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Abstract

Hierarchical sentence structure plays a role

in word-by-word human sentence comprehen-

sion, but it remains unclear how best to char-

acterize this structure and unknown how ex-

actly it would be recognized in a step-by-step

process model. With a view towards sharpen-

ing this picture, we model the time course of

hemodynamic activity within the brain during

an extended episode of naturalistic language

comprehension using Combinatory Categorial

Grammar (CCG). CCG has well-defined incre-

mental parsing algorithms, surface composi-

tional semantics, and can explain long-range

dependencies as well as complicated cases of

coordination. We find that CCG-derived pre-

dictors improve a regression model of fMRI

time course in six language-relevant brain re-

gions, over and above predictors derived from

context-free phrase structure. Adding a spe-

cial Revealing operator to CCG parsing, one

designed to handle right-adjunction, improves

the fit in three of these regions. This evidence

for CCG from neuroimaging bolsters the more

general case for mildly context-sensitive gram-

mars in the cognitive science of language.

1 Introduction

The mechanism of human sentence comprehen-

sion remains elusive; the scientific community has

not come to an agreement about the sorts of ab-

stract steps or cognitive operations that would best-

explain people’s evident ability to understand sen-

tences as they are spoken word-by-word. One way

of approaching this question begins with a com-

petence grammar that is well-supported on lin-

guistic grounds, then adds other theoretical claims

about how that grammar is deployed in real-time

processing. The combined theory is then evaluated

against observations from actual human language

processing. This approach has been successful

in accounting for eye-tracking data, for instance
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starting from Tree-Adjoining Grammar and adding

a special Verification operation (Demberg et al.,

2013).

In this spirit, the current paper models the hemo-

dynamics of language comprehension in the brain

using complexity metrics from psychologically-

plausible parsing algorithms. We start from a

mildly context-sensitive grammar that supports in-

cremental interpretation,1 Combinatory Categorial

Grammar (CCG; for a review see Steedman and

Baldridge, 2011). We find that CCG offers an im-

proved account of fMRI blood-oxygen level depen-

dent time courses in “language network” brain re-

gions, and that a special Revealing parser operation,

which allows CCG to handle optional postmodi-

fiers in a more human-like way, improves fit yet

further (Stanojević and Steedman, 2019; Stanojević

et al., 2020). These results underline the consensus

that an expressive grammar, one that goes a little be-

yond context-free power, will indeed be required in

an adequate model of human comprehension (Joshi,

1985; Stabler, 2013).

2 A Focus on the Algorithmic Level

A step-by-step process model for human sentence

parsing would be a proposal at Marr’s (1982) mid-

dle level, the algorithmic level (for a textbook intro-

duction to these levels, see Bermúdez, 2020, §2.3).

While this is a widely shared research goal, a large

proportion of prior work linking behavioral and

neural data with parsing models has relied upon

1This work presupposes that sentence interpretation for the
most part reflects compositional semantics, and that compre-
hension proceeds by and large incrementally. This perspective
does not exclude the possibility that highly frequent or id-
iosyncratic patterns might map directly to interpretations in a
noncompositional way (see Ferreira and Patson, 2007; Blache,
2018 as well as Slattery et al., 2013; Paolazzi et al., 2019
and discussion of Bever’s classic 1970 proposal by Phillips
2013). de Lhoneux et al. (2019) shows how to accommodate
these cases as multi-word expressions in a CCG parser. Bhat-
tasali et al. (2019) maps brain regions implicated in these two
theorized routes of human sentence processing.
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Mary reads papers

NP (S\NP)/NP NP

mary′ λx.λy.reads′(y, x) papers′

>

S\NP
λy.reads′(y, papers′)

<

S

reads′(mary′, papers′)

(a) Right-branching derivation.

Mary reads papers

NP (S\NP)/NP NP

mary′ λx.λy.reads′(y, x) papers′

>T

S/(S\NP)
λp.p mary′

>B

S/NP
λx.reads′(mary′, x)

>

S

reads′(mary′, papers′)

(b) Left-branching derivation.

Figure 1: Semantically equivalent CCG derivations.

The flower that you love

NP/N N (N \N )/(S/NP) NP (S [dcl ]\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

N \N
<

N
>

NP

Figure 2: CCG derivation and extracted semantic de-

pendencies for a relative clause from the Little Prince.

Red highlighting indicates filler-gap relationship.

the surprisal linking hypothesis, which is not an al-

gorithm. In fact surprisal wraps an abstraction bar-

rrier around an algorithmic model, deriving pre-

dictions solely from the probability distribution on

that model’s outputs (for a review see Hale, 2016).

This abstraction is useful because it allows for the

evenhanded comparison of sequence-oriented mod-

els such as ngrams or recurrent neural networks

against hierarchical, syntax-aware models. And

indeed in eye-tracking, this approach confirms that

some sort of hierarchical structure is needed (see

e.g. Fossum and Levy, 2012; van Schijndel and

Schuler, 2015). This same conclusion seems to be

borne out by fMRI data (Henderson et al., 2016;

Brennan et al., 2016; Willems et al., 2016; Shain

et al., 2020).

But precisely because of the abstraction barrier

that it sets up, surprisal is ill-suited to the task of

distinguishing ordered steps in a processing mech-

anism. We therefore put surprisal aside in this

paper, focusing instead on complexity metrics that

are nearer to algorithms; the ones introduced be-

low in §5.3 all map directly on to tree traversals.

By counting derivation tree nodes, these metrics

track work that the parser does, rather than the rar-

ity of particular words or ambiguity of particular

constructions.2

Previous research at the algorithmic level has

been limited in various ways. Brennan et al.

(2016) used an expressive grammar, but it was not

broad coverage and the step counts were based on

derived X-bar trees rather than the derivation trees

that would need to be handled by a provably correct

parsing algorithm (Stanojević and Stabler, 2018).

Brennan et al. (2020) used a full-throated parser but

employed the Penn Treebank phrase structure with-

out explicit regard for long-distance dependency.

Figure 2 shows an example of one of these depen-

dencies.

3 Why CCG?

CCG presents an opportunity to remedy the lim-

itations identified above in section 2. As already

mentioned, CCG is appropriately expressive (Vijay-

Shanker and Weir, 1994). And it has special char-

acteristics that are particularly attractive for incre-

mental parsing. CCG can extract filler-gap depen-

dencies such as those in the object relative clause in

Figure 2, synchronously and incrementally build-

ing surface compositional semantics (cf. Demberg

2012).3 CCG also affords many different ways of

2Counting derivation-tree nodes dissociates from surprisal.
Brennan et al. (2020) addresses the choice of linking hypothe-
sis empirically by deriving both step-counting and surprisal
predictors from the same parser. The former but not the lat-
ter predictor significantly improves a regression model of
fMRI timecourse in posterior temporal lobe, even in the pres-
ence of a co-predictor derived from a sequence-oriented lan-
guage model.

3The derivations in Figure 1 and 2 use type-raising as a
parser operation. In the definition of CCG from Steedman
(2000) type-raising is not a syntactic, but a lexical operation.
The reason why we use it as a parsing operation is because
that is the way it was defined in the CCGbank (Hockenmaier
and Steedman, 2007) and because it is implemented as such
in all broad coverage parsers. Type-raising contributes to the
complexity metric described in Section 5.3
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deriving the same sentence (see Figure 1). These

alternative derivations all have the same semantics,

so from the point of view of comprehension they

are all equally useful. Steedman (2000, §9.2) ar-

gues that this flexible constituency is the key to

achieving human-like incremental interpretation

without unduly complicating the relationship be-

tween grammar and processor. Incremental in-

terpretation here amounts to delivering updated

meaning-representations at each new word of the

sentence. Such early delivery would seem to be

necessary to explain the high degree of incremen-

tality that has been demonstrated in laboratory ex-

periments (Marslen-Wilson, 1973; Altmann and

Steedman, 1988; Tanenhaus et al., 1995).

Other types of grammar rely upon special pars-

ing strategies to achieve incrementality. Eager

left-corner parsing (LC) is often chosen because it

uses a finite amount of memory for processing left-

and right-branching structures (Abney and Johnson,

1991). Resnik (1992) was the first to notice a simi-

larity between eager left-corner CFG parsing and

shift-reduce parsing of CCG left-branching deriva-

tions. In short, forward type-raising >T is like

LC prediction while forward function-composition

>B is like LC completion (both of these combi-

nators are used in Figure 2). However, CCG has

other combinators that make it even more incre-

mental. For instance, in a level one center embed-

ding such as “Mary gave John a book” a left-corner

parser cannot establish connection between Mary

and gave before it sees John. CCG includes a gener-

alized forward function composition >B
2 that can

combine type-raised Mary S/(S\NP ) and gave

((S\NP )/NP )/NP into (S/NP )/NP .

To our knowledge, the present study is the first to

validate the human-like processing characteristics

of CCG by quantifying their fit to human neural

signals.

4 The Challenge of Right Adjunction for

Incremental Parsing

A particular grammatical analysis may be viewed

as imposing ordering requirements on left-to-right

incremental parser operations; it obligates certain

operations to wait until others have finished. A

case in point is right adjunction in sentences such

as “Mary reads papers daily.” (see Figure 3a). Here

the parser has built “Mary reads papers” eagerly, as

it should be expected from any parser with human-

like behavior, but then it encountered the adjunct

Mary reads papers daily

NP (S\NP)/NP NP (S\NP)\(S\NP)
>T

S/(S\NP)
>B

S/NP
>

S

(a) Problem — S\NP that needs to be modified was never built.

Mary reads papers daily

NP (S\NP)/NP NP (S\NP)\(S\NP)
>T >

S/(S\NP) S\NP
>

S

(b) Incremental tree rotation reveals the needed node of type
S\NP.

Mary reads papers daily

NP (S\NP)/NP NP (S\NP)\(S\NP)
>T >

S/(S\NP) S\NP
<

S\NP
>

S

(c) Right adjunct is attached to the revealed node.

Figure 3: Right adjunction. The right spine of each

derivation is highlighted in blue. The boxed node

S\NP is revealed after tree rotation. Psycholinguis-

tic implications are detailed in Stanojević et al. (2020).

“daily”. This adjunct is an optional postmodifier of

the verb phrase “reads papers.” It could be analyzed

using the rule VP → VP AdvP where “daily” is a

one-word adverbial phrase adjunct of VP. With this

rule, a context-free phrase structure parser will be

forced either (i) to backtrack upon seeing “daily” or

(ii) to leave the VP open for postmodification (Hale,

2014, pages 31–33 opts for the latter). Neither of

these alternatives is particularly appealing from

the perspective of cognitive modeling, and indeed

Sturt and Lombardo (2005) report a pattern of eye-

tracking data that appears to be inconsistent with

CCG. They suggest that CCG’s account of con-

junction, itself analyzable as adjunction, imposes

an ordering requirement that cannot be satisfied in

psycholinguistically-realistic way.

Sturt and Lombardo’s 2005 finding is an impor-

tant challenge for theories of incremental interpre-

tation, including neurolinguistic models based on

LC parsing (Brennan and Pylkkänen, 2017; Nelson

et al., 2017). Stanojević and Steedman (2019) offer

a crucial part of a solution to this problem.

First, they relax the notion of attaching of a

right-adjunct: an adjunct does not have to attach

to the top category of the tree but it can attach to

any node on the right spine of the derivation, as
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long as the attachment respects the node’s syntac-

tic type. In Figure 3a the right spine is highlighted

in blue. However, none of the constituents on the

right spine can be modified by “daily” because

the constituent that needs to be modified, “reads

papers” was never built; it is not part of the left-

branching derivation. To address this, the Stanoje-

vić and Steedman parser includes a second innova-

tion: it applies a special tree-rotation operation that

transforms left-branching derivations into semanti-

cally equivalent right-branching ones. In Figure 3b

this operation produces a new right spine, revealing

a node of type S\NP , which is the type assigned

to English verb phrases in CCG. In Figure 3c the

adjunct “daily” is properly attached to this boxed

node via Application, a CCG rule that is used quite

generally across many different constructions.

The idea of attaching right-adjuncts to a node of

an already-built tree has appeared several times be-

fore (Pareschi and Steedman, 1987; Niv, 1994; Am-

bati et al., 2015; Stanojević and Steedman, 2019)

and in all cases it crucially leverages CCG’s flexible

constituency as shown in Figure 1. See Stanojević

et al. (2020) for more detailed treatment of Sturt

and Lombardo’s construction using predictive com-

pletion. The present study examines whether or not

the addition of the Revealing operation increases

the fidelity of CCG-derived parsing predictions to

human fMRI time course data.

5 Methods

We follow Brennan et al. (2012) and Willems et al.

(2016) in using a spoken narrative as a stimulus in

the fMRI study. Participants hear the story over

headphones while they are in the scanner. The

neuroimages collected during their session serve as

data for regression modeling with word-by-word

predictors derived from the text of the story.

5.1 The Little Prince fMRI Dataset

The English audio stimulus was Antoine de Saint-

Exupéry’s The Little Prince, translated by David

Wilkinson and read by Karen Savage. It constitutes

a fairly lengthy exposure to naturalistic language,

comprising 19,171 tokens, 15,388 words and 1,388

sentences, and lasting over an hour and a half. This

is the fMRI version of the EEG corpus described

in Stehwien et al. (2020). It has been used before

to investigate a variety of brain-language questions

unrelated to CCG parsing (Bhattasali et al., 2019;

Bhattasali and Hale, 2019; Li et al., 2018). Prior to

parsing, number expressions were spelled out i.e.

42 as “forty two” and all punctuation was removed.

5.1.1 Participants

Participants comprised fifty-one volunteers (32

women and 19 men, 18-37 years old) with no his-

tory of psychiatric, neurological, or other medi-

cal illness or history of drug or alcohol abuse that

might compromise cognitive functions. All strictly

qualified as right-handed on the Edinburgh handed-

ness inventory (Oldfield, 1971). All self-identified

as native English speakers and gave their written

informed consent prior to participation, in accor-

dance with the university’s IRB guidelines. Partici-

pants were compensated for their time, consistent

with typical practice for studies of this kind. They

were paid $65 at the end of the session. Data from

three out of the 51 participants was excluded be-

cause they did not complete the entire session or

moved their head excessively.

5.1.2 Presentation

After giving their informed consent, participants

were familiarized with the MRI facility and as-

sumed a supine position on the scanner gurney. The

presentation script was written in PsychoPy (Peirce,

2007). Auditory stimuli were delivered through

MRI-safe, high-fidelity headphones (Confon HP-

VS01, MR Confon, Magdeburg, Germany) inside

the head coil. Using a spoken recitation of the US

Constitution, an experimenter increased the vol-

ume until participants reported that they could hear

clearly. Participants then listened passively to the

audio storybook for 1 hour 38 minutes. The story

had nine chapters and at the end of each chapter the

participants were presented with a multiple-choice

questionnaire with four questions (36 questions in

total), concerning events and situations described

in the story. These questions served to assess par-

ticipants’ comprehension. The entire session lasted

around 2.5 hours.

5.1.3 Data Collection

Imaging was performed using a 3T MRI scanner

(Discovery MR750, GE Healthcare, Milwaukee,

WI) with a 32-channel head coil at the Cornell MRI

Facility. Blood Oxygen Level Dependent (BOLD)

signals were collected using a T2 -weighted echo

planar imaging sequence (repetition time: 2000 ms,

echo time: 27 ms, flip angle: 77deg, image accel-

eration: 2X, field of view: 216×216 mm, matrix

size 72×72, and 44 oblique slices, yielding 3 mm
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papers

ADVP
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daily

2 2 1 1

(a) Top-Down

S

NP

NNP

Mary

VP

VP

VBZ

reads

NP

NNS

papers

ADVP

RB

daily

2 1 2 1

(b) Left Corner

S

NP

NNP

Mary

VP

VP

VBZ

reads

NP

NNS

papers

ADVP

RB

daily

1 0 2 3

(c) Bottom-Up

Figure 4: Different parsing strategies for constituency trees. Below each word is a complexity measure associated

with that word. It is equivalent to the number of round nodes visited by the parser when the word is being integrated.

isotropic voxels). Anatomical images were col-

lected with a high resolution T1-weighted (1×1×1

mm3 voxel) with a Magnetization-Prepared RApid

Gradient-Echo (MP-RAGE) pulse sequence.

5.1.4 Preprocessing

Preprocessing allows us to make adjustments to

improve the signal to noise ratio. Primary prepro-

cessing steps were carried out in AFNI version 16

(Cox, 1996) and include motion correction, coreg-

istration, and normalization to standard MNI space.

After the previous steps were completed, ME-ICA

(Kundu et al., 2012) was used to further preprocess

the data. ME-ICA is a denoising method which

uses Independent Components Analysis to split

the T2*-signal into BOLD and non-BOLD compo-

nents. Removing the non-BOLD components miti-

gates noise due to motion, physiology, and scanner

artifacts (Kundu et al., 2017).

5.2 Grammatical Annotations

We annotated each sentence in The Little Prince

with phrase structure parses from the benepar con-

stituency parser (Kitaev and Klein, 2018). Previ-

ous studies have used the Stanford CoreNLP parser,

but benepar is much closer to the current state-

of-the-art in constituency parsing. To find CCG

derivations we used RotatingCCG by Stanojević

and Steedman (2019; 2020).

5.3 Complexity Metric

The complexity metric used in this study is the

number of nodes visited in between leaf nodes, on

a given traversal of a derivation tree. This corre-

sponds to the number of parsing actions that would

be taken, per word, in a mechanistic model of hu-

man comprehension (see e.g. Kaplan, 1972; Fra-

zier, 1985). These numbers (i.e. written below

the leaves of the trees in Figure 4) are intended as

predictions about sentence processing effort, which

may be reflected in the fMRI BOLD signal (see

discussion of convolution with hemodynamic re-

sponse function in §6.2).

For constituency parses we examine bottom-

up (aka shift-reduce parsing), top-down, and left-

corner parsing. Figure 4 shows all these parsing

strategies on an example constituency tree. This

Figure highlights three points: (a) that the complex-

ity metrics correspond to visited nodes of the tree

(b) that they are incremental metrics, computed

word by word and (c) that alternative parsing strate-

gies lead to different predictions.

In CCG all natural parsing strategies are bottom-

up. The main difference among them is what

kind of derivation they deliver. We evaluate right-

branching derivations, left-branching derivations

and revealing derivations; the latter are simply left-

branching derivations with the addition of the Re-

vealing operation. To compute this we get the best

derivation from a CCG parser and then convert it to

the three different kinds of semantically equivalent

derivations using the tree-rotation operation (Niv,

1994; Stanojević and Steedman, 2019).

In the case of revealing derivations we count

only the nodes that are constructed with reduce and

right-adjunction operations, but we do not count

the nodes constructed with tree-rotation. This is

because tree-rotation is not an operation that intro-

duces anything new in the interpretation — tree-

rotation only helps the right-adjunction operation
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reveal the constituent that needs to be modified.

All parsing strategies have the same total num-

ber of nodes, but only differ in the abstract tim-

ing of those nodes’ construction. In general, left-

branching derivations construct nodes earlier than

do the corresponding right-branching derivations.

However, in the case of right-adjunction both left-

and right-branching derivations delay construction

of many nodes until the right-adjunct is consumed.

This is not the case with the revealing derivations

that are specifically designed to allow flexibility

with right-adjuncts.

5.4 Hypotheses

Using the formalism-specific and parsing strategy-

specific complexity metrics defined above in §5.3,

we evaluate three hypotheses.

Hypothesis 1 (H1): CCG improves a model of

fMRI BOLD time courses above and beyond

context-free phrase structure grammar.

Mildly context-sensitive grammars like CCG cap-

ture properties of sentence structure that are only

very inelegantly covered by context-free phrase

structure grammars. For instance, the recovery of

filler-gap dependency in Figure 2 follows directly

from the definition of the combinators. This hy-

pothesis supposes that the brain indeed does work

to recover these dependencies, and that that work

shows up in the BOLD signal.

Hypothesis 2 (H2): The Revealing parser opera-

tion explains unique variability in the BOLD signal,

variability not accounted for by other CCG deriva-

tional steps.

As described above in §4, Revealing allows a CCG

parser to handle right-adjunction gracefully. This

hypothesis in effect proposes that this enhanced

psychological realism should extend to fMRI.

Hypothesis 3 (H3): Left-branching CCG deriva-

tions improve BOLD activity prediction over right-

branching.

Left-branching derivations provide maximally in-

cremental CCG analyses. If human processing is

maximally incremental, and if this incrementality

is manifested in fMRI time courses, then complex-

ity metrics based on left-branching CCG deriva-

tions should improve model fit over and above

right-branching.

6 Data Analysis

6.1 Regions of Interest

We consider six regions of interest in the left hemi-

sphere: the pars opercularis (IFG_oper), the

pars triangularis (IFG_tri), the pars orbitalis

(IFG_orb), the superior temporal gyrus (STG), the

superior temporal pole (sATL) and the middle tem-

poral pole (mATL). These regions are implicated

in current neurocognitive models of language (Ha-

goort, 2016; Friederici, 2017; Matchin and Hickok,

2020). However evidence suggests that partic-

ular sentence-processing operations could be lo-

calized to different specific regions within this

set (Lopopolo et al., 2021; Li and Hale, 2019;

Brennan et al., 2020). We use the parcellation

provided by the automated anatomical labeling

(AAL) atlas (Tzourio-Mazoyer et al., 2002) for

SPM12. For each subject, extracting the average

blood-oxygenation level-dependent (BOLD) sig-

nal from each region yields 2,816 data points for

each region of interest (ROI). These data served

as dependent measures in the statistical analyses

described below in §6.3.

6.2 Predictors

The predictors of theoretical interest are the parser-

derived complexity metrics described above in sec-

tion 5.3. To these we add additional covariates

that are known to influence human sentence pro-

cessing. The first of these is Word Rate, which

has the value 1 at the offset of each word and

zero elsewhere. The second is (unigram) word Fre-

quency. This is a log-transformed attestation count

of the given word type in a corpus of movie sub-

titles (Brysbaert and New, 2009). The third is the

root-mean-squared (RMS) intensity of the audio.

Finally we include the fundamental frequency f0 of

the narrator’s voice as recovered by the RAPT pitch

tracker (Talkin, 1995). These control predictors

serve to rule out effects that could be explained by

general properties of speech perception (cf. Good-

kind and Bicknell 2021; Bullmore et al. 1999; Lund

et al. 2006). The word-by-word complexity metrics

are given timestamps according to the offsets of the

words with which they correspond.

In order to use these predictors to model the

BOLD signal, we convolve the time-aligned vec-

tors with the SPM canonical hemodynamic re-

sponse function which consists of a linear com-

bination of two gamma functions and links neural

activity and the estimated BOLD signal (see e.g.
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Henson and Friston, 2007). After convolution, each

of the word-by-word metrics of interest is orthog-

onalized against convolved word rate to remove

correlations attributable to their common timing.

Figure 7 in the Appendix reports correlations be-

tween these predictors.

6.3 Statistical Analyses

Data were analyzed using linear mixed-effects re-

gression.4 All models included random intercepts

for subjects. Random slopes for the predictors were

not retained either because of convergence failures

or because they did not alter the pattern of results.

A theory-guided, model comparison framework

was used to contrast alternative hypotheses (articu-

lated in §5.4). The Likelihood Ratio test was used

to compare the fit of competing regression mod-

els (for an introduction, see Bliese and Ployhart,

2002). Effects were considered statistically signif-

icant with α = 0.008 (0.05/6 regions, following

the Bonferroni procedure).5

As a quantitative comparison between ROIs was

not directly relevant for the research questions at

issue, statistical analyses were carried out by re-

gion. This approach, as compared to examining the

effects of, and the interactions between, all ROIs

and predictors in the same analysis, reduced the

complexity of the models and facilitated parameter

estimation.

Hypothesis H1 was tested by examining the over-

all predictive power of the CCG-derived predic-

tors over and above a baseline model that included

word rate, word frequency, sound power, fundamen-

tal frequency, and word-by-word node counts de-

rived from all three phrase structure parsing strate-

gies:

(I) BOLD ∼ word_rate + word_freq + RMS + f0 +

bottom-up + top-down + left-corner {CCG-left +

CCG-right + CCG-revealing}

To test H2, we examined whether node counts

incorporating the Reveal operation explained

BOLD signal variability over and above a base-

line model that included, in addition to the vari-

ables in (I), node counts from left branching and

right branching CCG derivations:

4Regression analyses used the lme4 R package (version
1.1-26; Bates et al., 2015).

5A Bonferroni correction of 0.05/6 reflects the fact each
of the three hypotheses was tested with a single Likelihood
Ratio test per ROI, irrespective of the number of variables in
the models compared.

(II) BOLD ∼ word_rate + word_freq + RMS + f0

+ bottom-up + top-down + left-corner + CCG-left

+ CCG-right {CCG-revealing}

Last, for H3 in section 5.4, we tested whether

word-by-word traversals of left branching CCG

derivations accounted for any significant amount

of BOLD signal variability over and above

right branching. This amounts to asking whether

CCG processing is maximally eager or maxi-

mally delayed.

(III) BOLD ∼ word_rate + word_freq + RMS + f0

+ bottom-up + top-down + left-corner + CCG-right

{CCG-left}

7 Results

Behavioral results on the comprehension task

showed attentive listening to the spoken narrative

with average response accuracy of 90% (SD =

3.7%).

7.1 H1: CCG-specific effects

The first question that we investigated was whether

CCG derivations would account for any significant

amount of BOLD activity over and above bottom-

up, top-down, and left-corner phrase structure pars-

ing strategies in addition to baseline covariates (i.e.

as introduced above in §5.3 and depicted in Fig-

ure 4). The overall predictive power of the three

CCG derivations emerged to significantly improve

the models fit in all six regions examined, thus

providing strong support for H1. For all analyses,

the complete tables of results are provided in the

Appendix (Tables 1 to 6).

To better understand the source of those effects,

we followed-up with an additional set of analyses

in which we contrasted one CCG parsing strategy

at a time against the same baseline model. These

CCG parsing strategies exhibit a region-specific

pattern of fits which is summarized in Figure 5.6

7.2 H2: The Revealing parser operation

The second hypothesis, H2 in section 5.4, is about

hemodynamic effects of the Revealing operation.

The results summarized in Figure 6 supported this

hypothesis: the CCG-revealing predictor signifi-

cantly improved model fit to the BOLD signal in

three of six ROIs examined (IFG_tri, IFG_oper,

6The direction of the effects for the analyses in both Figure
5 and 6 was not affected by the correlation among variables
(Figure 7 in the Appendix).



30

−
−

−

−
−

−

−
−

−

−
−

−

−

−
−

−

−

−
−

−

−

CCG−revealing

CCG−right

CCG−left

−2 0 2

Estimate

mATL

CCG−revealing

CCG−right

CCG−left

−2 0 2

Estimate

sATL

CCG−revealing

CCG−right

CCG−left

−2 0 2

Estimate

STG

CCG−revealing

CCG−right

CCG−left

IFG_oper

−

CCG−revealing

CCG−right

CCG−left

IFG_orb

CCG−revealing

CCG−right

CCG−left

IFG_tri

IFG_oper IFG_orb IFG_tri

mATL sATL STG

Figure 5: CCG derivation effects by ROI. Coefficient point estimates ± SE. Filled points indicate that the predictor

significantly improved model fit. Note that for IFG_oper the CCG-revealing predictor is only marginally significant

after Bonferroni correction across ROIs.
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Figure 6: Effects of the CCG-revealing predictor

by ROI. Coefficient point estimates ± SE. Filled

points indicate that the predictor significantly improved

model fit. Note that for IFG_orb and mATL, the ef-

fects became only marginally significant after Bonfer-

roni correction.

sATL) and marginally significant in two others af-

ter Bonferroni correction (IFG_orb and mATL).

The positive sign of the statistically significant co-

efficients in Figure 6 indicates that, as expected, in-

creased processing cost, as derived from the CCG-

revealing parser, was associated with increased

BOLD activity.

7.3 H3: Left- versus Right-branching

In the last set of analyses, we investigated whether

left-branching CCG derivations improve BOLD ac-

tivity predictions over right-branching derivations

(H3 in section 5.4).

It emerged that the CCG-left predictor signif-

icantly improved model fit in IFG_tri, IFG_orb,

STG, mATL, and, but only marginally significant

after Bonferroni correction, IFG_oper. These find-

ings, overall, indicate the ability of left branching

CCG derivations to account for a unique amount

of BOLD activity during language processing.

8 Discussion

The improvement that CCG brings to modeling

fMRI time courses — over and above predictors de-

rived from well-known context-free parsing strate-

gies — confirms that mildly context-sensitive gram-

mars capture real aspects of human sentence pro-

cessing, as suggested earlier by Brennan et al.

(2016). We interpret the additional improvement

due to the Revealing operation as neurolinguis-

tic evidence in support of that particular way of

achieving heightened incrementality in a parser.

While it is possible that other incremental pars-

ing techniques might adequately address the chal-

lenge of right adjunction (see §4 above) we are

at present unaware of any that are supported by

evidence from human neural signals. The pattern-

ing of fits across regions aligns with the suggestion

that different kinds of processing, some more ea-

ger and others less so, may be happening across
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the brain (cf. Just and Varma 2007). For instance

the explanatory success of predictors derived from

left-branching and Revealing derivations in the mid-

dle temporal pole (mATL) supports the idea that

this region tracks tightly time-locked, incremen-

tal language combinatorics7 while other regions

such as the inferior frontal gyrus (IFG) hang back,

waiting to process linguistic relationships until the

word at which they would be integrated into a right-

branching CCG derivation (roughly consistent with

Friederici, 2017; Pylkkänen, 2019).

In the superior temporal gyrus (STG) the sign

of the effect changes for CCG-derived predictors.

This is the unique region where Lopopolo et al.

(2021) observe an effect of phrase structure pro-

cessing, as opposed to dependency grammar pro-

cessing. This could be because our CCG is lexical-

ized. Of course, the CCGbank grammar captures

many other aspects of sentence structure besides

lexical dependencies (see Hockenmaier and Steed-

man 2007).

Shain et al. (2020) use a different, non-

combinatory categorial grammar to model fMRI

time courses. Whereas this earlier publication em-

ploys the surprisal linking hypothesis to study pre-

dictive processing, the present study considers in-

stead the parsing steps that would be needed to re-

cover grammatical descriptions assigned by CCG.

This distinction can be cast as the difference be-

tween Marr’s computational and algorithmic lev-

els of analysis, as suggested above in §2. But be-

sides the choice of vantage point, there are con-

ceptual differences that lead to different modeling

at both levels. For instance, the generalized cate-

gorial grammar of Shain et al. (2020) is quite ex-

pressive and may go far beyond context-free power.

But in that study it was first flattened into a prob-

abilistic context-free grammar (PCFG) to derive

surprisal predictions. The present study avoids this

step by deriving processing complexity predictions

directly from CCG derivations using node count.

This directness is important when reasoning from

human data, such as neural signals, to mathemati-

cal properties of formal systems, such as grammars

(see discussion of Competence hypotheses in Steed-

man, 1989).

7This predictive relationship between left-branching
derivations in middle temporal pole timecourses is observed
in (the brains of) native speakers of English, a head-initial
language. An exciting direction for future work concerns the
possibility that the brain bases of language processing might
covary with typological distinctions like head direction (cf.
Bornkessel-Schlesewsky and Schlesewsky, 2016).

This prior work by Shain et al. (2020) includes

a telling observation: that surprisal from a 5-gram

language model improves fit to brain data, over

and above a PCFG. Shain et al. hypothesize that

this additional contribution is possible expressly

because of PCFGs’ context-freeness, and that a

(mildly) context-sensitive grammar would do better.

The results reported here are consistent with this

suggestion.

9 Conclusion and Future Work

CCG, a mildly context-sensitive grammar, helps

explain the time course of word-by-word language

comprehension in the brain over and above Penn

Treebank-style context-free phrase structure gram-

mars regardless of whether they are parsed left-

corner, top-down or bottom-up. This special con-

tribution from CCG is likely attributable to its

more realistic analysis of “movement” construc-

tions (e.g. Figure 2) which would not be assigned

by naive context-free grammars. CCG’s flexible

approach to constituency may offer a way to un-

derstand both immediate and delayed subprocesses

of language comprehension from the perspective

of a single grammar. The Revealing operation, de-

signed to facilitate more human-like CCG parsing,

indeed leads to increased neurolinguistic fidelity in

a subset of brain regions that have been previously

implicated in language comprehension.

We look ahead in future work to quantifying

the effect of individual complexity metrics across

brain regions using alternative metrics related to

surprise and memory (e.g. Graf et al., 2017). This

future work also includes investigation of syntac-

tic ambiguity, for instance via beam search along

the lines of Crabbé et al. (2019) using the incremen-

tal neural CCG model of Stanojević and Steedman

(2020).
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Hypothesis 1

Model 1: BOLD ∼ word_freq + word_rate+RMS + f0 + bottomup+ leftcorner + topdown
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_left+ CCG_right+ CCG_revealing

Region AIC_1a AIC_2b ∆AICc χ2(3) p

IFG_oper 1762175 1762156 -19.26 25.26 <0.001

IFG_orb 1717590 1717579 -10.31 16.31 0.001

IFG_tri 1715945 1715913 -32.10 38.1 <0.001

mATL 1562113 1562092 -20.92 26.92 <0.001

sATL 1604738 1604726 -12.09 18.09 <0.001

STG 1843201 1843194 -7.20 13.2 0.004

Table 1: Hypothesis 1, CCG-specific effects: CCG_left + CCG_right + CCG_revealing. aAkaike Information

Criterion for the baseline model (model 1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1.

Bonferroni adjusted significance threshold: 0.05/6 = 0.008.

Hypothesis 1: Follow-up analyses

Model 1: BOLD ∼ word_freq + word_rate+RMS + f0 + bottomup+ leftcorner + topdown
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_right

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762175 1762170 -5.42 7.42 0.007

IFG_orb 1717590 1717589 -1.03 3.03 0.082

IFG_tri 1715945 1715934 -11.25 13.25 <0.001

mATL 1562113 1562115 1.91 0.09 0.770

sATL 1604738 1604739 0.31 1.69 0.193

STG 1843201 1843201 0.51 1.49 0.223

Table 2: Hypothesis 1, CCG-specific effects: CCG_right. aAkaike Information Criterion for the baseline model

(model 1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1. Bonferroni adjusted significance

threshold: 0.05/6 = 0.008.

Model 1: BOLD ∼ word_freq + word_rate+RMS + f0 + bottomup+ leftcorner + topdown
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_left

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762175 1762177 1.96 0.04 0.846

IFG_orb 1717590 1717582 -8.12 10.12 0.002

IFG_tri 1715945 1715947 1.81 0.19 0.666

mATL 1562113 1562101 -11.53 13.53 <0.001

sATL 1604738 1604740 1.60 0.4 0.527

STG 1843201 1843192 -8.52 10.52 0.001

Table 3: Hypothesis 1, CCG-specific effects: CCG_left. aAkaike Information Criterion for the baseline model

(model 1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1. Bonferroni adjusted significance

threshold: 0.05/6 = 0.008.
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Model 1: BOLD ∼ word_freq + word_rate+RMS + f0 + bottomup+ leftcorner + topdown
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_revealing

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762175 1762173 -2.18 4.18 0.041

IFG_orb 1717590 1717576 -14.00 16 <0.001

IFG_tri 1715945 1715943 -1.77 3.77 0.052

mATL 1562113 1562096 -16.49 18.49 <0.001

sATL 1604738 1604737 -1.67 3.67 0.055

STG 1843201 1843192 -8.51 10.51 0.001

Table 4: Hypothesis 1, CCG-specific effects: CCG_revealing. aAkaike Information Criterion for the baseline

model (model 1). bAkaike Information Criterion for model 2. cAIC_2−AIC_1. Bonferroni adjusted significance

threshold: 0.05/6 = 0.008.

Hypothesis 2

Model 1: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_left+ CCG_right
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_left+ CCG_right+ CCG_revealing

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762165 1762156 -9.34 11.34 0.001

IFG_orb 1717583 1717579 -4.03 6.03 0.014

IFG_tri 1715922 1715913 -9.68 11.68 0.001

mATL 1562096 1562092 -4.01 6.01 0.014

sATL 1604741 1604726 -14.32 16.32 <0.001

STG 1843193 1843194 0.61 1.39 0.239

Table 5: Hypothesis 2, CCG Revealing operation. aAkaike Information Criterion for the baseline model (model

1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1. Bonferroni adjusted significance threshold:

0.05/6 = 0.008.

Hypothesis 3

Model 1: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_right
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_right+ CCG_left

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762170 1762165 -4.49 6.49 0.011

IFG_orb 1717589 1717583 -5.25 7.25 0.007

IFG_tri 1715934 1715922 -11.18 13.18 <0.001

mATL 1562115 1562096 -18.82 20.82 <0.001

sATL 1604739 1604741 1.93 0.07 0.788

STG 1843201 1843193 -8.32 10.32 0.001

Table 6: Hypothesis 3, Left- versus Right-CCG parsing. aAkaike Information Criterion for the baseline model

(model 1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1. Bonferroni adjusted significance

threshold: 0.05/6 = 0.008.


