re- 
ion parameters are taken from a distribution under Group 1; while if
 𝑖 = 1 they follow a distribution under Group 2. The mean of 𝑧 𝑖 across
terations thus reflects the model’s certainty in classifying the subject i
o Group 2 compared to Group 1. 

In addition to the left-right mean-activation model, we defined two
ther mean-activation models to further explore classification based on
etwork-level mean activation differences. One was a left-only model

model 1B); Under this model, Group 1 has a greater mean activa-
ion than Group 2 in the left hemisphere (in both canonical and non-
anonical networks; same as in model 1A above), but there is no dif-
erence between the two groups in mean activation in the two sub-
etworks of the right hemisphere. The other mean-activation model is a

eft-canonical-only model (model 1C) , according to which the difference
etween the two groups is specific to the left-canonical sub-network
with greater activation in Group 1 than 2), while the population means
f the two groups are equal in the remaining three sub-networks. See
upplementary Materials S4 for formal specification. 

Classification Results. The results of model 1A: Left-right model are pre-
ented in Fig. 3 . Panel A presents the histogram of the mean group
lassification parameter (z i ) across subjects (as well as the estimated
opulation-level means in the two Groups); Panel B presents the mean
lassification parameter across subjects in the TD and RD groups (based
n their behavioral status); Panel C presents individual-level distribu-
ion of the group classification parameter along with their actual group
embership (i.e., TD/RD status); and Panel D presents the dichotomous

lassification performance of the model. The later was examined by cat-
gorizing participants according to whether their mean z i was above
r below the median group classification parameter of the sample, and
ross-tabulating this information with participants’ behavioral group
embership. 

As can be seen in Panel 3A, the model produced a bimodal distribu-
ion of mean z i parameters across participants, suggesting that indeed
t discovered two groups of subjects in the data based on differences
n mean activation (i.e., two groups of participants such that partici-
ants belonging to Group 1 had greater mean activation in the left hemi-
 m

8 
phere than those in Group 2, and participants in Group 2 had greater
ean activation in the right hemisphere than those in Group 1). The

stimated population means presented in Panel 3A suggests however
hat the distinction between the two groups was driven mostly by dif-
erences in right-hemispheric activation (i.e., the population means of
he two groups in the left hemisphere were estimated to be almost iden-
ical). Importantly, Panel 3B shows that the classification of this model
id not match the actual RD/TD group membership of the subjects in
ur sample. Thus, the two groups only minimally differed in their mean
lassification parameter across participants (TD: �̄� 𝑖 = 0.47, SD = 0.45;
D: �̄� 𝑖 = 0.46, SD = 0.45), a difference which was not statistically sig-
ificant (Mann-Whitney-U(125) = 1992, p = 0.95; 8 see also Panel 3C for
ndividual-level data). In the same vein, the dichotomous classification
erformance was not significantly different than a chance-level of 50%
64/127 (50.3%) participants classified correctly, p = ∼1; see Panel 3D).

We also fitted to our data the two additional mean-based activation
odels: the left-only model (1B) and the left-canonical-only model (1C) .

or brevity, we do not report the results of these models here – the full
esults are presented in the Supplementary Materials S5. In a nutshell,
hese models again did not produce a classification that matched the
ctual group membership of the participants in our sample. 

.2.2. Heterogeneity-based model 

Model specification. The next model we specified was a heterogeneity-

ased model (Model 2) . This model classifies individuals into two groups
ot based on differences in mean activation, but instead based on inter-
ubject variability. Thus, it aims to discover two sub-groups of indi-
iduals that differ in their heterogeneity (but not in their mean acti-
ation). Intuitively, since the model assumes that there are two latent
ained insignificant). 
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Fig. 4. Results of the heterogeneity-based model 

(model 2) . Panel A: histogram of the group clas- 
sification parameter (z i ) and estimated pop- 
ulation standard deviations (means of poste- 
rior distributions). Standard deviation param- 
eters in green were constrained to be smaller 
(i.e. more homogeneous) than those in red. 
Panel B: mean group classification parameter 
in the two subject groups (RD and TD individ- 
uals). Panel C: individual-level distribution of 
the group classification parameter (y-axis: esti- 
mated z i values; x-axis: ranks of z i ) and behav- 
ioral RD/TD status (in color). The horizontal 
line presents the median estimated z i across in- 
dividuals, used as a threshold for the dichoto- 
mous classification. Panel D: cross-tabulation 
of dichotomous classification success. Counts 
of successful classification (on the diagonal) 
are in bold/underline font. (For interpretation 
of the references to color in this figure legend, 
the reader is referred to the web version of this 
article.). 
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9 Given the successful classification of the variability-based model, we went 
back to the raw data and calculated the mean intra-subject inter-region vari- 
ability in the two groups. In line with the results of the model, RD participants 
had greater variability than TD participants, consistently observed in the four 
sub-networks. At the same time, these numerical differences were not deemed 
as significance in standard analyses, which suggests that the Bayesian models 
we used are more sensitive than these techniques. See Supplementary Materials 
S6 for details. 
opulations with identical means but differences in inter-subject vari-
bility, individuals with more extreme values (i.e., further away from
he population means in the different sub-networks) are more likely to
e classified into the more heterogeneous group (and vice-versa for sub-
ects closer to the sub-groups’ means). Formally, the architecture of this
odel is similar to that of the mean-activation models ( Fig. 2 A), but
iffers in the a priori constraints it applies on the unobserved parame-
ers. Thus, the heterogeneity-based model assumes that the two groups
iffer in their inter-subject variability (i.e., between-subject standard
eviations): Group 1 is defined as the more heterogeneous group, and
roup 2 as the more homogeneous group (see Supplementary Materials
4 for details). Note that under this model, the two groups have identical
opulation means in all four sub-networks. 

Classification performance. The results of the heterogeneity-based model

re presented in Fig. 4 . Panel 4A shows that the model identified two
roups of subjects differing in their inter-subject variability: Group 1
eing the more heterogonous group and Group 2 being the more ho-
ogenous group. Panel 4B shows, however, that there was no evidence

or a difference in the group classification parameter between RD and
D individuals in our sample (TD: �̄� 𝑖 = 0.47, SD = 0.40; RD: �̄� 𝑖 = 0.49,
D = 0.38; Mann-Whitney-U(125) = 2048, p = .84). The dichotomous
lassification success of this model was similarly around chance-level
successful classification of 62/127 participants, or 48.9%; Panel 4D). 

.2.3. Variability-based model 

Model specification. This model classifies subjects into two groups
ased on their extent of (intra-subject) inter-region variability. It uses a
odified architecture and priors shown in Fig. 5 . Most of the model’s

pecification is similar to that of the models above. It again uses higher-
rder parameters to estimate population means and (inter-subject) stan-
ard deviations, which in this case are equal in the two groups (i.e.,
he two groups have the same mean activation and inter-subject hetero-
eneity). Crucially, this model differs from the previous models in how
t estimates the parameters reflecting intra-subject inter-region variabil-
ty. Thus, the estimation of these parameters depends on each subject’s
9 
roup membership (using the same latent-mixture strategy as the mod-
ls above): With subjects showing more variability across ROIs (in all
our sub-networks) classified into Group 1 and those showing less vari-
bility classified into Group 2 (please refer to Supplementary Materials
4 for details). 

Classification performance. Similarly to previous models, the variabil-
ty model was able to identify two groups of subjects with generally high
ertainty ( Fig. 6 , Panel A). Critically – and in contrast to other models re-
iewed so far - this assignment (based on fMRI data) was related to par-
icipants’ actual (i.e., behavioral) group membership. Thus, there was
 significant difference between the RD and TD groups (as defined by
heir behavioral reading performance) in the mean classification param-
ter: TD: �̄� 𝑖 = 0.56, SD = 0.43 RD: �̄� 𝑖 = 0.38, SD = 0.41; Mann-Whitney-
(125) = 1591, p = 0.04 (Panel 6B). Note that RD participants were more

ikely to be classified to the more variable group, in line with the under-
ying theory’s predictions (see also Panel 6C for individual-level distri-
ution). The dichotomous classification performance of the model was
lso significantly greater than chance, with a successful classification of
8/127 = 61.4% participants ( p = 0.01; see Fig. 6 Panel D). 9 

One possible concern is that the differences in intra-subject variabil-
ty between the two groups were related to other confounding factors,
ot inherent to the individuals’ RD/TD status. Such factors include the
xtent of motion during the scan session, or differences in gender and/or
ge distribution between the two groups (age in particular is a potential
onfound given the significant age difference between the TD and RD
roups in our sample, see Table 1 above). To rule out this possibility, we
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Fig. 5. Visual depiction of the (intra-subject 
intra-region) variability-based model. Panel 
A: the model’s architecture (see caption of 
Fig. 2 for notation legend). Parameters circled 
in orange and bold were not part of the pa- 
rameters in the mean- and heterogeneity-based 
models above (shown in Fig. 2 ). Panel B: cen- 
tral priors in the variability-based model. Mean 
and inter-subject variability were constrained 
to be equal in the two groups. Importantly, the 
variability mean in Group 1 was constrained 
to be a priori larger than that of Group 2: the 
mean intra-subject variability in Group 1 could 
a priori receive any value between 0 and 2 
standard deviations (e.g., in the left-canonical 
network: �̄�𝐿𝐶 

𝑔𝑟 1 ∼ 𝑈 ( 0 , 2 ) ), while the mean intra- 
subject variability in Group 2 was constrained 
to be smaller than this value (yet still larger 
than zero; �̄�𝐿𝐶 

𝑔𝑟 2 ∼ 𝑈 ( 0 , ̄𝜎𝐿𝐶 
𝑔𝑟 1 ) . Priors regarding 

mean activation that are not listed here are 
identical to those in the mean-activation mod- 
els above. Priors that are not listed for the left 
non-canonical, right-canonical and right non- 
canonical sub-networks are similar to the left- 
canonical network. See Supplementary Mate- 
rials S4 for details, and the project’s OSF page 
for full codes. (For interpretation of the refer- 
ences to color in this figure legend, the reader 
is referred to the web version of this article.). 

Fig. 6. Results of the variability-based model 

(model 3) . Panel A: histogram of the group clas- 
sification parameter (z i ) and estimated mean 
inter-region standard deviations (means of pos- 
terior distributions). Standard deviation pa- 
rameters in green were constrained to be 
smaller (i.e., less variable) than those in red. 
Panel B: mean group classification parameter 
in the two subject groups (RD and TD individ- 
uals). Panel C: individual-level distribution of 
the group classification parameter (y-axis: esti- 
mated z i values; x-axis: ranks of z i ) and behav- 
ioral RD/TD status (in color). The horizontal 
line presents the median estimated z i across in- 
dividuals, used as a threshold for the dichoto- 
mous classification. Panel D: Cross-tabulation 
of dichotomous classification success. Counts 
of successful classification (on the diagonal) 
are in bold/underline font. (For interpretation 
of the references to color in this figure legend, 
the reader is referred to the web version of this 
article.). 
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an a logistic multiple regression model with behavioral group classifi-
ation as the dependent variable, with mean z i , age, gender, and percent
Rs censored due to motion (proxy of extent of motion) as predictors.
he results of this analysis, presented in Table 3 , revealed that the link
etween the estimated group classification parameter and participants’
ctual group membership remained significant ( p = 0.008) also when
ontrolling for these possible confounds. 
10 
.2.4. Connectivity-based model 

Model specification. The architecture of the connectivity model is
dentical to that of the mean-activation (and heterogeneity) models
bove ( Fig. 2 ). The crucial difference is in the input to those mod-
ls – which uses connectivity values (a matrix with mean r -to- z trans-
ormed correlations between each region and all other regions in the
ame sub-network; see Methods) instead of activation values. In terms
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Fig. 7. Results of the connectivity-based model 

(model 4) . Panel A: histogram of the group clas- 
sification parameter (z i ) and estimated mean 
connectivity values (means of posterior distri- 
butions). Note that in this model these means 
reflect connectivity values ( r -to- z -transformed 
values), not mean activation. Parameters in 
green were constrained to be larger (i.e. more 
connectivity) than those in red. Panel B: mean 
group classification parameter in the two sub- 
ject groups (RD and TD individuals). Panel 
C: individual-level distribution of the group 
classification parameter (y-axis: estimated z i 
values; x-axis: ranks of z i ) and behavioral 
RD/TD status (in color). The horizontal line 
presents the median estimated z i across indi- 
viduals, used as a threshold for the dichoto- 
mous classification. Panel D: Cross-tabulation 
of dichotomous classification success. Counts 
of successful classification (on the diagonal) 
are in bold/underline font. (For interpretation 
of the references to color in this figure legend, 
the reader is referred to the web version of this 
article.). 

Table 3 

Results of a logistic regression model predicting behavioral group mem- 
bership from the group classification parameter (z i ) in the intra-subject 
variability-based model while controlling for age and motion. 

Predictor Estimate ( 𝛽) SE Z -value p -value 

Classification parameter (z i ) 1.37 0.52 2.65 .008 
Age 0.27 0.08 3.42 < .001 
Gender a -0.82 0.42 -1.96 .050 
Motion 0.44 1.83 0.24 .809 

Notes: SE = Standard Error. Significant p -values are shown in bold. 
a dummy-coded variable, reference level set to "male". 
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Table 4 

Results of a logistic regression model predicting behavioral group mem- 
bership from the group classification parameter (z i ) in the connectivity- 
based model while controlling for age and motion. 

Predictor Estimate ( 𝛽) SE Z -value p -value 

Classification parameter (z i ) -1.02 0.43 -2.36 0.018 
Age 0.23 0.07 3.03 0.002 
Gender a -0.54 0.40 -1.36 0.173 
Motion -2.45 1.86 -1.32 0.187 

Notes: SE = Standard Error. Significant p -values are shown in bold. 
a dummy-coded variable, reference level set to "male". 
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f priors, the connectivity-based model employs constraints on popu-
ation connectivity means, such that the mean connectivity of Group 1
s constrained to be higher than that of Group 2 (in the same direction
n all four sub-networks). All other parameters are similar to those in
he mean-based activation models (only now they represent connectiv-
ty values rather than activation). Overall, then, the connectivity-based
odel classifies individuals into two groups, one that has greater mean

onnectivity (across sub-networks) compared to the other. 
Classification performance. The results of the connectivity-based

odel are presented in Fig. 7 . Similar to the models above, this model
roduced a bimodal distribution of the group classification parame-
er (Panel 7A). Importantly, the model’s classification was associated
ith individuals’ actual group membership: RD individuals had a higher
ean classification parameter on average compared to TD individuals

TD: �̄� 𝑖 = 0.44, SD = 0.46; RD: �̄� 𝑖 = 0.63, SD = 0.47; Mann-Whitney-
(125) = 2489.5, p = .01; Panel B). This means that RD individuals were
ore likely to be classified as belonging to the group showing less inter-

egion connectivity (Group 2), in line with the prediction of the model’s
nderlying theory (see also Panel 7C). The dichotomous classification
erformance of this model was also above-chance, with 77/127 (60.6%)
ndividuals classified correctly ( p = .02; Panel D). Note that again, the
11 
roup classification parameter predicted behavioral group membership
lso when controlling for age, gender, and motion ( Table 4 ). 

.3. Added classification value of the two successful models 

So far, our results show that two models – the intra-subject
ariability-based model and the connectivity-based model – produced
uccessful classification reflecting participants’ actual group member-
hip. A follow-up question is whether the two models have any added
alue on top of the other. Specifically, one may posit that the extent
f connectivity and inter-region variability are related, as greater inter-
egion variability in activation for printed words may reflect poorer con-
ectivity between regions (computed across all trials). We therefore ran
dditional analyses to assess the relation between the group classifica-
ion parameters produced by the two models, and examine whether each
f the two models predicted individuals’ actual RD/TD status beyond the
nformation produced by the other. 

First, we estimated the correlation between the group classification
arameter estimates under the two models, revealing that they were
eakly and not significantly associated ( r = .03, p = .70). This already

uggests that the two classification models utilized non-overlapping sig-
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Table 5 

Results of a logistic regression model predicting behavioral group 
membership from the group classification parameters (z i ) of both the 
variability- and connectivity-based models, as well as control variables 
(age and motion). 

Predictor Estimate ( 𝛽) SE Z -value p -value 

z i : Variability-based model 1.45 0.54 2.68 0.007 
z i : Connectivity-based model -1.09 0.45 -2.40 0.017 
Age 0.25 0.08 3.24 0.001 
Gender a -0.90 0.44 -2.05 0.040 
Motion -0.67 1.96 -0.34 0.732 

Notes: SE = Standard Error. z i = Estimated classification parameter; Sig- 
nificant p -values are shown in bold. a dummy-coded variable, reference 
level set to "male". 
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al. Next, we ran a logistic model, where we predicted the behavioral
roup membership (TD/RD) from the group classification (z i ) parame-
ers produced by both models, while also including motion, gender, and
ge as controls. The results, presented in Table 5 , showed that the group
lassification estimates produced by each of the models still significantly
redicted individuals’ behavioral group membership above and beyond
he other, again pointing to the utilization of non-overlapping signal,
hich is differentially captured by measures of variability and connec-

ivity. That is, individuals with greater z i value per the variability model
classified as the less variable group ), and smaller z i per the connectivity
odel (classified as the group with the greater connectivity ), were more

ikely to have an actual TD (rather than RD) diagnosis. Lastly, we ran a
lassification analysis based on the dichotomous classification produced
y the two models, where for each individual we examined whether
hey were classified into the presumably RD group according to both
odels, only according to the variability-based model, only according

o the connectivity-based model, or in neither case (i.e., classified as TD
n both). The results are presented in Table 6 , showing that the actual
roup membership for individuals who were classified as either TD or
D under both models was highly likely to fit with the models’ classi-
cation: That is, the conjunction of the two models’ classification had
 success rate of 71.9% (46/64) in participants for whom there was an
greement between the two. The fact that this classification rate was
igher than in each of the models alone (see above), again suggests that
he two successful models tap into non-overlapping parts of the signal,
nd thus that each theoretical claim carries unique explanatory power.
e return to this point in the General Discussion below. 

.4. Classification based on non-print activation 

In analyses reported so far, models fitted to activation matrices (i.e.,
ean activation, heterogeneity, and variability-based models) used in-
ut matrices reflecting activation to printed words. We next examined
hether the results of these models are specific to activation to print,
r whether they generalize to responses to other types of materials used
n the task. We did so by fitting the same models to two additional in-
ut matrices, each including beta values reflecting activation to one of
wo conditions: False-font visual stimuli, and spoken words. The full
esults are reported in Supplementary Materials S7. In a nutshell, the
esults of the false font condition were essentially identical to that from
he print-based models above: That is, at-chance classification based on
ean-activation and heterogeneity, along with successful (i.e., above-

hance) classification based on inter-region variability. Moreover, the
stimated z i parameters from the print and false-font models correlated
trongly ( r = 0.51, p < .001), and their predictive value of RD/TD over-
apped substantially (i.e., no significant independent predictive value
f either when both are included in the same logistic model). This sug-
ests that inter-region variability in false-font activation patterns is as
nformative regarding TD/RD status as variability for print. In contrast,
e found that classification based on speech matrices was at chance for
12 
ll models (including the variability model). We return to discuss the
mplications of these findings below. 

. General discussion 

The goal of the current paper is to propose a novel framework
or evaluating different theoretical claims regarding the neurobiolog-
cal markers of a given behavioral trait. To this aim, we adopt the
ayesian latent-mixture modeling method, which was successfully im-
lemented in previous behavioral work in multiple domains (see, e.g.,
iegelman et al., 2019 ; Steingroever et al., 2019 for recent applications),
nd apply it for the first time to neuroimaging data. The strength of this
pproach, we argue, is that it is geared specifically for the problem of
valuating competing theories regarding classification of individuals, as
t combines features from different common techniques of neuroimaging
ata analysis that are particularly important for this purpose. Thus, on
he one hand, our approach is theory-driven – much like often-used uni-
ariate statistical methods – which enables us to use our models’ classifi-
ation performance as a proxy for the explanatory power of the theories
hat each of them reflects. On the other hand, our approach shares some
eatures with data-driven approaches (such as Machine Learning algo-
ithms), particularly in how it identifies markers at the network-level. In
 sense, then, our latent-mixture modeling approach complements ex-
sting neuroimaging data analysis procedures, that either test singular
heories that are often region-specific, or detect network-level patterns
ithout regard to whether or not they are theoretically transparent. 

In this first paper, we applied the latent-mixture approach to fMRI
ata to unveil the neurofunctional markers of impaired reading. We
ompared four classes of existing and plausible theoretical claims re-
arding classification of RD and TD individuals from fMRI data, each
nderlining a different type of signal as the one that differentiates be-
ween these two groups of individuals. Namely, we tested theories that
tress differences in mean activation, inter-individual variance (i.e., het-
rogeneity), intra-individual (inter-region) variance, and functional con-
ectivity. To re-iterate, all models were fitted to fMRI data alone, and
herefore they could classify individuals in concordance with their ac-
ual behavioral status only if the theories they were built to reflect cap-
ure relevant neurobiological markers. We found that the models built
o reflect theories regarding differences in intra-individual variability
nd functional connectivity produced classifications that were signifi-
antly associated with participants’ actual (i.e., behavioral) RD/TD sta-
us (while models positing global mean activation and heterogeneity
ifferences failed to do so). This result suggests that key neural corre-
ates of reading (dis)abilities are found beyond differences in mean ac-
ivation. As such, it strengthens previous systems-level oriented reports
f associations of reading skills with metrics of functional connectivity
e.g., Finn et al., 2014 ; Pugh et al., 2000 ; Wang et al., 2013 ), and the
mergent literature on the role of neural variability in reading devel-
pment ( Hancock et al., 2017 ; Hornickel & Kraus, 2013 ; Malins et al.,
018 ). 

At the same time, it is notable that despite the significant associa-
ions between the variability- and connectivity-based models’ estimated
lassifications and individuals’ behavioral status, their overall perfor-
ance was somewhat limited. Concretely, our models’ classification per-

ormance was notably lower than that reported in papers using data-
riven methods (compare for example the binary classification success
ate of around 61% in both our successful models, to performance of
bout 80% in work using Multivoxel Pattern Analysis by Tanaka et al.,
011 ). We note that the disparity between data-driven models and our
pproach is expected: As mentioned in the Introduction, our models
o not aim to maximize classification performance but rather theoret-
cal transparency, whereas data-driven approaches can pick up on any
art of the input signal that contributes to successful classification (i.e.,
heir classification rate is not constrained by a theory). Importantly,
he higher performance achieved by the data-driven approaches com-
ared to our theory-driven models suggest that there are in fact other
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Table 6 

Cross-tabulation showing the relation between actual (i.e. behavioral) group membership and the con- 
junction of the dichotomous classification based on the variability-based and connectivity-based models. 
Values in bold/underline show counts of successful classification among individuals who had similar 
classification under both models. 

Models’ classification 

RD both models RD connectivity only RD variability only TD both models 

Actual status RD 22 14 15 8 
TD 10 17 17 24 
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nformative parts in the fMRI signal that are associated with TD/RD sta-
us, which are not captured by current theories (or at least not by the
global’ models examined here). In general, the precision of available
heories presents an upper-bound for the classification success of our
atent-mixture models: A theory-driven model can only be as precise as
he theory it reflects. As theories become more precise and complete,
e expect the classification rate of theory-driven models to increase as
ell, eventually reaching values similar to those obtained by data-driven
ethods. 

Importantly, we stress that even our "theory-constrained" classifica-
ion rates became higher when information from both types of successful
odels were combined. Thus, group classification parameters produced

y each of the models predicted behavioral group membership beyond
hat produced by the other, and binary classification rate based on the
onjunction of the two models was high among individuals who were
lassified into the same group by both models. This result suggests that
he two types of signals used for classification by the two successful
odels tap into non-overlapping information: That is, that differences

n inter-ROI variability cannot be reduced to differences in (the more
requently studied measure of) functional connectivity, or vice versa.
ore broadly, this result underlines the importance of the development

f mechanistic accounts that consider multiple types of signals, explain
ow they are related to each other, and how they eventually lead to
 behavioral deficit (as an example, consider models tying suboptimal
alance of neurometabolites to increased neural noise, which then con-
ributes to RD’s auditory processing deficits and inefficient print-speech
inding; Del Tufo et al., 2018 ; Hancock et al., 2017 ; Pugh et al., 2014 ).

Another intriguing finding worth emphasizing is the similarity in
lassification performance between models fitted to different types of
isual stimuli (and the dissimilarity of these conditions from that of the
peech condition). Thus, regardless of whether models were fitted to in-
ut matrices with activation to printed words or to false-font stimuli,
hey resulted in very similar performance, with successful classification
ased on inter-region variability in activation to the two types of stimuli.
t face value, this finding may be taken to suggest that whatever deficit

ncreased inter-region variability reflects, it generalizes beyond printed
ords and similarly applies to the processing of other visual stimuli,

n line with visual deficit theories of reading disabilities ( Eden et al.,
996 ; Lobier et al., 2012 ). Yet given the similarity between false font and
rinted words, it is entirely possible that the processing of false font stim-
li is the consequence of the organization of the reading system given
n individual’s exposure to print, rather than reflecting differential pro-
essing of visual materials more generally. In other words, processing of
alse font may reflect how a well-established print system “attempts ” to
ode such stimuli, leading to the strong overlap and classification sim-
larity between the print and false font conditions. This interpretation
s also consistent with the high proportion of regions involved in pro-
essing false font stimuli that were also activated when reading printed
ords (out of the 106 showing group-level activation at the false font

ondition, 94 also had significant activation for print; see Supplemen-
ary Materials S7). With the current data, we cannot adjudicate between
hese two accounts; future research can do so by comparing classifica-
ion performance based on variability in activation across other visual
onditions that carry less resemblance to printed words. 
13 
In addition to the implications of these positive findings, we wish to
larify what can – and cannot – be concluded from the un successful clas-
ification produced by some of the models we tested (i.e., the null find-
ngs produced by the mean activation models: Both the left-right model
eported above, and related models reported in the Supplementary Ma-
erials S5). The conclusion that can be drawn from these null findings
s that global mean-activation differences are not sensitive enough to
istinguish between individuals with and without RD, at least not in the
urrent sample and design. We note that there may be, however, de-
elopmental changes in TD/RD differences in mean activation. In fact,
ork by Shaywitz and colleagues (2002 , 2007 ) showed that while TD in-
ividuals show relatively stable patterns of activation over age (see also
hurch et al., 2008 ), individuals with RD exhibit a substantial increase

n activation over development in large parts of the brain. It is there-
ore possible that although the RD and TD individuals in our sample
who already had years of exposure to print) did not show global dif-
erences in mean activation, such differences may be more diagnostic
mong younger populations (and see Maurer et al., 2011 for longitudi-
al evidence). Furthermore, the task used may modulate the informa-
iveness of such mean-activation differences. In fact, it was shown that
ctivation changes differently over trials within a task in RD and TD;
ith repetition TD readers reduce BOLD signal while RD increase it pro-

ucing a crossover interaction in the same regions ( Pugh et al., 2008 ),
mplying that static group contrasts of activation are context sensitive.
t is crucial that future studies further map the factors that determine
hen and to what extent mean differences are diagnostic of RD/TD sta-

us, which can be done by applying our method to data from different
asks and developmental stages. 

In addition to these important factors, it is possible that RD and
D individuals do differ in activation in one or in some small set
f ROIs (consistent with meta-analytic findings; Paulesu et al., 2014 ;
ichlan et al., 2009 ). Our current specification of models – which
earches for global differences in mean activation over networks of re-
ions – cannot capture such region-specific differences. That being said,
he latent-mixture models we use can be adapted to reflect theories that
ocus on one or on a specific set of ROIs (for instance, claims regard-
ng differences in activation between TD and RD individuals in the Vi-
ual Word Form Area, Dehaene and Cohen, 2011 ; van der Mark et al.,
009 ). Such adaptations can be made not only in mean activation mod-
ls, but also in models that did already result in above-chance classifi-
ation (based on connectivity and intra-subject variability): Our speci-
cation of models was only meant to serve as a coarse-grained repre-
entation of current theories, testing for overall differences in connec-
ivity/variability across the brain, not to assess more spatially-specific
laims (e.g., the importance of connectivity to and from the occipitotem-
oral region; Koyama et al., 2013 ; Shaywitz et al., 2003 ; van der Mark
t al., 2011 ). We leave it for future work to examine whether mod-
ls positing region-specific differences –in activation and other types
f markers - do in fact result in improved classification. 

Throughout this work, we promoted the use of the latent-mixture
pproach in the analysis of neuroimaging data. Indeed, we are hopeful
hat the tool we offer will contribute to advances in identifying and re-
ning theories in the field of reading and language disorders, as well
s other cognitive deficits. But our embrace of this approach should not
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e taken as a criticism of other methods. As mentioned above, we see
ur approach as one that is meant to complement – not override – other
echniques. Thus, standard univariate approaches are still patently use-
ul when it comes to examining one hypothesis in limited sample sizes,
specially when it comes to region-specific predictions (although global
ifferences can be examined via extensions to univariate mixed-effect
odels, see Chen et al., 2019 ). Standard approaches also offer the op-

ion of relating brain signal to behavior continuously, in contrast to our
pproach which at least in the current specification requires a dichoto-
ous behavioral outcome. In parallel, data-driven methods are valuable

ecause they can help estimate the upper-bound classification levels one
an expect from theory-driven methods, and because they are key in ex-
loratory research whose goal is to identify novel candidate theories.
nce such candidate theories are identified, they should be incorpo-

ated and tested using theory-driven tools, such as the one we present
ere, which are built to evaluate existing theories. 

Undeniably, the Bayesian modeling approach (and any other type of
enerative modeling) requires researchers to be explicit regarding how
 series of latent parameters gave rise to the observed data. We see this
s an advantage of our approach – using this method, we hope, will
ncourage researchers to be confronted with their (often implicit) as-
umptions. At the same time, methods that require explicit specification
lways incorporate a series of non-trivial assumptions, and the models
e used here present no exception to this rule. In the current case these

nclude, for example, assumptions regarding the distribution of beta val-
es over subjects and ROIs (assumed to be normal within populations of
ubjects/networks) and about the assignment of ROIs into sub-networks
with ROIs labeled as belonging to four sub-networks of canonical and
on-canonical regions in the two hemispheres). It is inevitable that the
ccounts of other researchers will vary to some extent from the one re-
ected by the assumptions we incorporated in our models. Importantly,
he Bayesian framework provides a clear way of incorporating and test-
ng different assumptions in a formal manner: All assumptions in our
odels are explicitly stated and can be easily changed; once such mod-

fications are made, a model’s output can be re-examined to check how
he change in assumptions impacts a model’s classification performance
i.e., whether the success/failure of a model is contingent on specific
ssumptions). In this first paper, we did not attempt to cover different
ossible models’ architectures, but our approach provides a straightfor-
ard framework for proposing alternative models and revisit our as-

umptions. We are certain that our models are bound to become more
recise with increasingly more sophisticated formulations of brain or-
anization proposed by the research community. 

We end by returning to the starting point of this paper – the question
f what are the neurofunctional markers of impaired reading. Our work,
e believe, already shows promise for advancing theory-grounded re-

earch into this question – highlighting the types of markers that indeed
ifferentiate between RD and TD individuals at the network-level. At
he same time, we wish to underline some open questions that should
e examined by future research. The first question has to do with devel-
pment. We already discussed above how developmental changes may
ave contributed to the (null) findings in the mean activation models.
imilarly, questions remain about how the contributions of connectiv-
ty and variability to TD/RD differences change over age and experi-
nce. Much like in the case of mean activation differences, it is crucial
hat future research examine whether these differences are present al-
eady from a young age (as suggested, for example, by studies showing
rospective correlations of connectivity before literacy onset and later
eading skills, Jasi ń ska et al., 2020 ), or whether the profiles we see in
dults and adolescents is the result of a differential growth in these
etrics over age and/or exposure to print in TD and RD populations

 Morken et al., 2017 ). A second open question has to do with the multi-
imensional nature of RD. In the current (and first) specification of the
odels, classification was based on variation along a single axis. How-

ver, key accounts of RD suggest that there may be multiple deficits con-
ributing to reading disorders, where multiple risk factors accumulate
14 
ntil the threshold of categorical diagnosis is met ( Pennington, 2006 ;
nowling and Hulme, 2020 ). Such a multiple deficit can be incorpo-
ated (and tested) in modified generative models, where classification
s informed by multiple dimensions, reflected in different types of neu-
al signatures (potentially, in different regions) that all contribute to the
ategorical TD/RD parameter. Note that a successful classification based
n multiple signals may be present even in the absence of increased
nter-subject variability along a single axis, which was directly tested
n our heterogeneity model (and in fact, the added predictive value
f the connectivity and variability models, even in the absence of in-
reased network-level heterogeneity in activation, is consistent with this
otion). Lastly, another open question has to do with imaging modal-
ty: Whereas we only focused on functional MR data, neural correlates
f reading skills are well-documented in other imaging modalities, in-
luding in various measures of neuroanatomy (e.g., Tamboer et al.,
016 ; Wai et al., 2008 ; but see Ramus et al., 2018 for a more criti-
al review), and in other neurofunctional techniques (including EEG,
.g., Ackerman et al., 1994 ; Maurer et al., 2007 ; Sklar et al., 1972 ; and
ore recently fNIRS, Jasi ń ska et al., 2020 ). Future work should there-

ore adapt the current models to accommodate different types of inputs
with the eventual goal of examining theories spanning brain struc-

ure and function and being informed by different types of data. Going
orward, the computational framework used here can serve as a founda-
ion for these and other extensions, providing researchers with a tool for
valuating different theoretical accounts in explicit, quantifiable terms.
his approach should therefore prove valuable in advancing fleshed out
ccounts of reading difficulties, as well as of other language- and cogni-
ive impairments. 
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