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Abstract
It is generally well accepted that proficient reading requires the assimilation of myriad statistical regularities present in the writing
system, including in particular the correspondences between words' orthographic and phonological forms. There is considerably
less agreement, however, as to how to quantify these regularities. Here we present a comprehensive approach for this quantifi-
cation using tools from Information Theory. We start by providing a glossary of the relevant information-theoretic metrics, with
simplified examples showing their potential in assessing orthographic-phonological regularities. We specifically highlight the
flexibility of our approach in quantifying information under different contexts (i.e., context-independent and dependent readings)
and in different types of mappings (e.g., orthography-to-phonology and phonology-to-orthography). Then, we use these
information-theoretic measures to assess real-world orthographic-phonological regularities of 10,093 mono-syllabic English
words and examine whether these measures predict inter-item variability in accuracy and response times using available large-
scale datasets of naming and lexical decision tasks. Together, the analyses demonstrate how information-theoretical measures can
be used to quantify orthographical-phonological correspondences, and show that they capture variance in reading performance
that is not accounted for by existing measures. We discuss the similarities and differences between the current framework and
previous approaches as well as future directions towards understanding how the statistical regularities embedded in a writing
system impact reading and reading acquisition.
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reading

Over the last several decades, reading research has become
increasingly grounded in the idea that proficient reading re-
quires the assimilation of subtle statistical regularities present
in the writing system. This statistical view of writing systems
had an impact on virtually all sub-domains of reading re-
search, including computational models (e.g., Harm &
Seidenberg, 2004; Rueckl, Zevin, & Wolf VII, 2019), studies
of reading acquisition (e.g., Arciuli, 2018; Steacy et al., 2018;
Treiman & Kessler, 2006), cross-language research (e.g.,

Frost, 2012; Seidenberg, 2011; Seymour et al., 2003), research
on adult online sentence processing (e.g., Fine & Florian
Jaeger, 2013) and individual-differences studies investigating
the predictors of proficient reading (e.g., Arciuli & Simpson,
2012; Frost, Siegelman, Narkiss, & Afek, 2013). In the basis
of all of these studies is the notion that there are myriad sta-
tistical regularities in the written input to be picked up by the
reader.

In this paper, we focus on the role of statistical regu-
larities in the process by which readers convert an ortho-
graphic string to the spoken form it represents. Such pho-
nological decoding ability is widely understood to be one
of the fundamental skills underlying proficient reading.
An extensive literature provides data supporting this idea,
including both (a) observations of deficits in phonological
decoding in populations with reading disabilities (e.g.,
Scarborough, 1998; Vellutino, Fletcher, Snowling, &
Scanlon, 2004), and (b) correlations between mapping
skills and overall reading proficiency within typically
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developing samples (e.g., Kearns, Rogers, Koriakin, & Al
Ghanem, 2016; Perfetti, Beck, Bell, & Hughes, 1987).

This skill is considered to be particularly important in writ-
ing systems with an opaque (or deep) orthography. In contrast
to transparent languages such as Spanish or Finnish, which
exhibit nearly one-to-one correspondences between graph-
emes and phonemes, opaque writing systems display substan-
tial inconsistency in the mapping of letters to sounds (Frost,
Katz, & Bentin, 1987). English exhibits such notable opacity,
mostly apparent in vowel graphemes (e.g., the grapheme ea,
which is pronounced differently in the words bead, head, and
steak; the grapheme i in the words mint, pint, and helium).

But how can the degree of consistency (or inconsistency) in
the mapping of an orthographic string to phonology be quan-
titatively assessed? What is the degree of consistency in a
given word compared to another? Answering these questions
is critical in order to assess one's skill of efficient mapping, to
estimate the exact role of sensitivity to consistency in account-
ing for reading outcomes, and to accurately manipulate the
degree of consistency of words or non-words in experimental
paradigms (such as the Strain task, Strain, Patterson, &
Seidenberg, 1995). Nevertheless, to date, there is no agreed-
upon method to estimate consistency. Generally speaking,
three approaches currently exist (and see Borleffs, Maassen,
Lyytinen, & Zwarts, 2017, for a similar classification in the
context of orthographic transparency across languages).

The first, the regularity approach (e.g. Baron & Strawson,
1976; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;
Forster & Chambers, 1973; Rastle & Coltheart, 1999) as-
sumes that there is a set of rules dictating the regular corre-
spondences between graphemes and phonemes (GPC rules;
e.g., "i is regularly read as /ɪ/"). Note that grapheme is defined
as a letter or a letter sequence that correspondences to a single
phoneme (e.g., e in the word bed; ea in the word head). Per
this approach, words that follow these rules are considered
regular (e.g.,mint) and words that do not are considered irreg-
ular (e.g., pint). Similarly, per this approach, a set of spelling
rules specifies the regular spelling of each phoneme. It is thus
a categorical classification system, where words are treated as
either regular or irregular. Indeed, regularity was shown to
impact word recognition measures, such as reaction time in
lexical decision and naming tasks (see, e.g., Baron &
Strawson, 1976; Glushko, 1979; Seidenberg, Waters,
Barnes, & Tanenhaus, 1984; Stanovich & Bauer, 1978).
Nevertheless, the use of a categorical division of words to
regular and irregular was strongly criticized (e.g., Plaut
et al., 1996; and see Glushko, 1979 for an earlier version of
this criticism).

A second approach, the statistical approach, avoids a cat-
egorical distinction, and instead places each word's degree of
consistency at a certain point over a continuum (Jared,
McRae, & Seidenberg, 1990). Operationally, common mea-
sures of statistical consistency typically examine the ratio

between the number of friends and enemies of that word.
Consistency measures are most commonly used to capture
the associations between orthography and phonology at the
body-rime level: Thus, body-rime consistency quantifies the
ratio of similar vs. different phonological realizations of a
word body (e.g., -ead in the word head; e.g., Jared, McRae,
& Seidenberg, 1990). Practically, to assess the body-rime con-
sistency of bead, one would calculate the ratio between the
number of friends where -ead is similarly pronounced as /ɛd/
(e.g., dead, bread, etc.) to the number of enemies where -ead
is pronounced differently (e.g., bead). The consistency ap-
proach can be similarly used to quantify correspondences at
a smaller grain size: Thus, vowel consistency focuses on
friends vs. enemies at the grapheme-level (e.g., Chateau &
Jared, 2003; Treiman, Mullennix, Bijeljac-Babic, &
Richmond-Welty, 1995). Practically, then, the vowel consis-
tency of the pronunciation of i in the wordmint (where i➔ /ɪ/)
is the ratio between the number of friends where i is pro-
nounced as /ɪ/ (e.g., bin, sing, etc.) to the number of enemies
where i is pronounced otherwise (e.g., pint). Generally, a large
number of friends versus enemies constitutes a more consis-
tent pronunciation at a given grain size, where a large number
of enemies compared to friends reflects an inconsistent read-
ing1. Importantly, studies employing the statistical approach
show that the ease in which a pronunciation can be derived
from an orthographic code varies continuously, reflecting sen-
sitivity to the probabilities of the pairings between orthograph-
ic and phonological units. The two types of consistency mea-
sures – body-rime consistency and vowel consistency – ex-
emplify an additional important advantage of the consistency
approach, on top of its continuous measurement: measures of
consistency can capture transparency at different grain sizes,
either at the grapheme-to-phoneme in isolation, or in a broader
context in which the grapheme appears. This is important
because English and other opaque languages often have
context-dependent grapheme-phoneme mappings, that is, the
context in which a given grapheme appears impacts its pro-
nunciation. Such sensitivity to context-dependent information
is considered to play an important role in proficient reading in
English (e.g., Steacy et al., 2018; Venezky, 1999; Ziegler &
Goswami, 2005), and readers indeed display sensitivity to
such context-dependent information. For example, cheam is
almost read with ea➔ /i/ (as in beam), but chead is sometimes
read with ea➔ /i/ and in other cases with ea➔ /ɛ/ (as in head;
Treiman, Kessler, & Bick, 2003). Lastly, note that consistency
measures can also be used to quantify the mapping of the other

1 Although consistency is typically computed as the ratio of friends to friends
plus enemies, other formulations have sometimes been used. For example,
Graves and colleagues (2010) defined consistency as the difference between
the number of friends and enemies, and in Glushko’s (1979) seminal work
consistency was treated as a categorical measure: A word was considered
consistent if it had no enemies and inconsistent otherwise.
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direction, between phonology to orthography (i.e., spelling
consistency; e.g., Treiman & Kessler, 2006).

A third way to quantify orthographic-phonological regular-
ities, the entropy approach, focuses on the impact of uncer-
tainty in the mapping between the two. Entropy, a term from
Information Theory (Shannon, 1948), examines the extent of
uncertainty over a distribution of events. A distribution of
multiple equiprobable events implicates high uncertainty,
whereas a distribution with a single event (that is thus fully
predictable) implicates zero uncertainty (and see below for a
formal definition and examples). In the context of orthography
to phonology, the entropy approach does not consider the
consistency of the specific pronunciation of a given grapheme
in a word (e.g., in the wordmint, to what extent is the mapping
i ➔ /ɪ/ consistent), but rather the full distribution of possible
phonemes that can be reflected by a given grapheme (or in the
other direction – to calculate spelling entropy – the distribu-
tion of possible spellings of a given phoneme).

The main advantage of the entropy approach is therefore
that by focusing on uncertainty it accounts for an additional
facet that is not captured by the consistency approach. The
difference between entropy and consistency was exemplified
in the corpus analysis by Protopapas and Vlahou (2009) of
Greek, which addressed entropy in the mapping from
orthography-to-phonology and from phonology-to-orthogra-
phy. To exemplify the difference between entropy and consis-
tency, the authors describe two contrasting cases: the phoneme
/g/, which is spelled as γκ in 85.5%, and as γγ in 14.5%; and
the phoneme /ç/, which is spelled as χ in 85.0% of the times,
as οι in 7.0% of the cases and as ι in 6.9% (and in other
uncommon forms in the remaining cases). A consistency ap-
proachwould consider the mapping of /g/➔ γκ and of /ç/➔χ
as similar (as both have a similar ratio of friends vs. enemies, ~
85%/15%). An entropy approach, however, accounts for the
difference in the distributions of the two spellings, and posits
that the first mapping implicates less uncertainty, due to less
random distribution over the possible spellings of the pho-
neme (and see mathematical explanation below). Note that
in the context of cross-linguistic differences, this feature of
entropy led some to use it as a proxy for a writing system's
orthographic depth. For example, Borgwaldt, Hellwig, and De
Groot (2004) compared the extent of uncertainty in the map-
ping of word-initial graphemes to phonemes across five lan-
guages, and later studies have used these entropy values as a
measure for the extent of transparency vs. opaqueness of each
writing system (Borgwaldt, Hellwig, & De Groot, 2005;
Ziegler et al., 2010).

The goal of the current study is to offer a comprehensive
information-theoretic approach for quantifying the structure of
the mapping between an orthographic string and phonological
form. Similarly to the entropy approach, our quantification
takes into account the extent of uncertainty in the
orthography-to-phonology mapping. Most importantly,

however, our approach does not center on entropy alone, rath-
er it uses additional information-theoretic measures to also
consider the extent of (un)predictability of a phonological re-
alization given an orthographic string (which is the typically
the focus of the statistical consistency approach). Our ap-
proach thus merges insights from both the entropy and statis-
tical consistency approach. Moreover, by using general
information-theoretic terms, our approach highlights the sim-
ilarity between orthographic-phonological decoding, other
component processes of reading, and other aspects of lan-
guage processing in general, all of which are affected by the
degree of uncertainty and unpredictability embedded in the
input. Thus, such effects have been documented in fields such
as speech perception (e.g., Frank, 2013), speech production
(e.g., Cohen Priva, 2015, 2017), syntactic processing (e.g.,
Hale, 2006; Linzen & Jaeger, 2015), morphological process-
ing (e.g., Milin, Kuperman, Kostić, & Baayen, 2009) and
sentence reading (e.g., Lowder, Choi, Ferreira, &
Henderson, 2018; Smith & Levy, 2013).

At a practical level, we use tools from Information Theory
(Shannon, 1948), which defines uncertainty and unpredict-
ability as the amount of information present in an input.
Importantly, Information Theory's toolbox includes a diverse
set of measures, which can be used to capture different aspects
of the information distribution of an input. In the context of the
present investigation, these tools enable us to assess not only
the degree of uncertainty (i.e. entropy) in a distribution of
possible pronunciations (e.g., Protopapas & Vlahou, 2009),
but also the extent to which a given pronunciation is surprising
(or unpredictable) given a grapheme (in information theory
terms, the surprisal of an event), and the difference between
the expected amount of information and the observed amount
of information in a grapheme-to-phoneme correspondence
(information gain). Our framework thus combines advantages
of existing approaches in a theoretically motivated manner. As
we will argue below, it also presents a flexible approach that
can be used to quantify information under different contexts
(i.e., context-independent and -dependent readings) and in
different types of mappings (e.g., orthography to phonology
and phonology to orthography).

Belowwe start by providing a glossary of the three relevant
information-theoretical metrics – entropy, surprisal, and infor-
mation gain. Then, we exemplify their use in assessing
orthography-to-phonology mapping (as well as phonology-
to-orthography) using a corpus of English monosyllabic
printed words and their pronunciations. Next, we estimate
the degree of transparency of the mapping between
orthography-to-phonology of each of the words in the corpus,
and use these word-level metrics to examine whether the
information-theoretic measures capture variance in actual
reading performance (using available large-scale datasets
from naming and lexical decision tasks), while also comparing
their predictive value to that of common consistency
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measures. In a nutshell, our analyses demonstrate how
information-theoretical measures can be used to assess the
information distribution of a writing system, and show that
these measures explain variance in reading behavior that is
not accounted for by common consistency measures.

Quantifying information

In this section, we briefly review three key terms in
Information Theory, surprisal, entropy, and information gain,
which serve as the basis for the current investigation.

Surprisal

Surprisal (sometimes referred to as self-information) quan-
tifies the amount of information carried by a single event
given its probability. More predictable events are less surpris-
ing, and carry less novelty in terms of the information they
offer. The common unit of surprisal is “bits of information”.
Mathematically, surprisal of an event i is defined as:

Si ¼ −log2p ið Þ ð1Þ

Importantly, the probability of the event (i.e., p(i)) can ei-
ther refer to its unconditional (marginal) probability, or to
some conditional probability. Consider, for example, a hypo-
thetical situation in which the grapheme ea has only two pos-
sible readings, either as the phoneme /i/ (as in the word bead),
or as /ɛ/ (as in head; see also Table 1). Overall (unconditional
of any other event), ea is read as /i/ in 60% of the cases, and as
/ɛ/ in the remaining 40%. Given these probabilities, the pro-
nunciation of the vowel in the word head is more surprising
than in the word bead: head has a surprisal value of −log20.4-
= 1.32 bits, versus −log

2
0.6 = 0.74 bits in bead (see also

Table 1). However, the conditional surprisal values of this
mapping may be different. Assume that given the coda -d,
the grapheme ea is more likely to be pronounced as /ɛ/, say
in 70% of the cases (and as /i/ only in 30%). As a result, the
surprisal of the vowel grapheme in head, conditioned on the
coda, is lower than that of bead: −log20.7 = 0.51, versus
−log20.3 = 1.74. Note that this toy example already demon-
strates how notions of Information Theory can be used to
assess information in different grain sizes, by focusing on
either unconditional or conditional (i.e., context-independent
or context-dependent) probabilities. It also shows the flexibil-
ity of this approach in accounting for the information structure
of different parts of the input: Namely, conditional probabili-
ties can be calculated over different parts of a word: coda,
onset, following/preceding grapheme, etc. Another thing to
note is that while these examples focus on the information in
the mapping between graphemes to phonemes, surprisal (as
other information-theoretic metrics) can also be applied to
quantify the information in the opposite direction: that is, the
mapping of phonemes onto graphemes.

Entropy

While surprisal concerns the information provided in a single
observed event, entropy concerns the uncertainty present in a
distribution of events. The more unpredictable events are in a
distribution, the more information they carry. Hence, random
distributions are characterized by high entropy, whereas high-
ly skewed distributions (e.g., a distribution with a single high-
ly probable event) are characterized by low entropy. The en-
tropy of a distribution with only one possible event (i.e., a
single event with p = 1) equals 0.

Mathematically, entropy is the expected value of the
amount of information over a distribution of events. It is thus
inherently linked to surprisal – surprisal quantifies the amount

Table 1 Calculation of information-theoretic measures for the EA grapheme

Measure Type Calculation

Unconditional EA ➔ /i/
(p = .6)

EA ➔ / ɛ /
(p = .4)

Surprisal (S) −log20.6 = 0.74 −log20.4 = 1.32
(Shannon)
Entropy (H)

−(0.6 ∗ log20.6 + 0.4 ∗ log20.4) = 0.97

Information gain (H-S) 0.97 − 0.74 = 0.23 0.97 − 1.32 = − 0.35

Coda-conditional -EAD
(p = .4)

-EAT
(p = .6)

EA ➔ /i/
(p = .3)

EA ➔ / ɛ /
(p = .7)

EA ➔ /i/
(p = .8)

EA ➔ / ɛ /
(p = .2)

Surprisal (S) −log20.3 = 1.74 −log20.7 = 0.51 −log20.8 = 0.32 −log20.1 = 2.32
Conditional entropy (H) −(0.3 × log20.3 + 0.7 × log20.7) = 0.88 −(0.8 × log20.8 + 0.2 × log20.2) = 0.72
Information gain (H-S) 0.88 − 1.74 = − 0.86 0.88 − 0.51 = 0.37 0.72 − 0.32 = 0.40 0.72 − 2.32 = − 1.60
Markov entropy .4(0.3 × log20.3 + 0.7 × log20.7) + .6(0.8 × log20.8 + 0.2 × log20.2) = 0.78
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of information of each single event, and entropy is the expect-
ed value of such surprisal values in some distribution of
events. As a result, the unit of entropy is also bits of informa-
tion. This link can also be seen in the formula used to calculate
entropy, which shows that entropy is the sum of surprisal of
each event weighted by its probability:

H ¼ −∑
i
p ið Þ*log2p ið Þ ð2Þ

Much like surprisal, entropy can be calculated over differ-
ent distributions. For our purposes we again focus on uncon-
ditional entropy (sometimes referred to as Shannon entropy)
as well as on conditional entropy. Concretely, we use uncon-
ditional entropy to calculate the overall uncertainty in the
mapping of a vowel grapheme to phonemes, regardless of
the context in which it appears. For example, in the toy exam-
ple above (ea➔/i/ in 60%, ea➔ /ɛ/ in 40%), the unconditional
entropy of the grapheme ea is −(0.6 ∗ log20.6 + 0.4 ∗ log20.4)-
= 0.97 bits (see also Table 1). Compare this value to the one
resulting from calculating the entropy of the grapheme ea
conditional on the coda -d: −(0.3 ∗ log20.3 + 0.7 ∗ log20.7) =
0.88 bits. In this hypothetical case, the conditional entropy of
ea is lower given the coda -d than it is unconditionally. This is
because the distribution given this coda is more skewed (i.e.,
less random) than the unconditional distribution.

This leads us to another measure: Markov entropy. This
measure quantifies the average conditional entropy over a
set of conditioning contexts. The Markov entropy of the
grapheme-phoneme mapping given the coda would be the
conditional entropy given each of these codas, weighted by
their marginal probabilities. Mathematically, this is expressed
by the formula:

Hmarkov ¼ −∑
i
p ið Þ∑

j
p jjið Þ*log2p jjið Þ ð3Þ

Conceptually, in the context of grapheme-to-phoneme
mapping, this value examines the amount of uncertainty
of some pronunciation given some part in the word.
Thus, if some context (e.g., coda, onset, etc.) is highly
predictive of a pronunciation, Markov entropy is low
(low uncertainty). In contrast, if a context does not predict
the phonological realization of a vowel grapheme, Markov
entropy is high. The use of Shannon vs. Markov entropy,
and of Markov entropy under different contexts, allow us
to examine the overall uncertainty present in different grain
sizes. As an example, consider the hypothetical case above
(Table 1) where there are only two possible codas follow-
ing the vowel ea: –d (e.g., head) and –t (e.g., cheat). Say
that the coda –d is less frequent than –t: 0.4 vs. 0.6. The
Markov entropy of the pronunciation of ea given the coda
will be the average of the conditional entropy given the
coda –d and that given –t, weighted by their marginal fre-
quency (see calculation in the last row of Table 1).

Some general characteristics of entropy measures should
be noted. First, we emphasize that similar to surprisal, entropy
can be calculated to capture different aspects of the input: for
example, it can be calculated over different distributions (un-
conditional and conditional), under different constraining con-
texts (e.g., coda vs. onset) and for different types of mappings
(e.g., the uncertainty in the mapping of orthography-to-pho-
nology, or that of phonology-to-orthography). Second, note
that while the toy example deals with distributions that include
only two possible events, entropy measures are not
constrained to such cases and can be calculated on distribu-
tions with any number of events. This is of course necessary
when dealing with correspondences, when the same grapheme
can have multiple possible realizations (e.g., consider the
grapheme ea in heat, head, steak, and heart). Third, and as
noted above, entropy captures something that is typically not
accounted for by looking at the probabilities of single events
(either via surprisal measures, or via standard consistency
measures). To illustrate, consider two hypothetical graph-
emes: A and B. A is pronounced as the phoneme /A1/ in
70% of the cases, as /A2/ in 15%, and as /A3/ as 15%. In
contrast, B is pronounced as /B1/ in 70%, as /B2/ in 25%,
and as /B3/ in 5%. The probability of the most common read-
ing of each of the two graphemes is the same (and thus so is
their surprisal value): both A➔/A1/, and B➔/B1/ has a proba-
bility of 70%. However, the grapheme A across its different
pronunciations has a higher entropy than B. This is because
the distribution of its possible readings is more random, con-
taining higher uncertainty.

Information gain

Entropy and surprisal each capture a different aspect of the
information structure of an input: surprisal quantifies the
(un)predictability of a single event, while entropy quantifies
the uncertainty across a distribution of events. In the context of
orthography-to-phonology mapping, surprisal thus captures
the extent of unpredictability of a given grapheme-to-
phoneme correspondence (e.g., the mapping of ea ➔ /i/ in
the word bead; either unconditionally or given context), and
entropy captures the overall uncertainty in the distribution of
possible pronunciations of a grapheme (again, either indepen-
dently or conditional on context). Information gain is affected
by both the unpredictability of a given event as well as the
uncertainty of the full distribution of possible events.

Mathematically, information gain is simply entropy over a
distribution minus the surprisal of the observed event, that is:

information gaini ¼ H−Si ð4Þ

Conceptually, information gain thus quantifies the differ-
ence between the expected information value of an event (i.e.,
entropy) and the actual information provided by it (i.e.,
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surprisal). It can be thus used to quantify the difference be-
tween the expected information of a grapheme given its pos-
sible pronunciations and the information provided by the ac-
tual grapheme-phoneme pairing. Importantly, similar to entro-
py and surprisal, information gain can be quantified over un-
conditional probabilities, or using conditional values (in dif-
ferent grain sizes). Note also that because information gain is
the difference between entropy and surprisal, its unit is bits,
too.

To illustrate, consider the hypothetical example above, re-
garding the unconditional mappings of ea (see also Table 1).
Given a grapheme ea a reader expects 0.97 bits of information
(the unconditional entropy value calculated over the distribu-
tion ea ➔/i/ in 60%, ea ➔/ɛ/ in 40%; i.e., −(0.6 × log20.6 +
0.4 × log20.4)). Let's assume that the reader now encounters
the word head. In this case, the surprisal of the grapheme-
phoneme mapping of the vowel is −log20.4 = 1.32. The un-
conditional information gain of the word head is therefore
negative: the actual observed information is higher (i.e., the
event is more unpredictable) than the expected value: 0.97 −
1.32 = − 0.35 bits. In contrast, the unconditional information
gain of the word bead is positive: the actual information (i.e.,
−log20.6 = 0.74) is lower than the expected, and equals 0.97 −
0.74 = 0.23 bits. Importantly, similar to entropy and surprisal,
information gain can be applied not only to unconditional
(context-independent) probabilities, but also to conditional
(context-dependent) events. To compute conditional informa-
tion gain, we use the difference between the conditional en-
tropy over some context and the conditional surprisal. For
example, to calculate the coda-conditional information gain
of the word head, we take the conditional entropy of ea given
the coda -d, and subtract the conditional surprisal of ea➔/ɛ/
given -d. Thus, in the hypothetical example above (where
given coda -d, ea➔/i/ in 30%, ea➔/ɛ/ in 70%), the informa-
tion gain of head is now positive: the conditional entropy is
0.88 bits (i.e., −(0.3 × log20.3 + 0.7 × log20.7)), the condition-
al surprisal is 0.51 bits (i.e., −log20.7), and thus the informa-
tion gain is 0.88 − 0.51 = 0.37 bits. Conceptually, this means
that given the coda -d the pronunciation /ɛ/ is more predictable
than the average event. Note that in cases where entropy and
surprisal are identical (i.e., when the expected information
equals the actual information), information gain is 0.

Information in orthography to phonology:
real-world examples

In the previous section, we used simplified examples to expli-
cate how information-theoretic constructs can be used to char-
acterize the structure of the orthography-phonology mapping.
In this section, we apply these constructs to a large-scale cor-
pus of English words.

Corpus description

Our estimation of the information in English words is based
on an analysis of words from the Unisyn database (Fitt, 2001)
which contains 117,625 English words and their pronuncia-
tions. Unisyn was used instead of CELEX (Baayen,
Piepenbrock, & Van Rijn, 1995) for two reasons. First,
Unisyn contains more words and their pronunciations than
CELEX. Second, Unisyn contains Perl scripts to adapt its
“accent-independent keyword lexicon” to a wide variety of
accents, whereas CELEX pronunciations are given only in
Received Pronunciation. For this study, the General
American pronunciations were used because the behavioral
data were from the United States-based English Lexicon
Project (ELP; Balota et al., 2007). Note that all analyses below
are based on a subset of the Unisyn corpus containing only
mono-syllabic words, with a total of 10,093 word types. Also
note that this set of items includes some proper names and
acronyms. In addition, the database includes words with apos-
trophes (e.g., can't), but the apostrophe was not included in the
list of graphemes in a word (e.g., in can't the list included the
graphemes c, a, n, and t)2.

Next, we constructed a program to match the graphemes in
eachwordwith each phoneme in its pronunciation. This program
operated using two data sources. One was the Unisyn database
already described. The other was a master list of grapheme-
phoneme correspondences (GPCs). The GPCs were constructed
by the research team first by connecting a single phoneme with
graphemes ofmultiple lengths. For example, the phoneme /i/ was
associated with the graphemes e (median), ey (key), ea (team), ee
(meet), ey (key), and i (quiche), among others. As much as pos-
sible, consonant phonemes were associated with graphemes con-
taining only consonant letters. For example, the /ʤ/ sound was
associated with g in strange—not ge—despite that the E is a
marker that the G is pronounced /ʤ/. This also applied to cases
of gu (e.g., in guest, guide, and guy) where theUwas marked as
silent. Similarly, vowel phonemes were usually associated with
graphemes containing only vowel letters. For example, in the
word half, the vowel phoneme (/æ/) was associated with a in
rather thanwith the sequence al despite the presence of additional
words with the al pattern where l has no sound (e.g., calm, palm).

2 This decision was made since the English Lexicon Project –which was used
for the validation of our measures – also includes such words. To make sure
that the decision to keep words with apostrophes in the database did not affect
our results significantly, we also estimated the information-theoretic measures
based on a sub-set of the corpus that did not include words with apostrophes.
Then, we examined the correlation of the information-theoretic computed on
the corpus with and without words with apostrophes over the remaining words
(i.e. words without apostrophes; n=9289words). The observed correlations for
all information-theoretic measures (surprisal, entropy, and information gain;
unconditional, coda-conditional and onset-conditional) were near perfect,
ranging between r = 0.977 to r = 0.999. Thus, the decision regarding the
inclusion (or exclusion) of words with apostrophe seem to only have a negli-
gible effect on the estimation of the information-theoretic measures.
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There was one notable exception to the vowel-phoneme
vowel-letter principle, where rhotacized vowels were con-
cerned. In part, this was because the rhotacized /ɝ/ phoneme
is considered a single phoneme. In other cases, the vowel and
R made separate sounds but are so commonly associated with
each other they were treated as a single grapheme (e.g., /ɑɹ/ for
ar in car; /eɪɚ/ for -are in care; aɪɚ for -ire in fire, /ɔɹ/ for or in
for). There was one similar consonant case, qu, where the two
letters are almost always pronounced with the two-phoneme
unit /kw/.

In almost all cases, graphemes consisted only of letters that
appeared consecutively. There was one exception, the vowel-
consonant-E graphemes. These graphemes consist of a vowel
letter (i.e., A, E, I, O, U, or Y), a single consonant letter, and a
single E (e.g., in make, mete, mite, note, cute, or type). So,
[aeiou]-e was considered a grapheme (e.g., a-e) and so on.
Also note that the letters w and y could be classified as either
consonants or vowels: They were classified as a consonant
letter when they corresponded to a consonant phoneme, and
as a vowel when they corresponded to a vowel sound.

Treating vowel-R and vowel-consonant-E patterns as sin-
gle GPCs did increase the consistency of GPCs relative to
body-rime units. For example, by creating the ar➔/ɑɹ/ pattern,
there were fewer instances of a➔/ɑ/ than if the A and R were
treated as separate graphemes (e.g., a➔/ɑ/ and r➔/ɹ/. As a
result, the coding system might have slightly over-estimated
words’ GPC consistency.

The program operated by trying every GPC in the master
list against every letter and sound in the word. For example,
for the word get, coded /gEt/ in X-SAMPA, the program
would examine the letters, moving from left-to-right, so g first.
Then it would try to find a GPC that contained a g letter and
tried to locate one that contained one of the sounds in /gEt/. It
would locate g=/g/ and code those together. It would repeat
this process for the remaining letters. It was designed to do this
for GPCs with multiple letters (e.g., tch=/C/) and multiple
phonemes (e.g., x=/ks/). In general, one of the underlying
principles of the GPC program was a minimization of the
number of graphemes. Thus, in cases where a consistent larger
grapheme could be extracted, the program tended to do so
(e.g., qu in the word quick). The decoded versions of the
words can be found in the Supplementary Material "https://
osf.io/kfme8/", and can also be examined using the Phinder
program available at https://phinder.devinkearns.org.

In what follows, we use this corpus to assess the infor-
mation in the mapping between orthography and phonolo-
gy (and between phonology and orthography) in English.
We do so by examining surprisal, entropy and information
gain of English vowels in different contexts (uncondition-
al, coda-conditional, and onset-conditional). These analy-
ses are meant to provide intuitions regarding how these
metrics capture the information distribution of letter-to-
sound correspondences in English.

Surprisal

Figure 1 presents examples for three (grapheme-to-phoneme)
surprisal measures: unconditional, conditional on coda, and
conditional on onset, for three words containing the grapheme
ea: bead, head, and health. To emphasize, these values are
based on the real-world probabilities of ea readings, based on
the corpus. Note that in terms of unconditional surprisal, bead
has a lower surprisal (i.e., higher predictability) than head and
health. This is because the pronunciation ea➔/i/ is more com-
mon than eaà/ɛ/ across the full corpus. Calculations conditional
on the coda, in contrast, produce higher surprisal (more unpre-
dictability) for bead compared to head. This means that given
the coda -d, the reading /i/ is less common than /ɛ/. Note also
that health has an even lower conditional surprisal value than
head, suggesting that the mapping of ea to /ɛ/ has a higher
probability given the coda -lth than the coda -d. Note also that
in these two words, coda-conditional surprisal values are lower
than onset surprisal. This suggests that the codas in these two
words (-d and -lth) are more predictive of the mapping ea➔/ɛ/
compared to their onset, h-. As will be shown in the next sec-
tion, this is in fact a representative feature of the full corpus.

Entropy

To exemplify the use of entropy, we turn to an analysis of the
uncertainty in vowel pronunciations given different contexts
(independent of context, coda-dependent, and onset-depen-
dent) across all monosyllabic English words in the corpus.
Figure 2 presents the entropy in grapheme-to-phoneme map-
ping of all vowel graphemes that appear in more than 100 out
of the 10,093 word types in the corpus (that is, in at least ~1%
of words). Note that this figure includes the unconditional
(Shannon) entropy of each vowel, as well as the Markov en-
tropy (mean conditional uncertainty) given the coda, as well
as the onset. Several observations can be made from these
results. First, in English, there is more uncertainty in uncon-
ditional, versus conditional, reading of vowel graphemes. In
other words, the context in which a vowel appears (either coda
or onset) reduces the uncertainty regarding its pronunciation.
Second, in most cases, the coda is more predictive (i.e., re-
duces uncertainty to a larger extent) compared to the onset.
Both of these findings are consistent with earlier investiga-
tions showing that the context in which a vowel grapheme
appears – and the coda of monosyllabic words in particular
– is a reliable cue for its pronunciation (Aronoff & Koch,
1996; Kessler & Treiman, 2001; Stanback, 1992). Next, to
examine this issue more closely, we calculated the overall
Markov entropy conditional on coda vs. onset (averaged
across all vowel graphemes, weighted by their marginal prob-
ability), and found that indeed coda Markov entropy is lower
than onset Markov entropy: 0.25 versus 0.37 bits. Both of
these values are smaller than the overall Shannon entropy

Behav Res

https://osf.io/kfme8/
https://osf.io/kfme8/
https://phinder.devinkearns.org


(across all vowel graphemes): 0.69 bits. Third, and important-
ly, Fig. 2 shows that vowels differ from each other in their
uncertainty in general and, moreover, that uncertainty varies in
the three grain sizes (or in other words: the uncertainty of
different vowels depends on whether and how it is
conditionalized). While outside the scope of this paper, this
information can be used to assess to ease or difficulty in ac-
quiring the orthography-to-phonology mapping of a given
grapheme and to assess the extent to which a reliance on
context helps in deciphering different graphemes.

Information gain

We next calculated the information gain (difference be-
tween entropy and surprisal) of all mono-syllabic words
in the corpus. We calculated both unconditional informa-
tion gain values as well as coda-conditional and onset-
conditional values. Note that across all words, there was
a correlation between unconditional and conditional values
(unconditional and coda-conditional correlation: r = 0.51;
unconditional and onset-conditional correlation: r = 0.67).
This is expected: events that have some level of predict-
ability independent of context have in many cases a similar
level of predictability given a context (e.g., the pronuncia-
tion of ee is nearly always /i/ both given a context as well
as unconditionally, and as a result information gain across
grain sizes is similar). Importantly, however, this correla-
tion is not perfect, and in many cases unconditional and
conditional values differ substantially. Figure 3 presents
some examples of unconditional and coda-conditional in-
formation gain values of words calculated using real-world
probabilities. Note the difference between the words head
and bead. Unconditionally, bead has a positive information
gain, while head has a negative gain. When conditioned on
the coda, however, the opposite pattern is observed: head
has a higher information gain compared to bead. The word
health has a negative information gain unconditionally, but
a near-0 value conditional on the coda. This means that

given the coda -lth the actual information provided by
ea➔/ɛ/ (i.e., surprisal of ea➔/ɛ/ given the coda –lth) is
similar to the expected value (i.e., entropy of the grapheme
ea given –th). The other two points in this graph represents
information gain values of two famous examples for
grapheme-phoneme irregularity in English: mint versus
pint. Note how mint has positive information gain values
(conditionally and unconditionally), whereas pint presents
a strong negative deviation from expected information
levels, in both dimensions3. This is expected given the
difference in predictability of the pronunciation of these
two words.

Behavioral impact

So far, we introduced terms from information theorywhich we
hypothesize are relevant for the mapping of orthography onto
phonology, and exemplified how these can be used to assess
the real-world information structure of a writing system. We
now turn to examine whether they indeed impact reading per-
formance, and how their explanatory power compares to typ-
ical measures of orthography-to-phonology consistency.

To do so, in the following we use information-theoretic
metrics to predict inter-item variance in behavioral data.
Most of our investigation focuses on the naming portion of
the English Lexicon Project (ELP; Balota et al., 2007), which
includes data of 40,481 English words, collected on large
samples of native English university students (N = 444 in
the naming task). From the 40,481 words in ELP, we focus
here only on mono-syllabic words that also exist in our cor-
pus: 5713 words overall. We examine how well information-
theoretic measures predict between-item variance in response
latencies and accuracy. In the first section, we simply examine
whether the information-theoretic measures indeed have an
effect on behavior (controlling for general measures:

3 in fact, from the 10,093 words in the corpus, pint had an unconditional and
coda-conditional information gains in the 3rd and 1st percentile, respectively.

Fig. 1 Examples for surprisal values: unconditional, conditional on coda, and conditional on onset, for three words containing the grapheme ea
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frequency, length, and articulation parameters). In the second
section, we compare the information-theoretic measures to
standard measures of orthography-to-phonology consistency.
In the third section, we demonstrate the flexibility of the cur-
rent approach by further exploring the relevance of
information-theoretic measures to reading behavior in other
contexts (investigating lexical decision behavior, and compar-
ing information in orthography-to-phonology mapping to
phonology-to-orthography). To preview our findings, we
show that not only the information-theoretic measures in the

three grain sizes indeed impact reading, they do so above and
beyond existing consistency measures.

Information-theoretic measures as predictors
of behavior

As a starting point, we examined whether surprisal in
orthography-to-phonology mapping accounts for cross-item
variance in RT and accuracy. The basic prediction here is that
words with more surprising (i.e., unpredictable) mapping will
be characterized by longer RTs and higher error rates. To ex-
amine this prediction, we ran six multiple regression models.
Each model included surprisal in one grain size (uncondition-
al, coda-conditional, or onset-conditional) as a predictor.
Three models were run with mean word accuracy as a depen-
dent variable, and the remaining three models had mean word
log-transformed RT as a dependent variable. All models also
included word length (in graphemes) and log-transformed
word frequency (estimated from the HAL corpus, which
includes 131M English tokens, Burgess & Livesay, 1998),
as control variables.We also included dummy-coded variables
to control for the place and manner of articulation of the first
consonant in a word (see Yap & Balota, 2009).

As can be seen in Table 2, surprisal indeed accounts for
variance in behavioral outcomes. As predicted, higher surpris-
al is associated with longer RTs and lower accuracy rates.
Significant effects were observed in all three grain sizes: un-
conditional, coda-conditional, and onset-conditional (even
though conditional values had generally smaller effects in
comparison to unconditional values).

Fig. 3 Examples for information gain in the real-world examples. The x-
axis shows unconditional values and the y-axis shows coda-conditional
values.Points in red are words with the grapheme ea; points in greenwith
i. The dashed line shows the overall linear relation between coda-
conditional and unconditional values based on all mono-syllabic words
in the corpus

Fig. 2 Entropy of vowel graphemes (orthography to phonology): unconditional, conditional on coda, and conditional on onset entropy. This plot
includes all vowel graphemes that appear in at least 100 words in the corpus
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Importantly, while surprisal does account for some vari-
ance in behavior, we hypothesized that it would only have
limited explanatory power. This is due to the fact that surprisal
only takes into account the probability of a given grapheme-
to-phoneme correspondence, ignoring the uncertainty impli-
cated by the grapheme overall, across all of its possible real-
izations. In fact, an additional set of six regression models
revealed significant effects of entropy – unconditional, coda-
conditional, or onset-conditional, on naming behavior (in five
out of six models; see Table 3).

So far, analyses revealed that both the uncertainty in the
pronunciation of a grapheme (entropy, Table 3 above) as well
as the actual unpredictability in its actual reading (surprisal,
Table 2) have an effect on reading behavior. We next focus on
the information gain of a word – the difference between en-
tropy and surprisal, and its impact on reading outcomes.
Because information gain quantifies the distance between
the expected and observed information, it potentially serves
as a single measure that can account for the surprisal of a

grapheme-phoneme event, as well as the uncertainty implicat-
ed by a grapheme.

To examine the predictive value of information gain, we
ran an additional six multiple regression models (three on log-
transformed RT, three on accuracy) to examine the effect of
information gain on naming. Each model included one of the
information gain measures: unconditional information gain,
coda-conditional information gain, and onset-conditional in-
formation gain. Similar to the models above, all models also
included word length, log-transformed word frequency and
dummy-coded articulation variables as control variables. As
can be seen in Table 4, in all six models, there was a highly
significant effect of the information gain on the dependent
variable. This suggests that information gain indeed impacts
naming behavior, where high information gain (in each of the
three grain sizes) is predictive of faster response latencies and
higher accuracy. These results are also visually depicted in
Fig. 4, which shows the raw effect of information gain mea-
sures on mean RT and accuracy.

Table 2 Effect of surprisal on word naming RT and accuracy in ELP data

Model DV Predictor β SE t p R2 (%)a

1 Acc. Unconditional surprisal – 0.012 0.001 – 14.533 < .001 3.2

Log Freq. 0.013 0.001 28.270 < .001 12.0

Word Length 0.010 0.001 9.058 < .001 1.2

Articulationb 0.6

2 Log-RT Unconditional surprisal 0.011 0.001 9.896 < .001 1.2

Log Freq. – 0.017 0.001 – 27.476 < .001 9.6

Word Length 0.0024 0.002 1.528 .13 0.03

Articulationb 14.6

3 Acc. Coda-conditional surprisal – 0.012 0.002 – 7.539 < .001 0.9

Log Freq. 0.012 0.001 26.916 < .001 11.1

Word Length 0.009 0.001 7.628 < .001 0.9

Articulationb 0.6

4 Log-RT Coda-conditional surprisal 0.014 0.002 6.509 < .001 0.6

Log Freq. – 0.016 0.001 26.817 < .001 9.2

Word Length 0.004 0.002 2.515 .02 0.1

Articulationb 14.2

5 Acc. Onset-conditional surprisal – 0.016 0.001 – 12.910 < .001 2.5

Log Freq. 0.013 0.001 27.878 < .001 11.8

Word Length 0.011 0.001 9.233 < .001 1.3

Articulationb 0.7

6 Log-RT Onset-conditional surprisal 0.009 0.007 5.696 < .001 0.4

Log Freq. – 0.016 0.001 – 26.790 < .001 9.2

Word Length 0.0025 0.002 1.571 .12 0.03

Articulationb 14.5

Note: Acc. = Accuracy; DV = dependent variable; Log-RT = Log-transformed response time; Log Freq. = Log-transformed frequency; SE = standard
error
a R2 values for each predictor are the difference between the R2 of a model without this predictor and that of a full model that includes it
bArticulation parameters do not have estimates, SE, and t/p-values because these are a set of 15 dummy-coded variables (reflecting manner/place of
articulation of first consonant)
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Comparison of information-theoretic metrics
and other consistency measures

Next, we asked how our information-theoretic metrics com-
pare to standard consistency measures. In this section we thus
investigate the correlations between information-theoretic
measures and standard consistency measures, and examine
whether information-theoretic measures add to the predictive
power of typical measures. Given the results above, we exam-
ine both surprisal and information gain in the three grain sizes.
It should be noted that various possible consistency measures
exist. For simplicity, we focus here on two commonmeasures.
The first, vowel consistency, examines the number of pronun-
ciations of a given vowel grapheme in the samemanner as in a
given word, across all other words in the corpus (i.e., the
vowel consistency value of the word head is the ratio of ea
pronounced as /ɛ/ out of all words in the corpus with the vowel
grapheme ea; Chateau & Jared, 2003; Treiman et al., 1995).
The second, body-rime consistency, examines consistency at

the body-level, looking at the number of similar pronuncia-
tions of a given body in the same manner as in a given word
(e.g., the body-rime consistency of the word head is the per-
cent of ead ➔/ɛd/; e.g., Cortese & Simpson, 2000; Jared,
McRae, & Seidenberg, 1990; Ziegler, Stone, & Jacobs,
1997b). Note that we calculated vowel consistency and
body-rime consistency based on types rather than on tokens
(i.e. frequency did not play a role as both frequent and infre-
quent words were counted once in all calculations). This was
done to provide a closer parallel to our information-theoretic
measures which were calculated on types, too.

The correlations between surprisal and information gain at
the three grain sizes and the two existing consistency mea-
sures are shown in Table 5. As can be seen, the various mea-
sures, including the information-theoretic measures and typi-
cal consistency measures, are generally correlated with each
other. Particularly high correlations are observed between sur-
prisal values and consistency measures at the same grain size
(i.e., unconditional surprisal and vowel consistency, r = –

Table 3 Effect of entropy on word naming RT and accuracy in ELP data

Model DV Predictor β SE t p R2 (%)a

1 Acc. Unconditional Entropy – 0.012 0.0021 – 5.804 < .001 0.5

Log Freq. 0.012 0.0005 26.479 < .001 10.9

Word Length 0.010 0.0012 8.775 < .001 1.2

Articulationb 0.6

2 Log-RT Unconditional Entropy 0.001 0.0029 0.440 .661 < 0.01

Log Freq. – 0.016 0.0006 – 26.242 < .001 8.8

Word Length 0.003 0.0016 1.899 .058 0.1

Articulationb 14.2

3 Acc. Coda-conditional Entropy – 0.014 0.0026 – 5.344 < .001 0.4

Log-freq 0.012 0.0005 26.675 < .001 11.0

Word length 0.009 0.0012 7.414 < .001 0.9

Articulationb 0.6

4 Log-RT Coda-Conditional Entropy 0.014 0.0035 4.097 < .001 0.2

Log Freq. – 0.016 0.0006 – 26.554 < .001 9.0

Word Length 0.004 0.0016 2.535 .011 0.1

Articulationb 14.2

5 Acc. Onset-conditional Entropy – 0.013 0.0021 – 6.374 < .001 0.6

Log Freq. 0.012 0.0005 26.744 < .001 11.1

Word Length 0.010 0.0012 8.872 < .001 1.2

Articulationb 0.7

6 Log-RT Onset-conditional Entropy 0.006 0.0028 2.145 .032 < 0.1

Log Freq. – 0.016 0.0006 – 25.987 < .001 8.7

Word Length 0.003 0.0016 2.138 .032 0.1

Articulationb 13.6

Note: Acc. = Accuracy; DV = dependent variable; Log-RT = Log-transformed response time; Log Freq. = Log-transformed frequency; SE = standard
error.
a R2 values for each predictor are the difference between the R2 of a model without this predictor and that of a full model that includes it.
bArticulation parameters do not have estimates, SE, and t/p-values because these are a set of 15 dummy-coded variables (reflecting manner/place of
articulation of first consonant).
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0.86; coda-conditional surprisal and body-rime consistency, r
= – 0.9). Correlations are lower between vowel/body-rime
consistency and information gain measures, but still positive,
and sometimes high (r ranging from 0.2 to 0.72 across differ-
ent grain sizes). This is again expected: on the one hand in-
formation gain measures tap into parts that are not captured by
typical measures (specifically, grapheme entropy), but they
are also affected by surprisal, which is tightly related to con-
sistencymeasures. Overall, though, inmany cases correlations
are far from perfect (note in particular the low correlations
between measures focusing on different grain sizes, e.g.,
body-rime consistency and onset-conditional information
gain). This led us to examine how information-theoretic mea-
sures fare in relation to typical consistency measures in terms
of their predictive power. Specifically, we asked whether
information-theoretic measures would have an effect on nam-
ing performance beyond that of standard consistency
measures.

Our analytic strategy for this comparison was as follows.
First, we ran two benchmark models – one with (log-

transformed) RT as a DV, and another with accuracy. These
two base models had similar predictors: the various control
variables (log-frequency, length, and articulation predictors)
as well as the two standard consistency measures (vowel and
body-rime consistency). Then, we ran models that in addition
to these predictors included information-theoretic measures:
either surprisal or information gain measures. We then con-
ducted F-tests comparing the fit of the full model (including
the surprisal/information metrics) to that of the base model
(using the anova() function in R).

Table 6 presents the result of this comparison. As can be
seen, all models that included the information-theoretic values
were characterized by a significant improvement in model fit
compared to the base models. This is true for both surprisal
and information-gain measures. It is important to note that this

Table 4 Effect of information gain (IG) on word naming RT and accuracy in ELP data

Model DV Predictor β SE t p R2 (%)a

1 Acc. Unconditional IG 0.012 0.001 13.392 < .001 2.7

Log Freq. 0.013 0.001 28.028 < .001 11.9

Word Length 0.010 0.001 8.572 < .001 1.1

Articulationb 0.6

2 Log-RT Unconditional IG – 0.012 0.001 -10.613 < .001 1.4

Log Freq. – 0.017 0.001 -27.573 < .001 9.6

Word Length 0.003 0.002 1.834 .067 < 0.1

Articulationb 14.5

3 Acc. Coda-conditional IG 0.011 0.002 5.301 < .001 0.4

Log-freq 0.012 0.001 26.462 < .001 10.8

Word length 0.010 0.001 8.329 < .001 1.1

4 Log-RT Coda-Conditional IG – 0.013 0.003 – 4.978 < .001 0.3

Log Freq. – 0.016 0.001 – 26.468 < .001 8.9

Word Length 0.003 0.002 1.922 .055 0.1

Articulationb 14.3

5 Acc. Onset-conditional IG 0.017 0.002 11.323 < .001 2.0

Log Freq. 0.012 0.001 27.333 < .001 11.4

Word Length 0.099 0.001 8.528 < .001 1.1

Articulationb 0.6

6 Log-RT Onset-conditional IG – 0.018 0.002 – 8.654 < .001 1.0

Log Freq. – 0.016 0.001 – 27.024 < .001 9.2

Word Length 0.003 0.002 1.838 .066 < 0.1

Articulationb 14.1

Note: Acc. = Accuracy; DV = dependent variable; Log-RT = Log-transformed response time; Log Freq. = Log-transformed frequency; SE = standard
error
a R2 values for each predictor are the difference between the R2 of a model without this predictor and that of a full model that includes it
bArticulation parameters do not have estimates, SE, and t/p-values because these are a set of 15 dummy-coded variables (reflecting manner/place of
articulation of first consonant)

�Fig. 4 Effects of information gain on mean accuracy (left) and RT (right)
in naming data. The top row shows effects of unconditional information
gain, themiddle row of coda-conditional information gain, and the bottom
row of onset-conditional information gain
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improvement does not stem only from the addition of onset-
related information (which is not accounted for by vowel/
body-rime consistency measures): a significant improvement
was observed also when comparing the basemodels tomodels
with only unconditional and coda-conditional information-
theoretic metrics.

Interestingly, we found that not only information-theoretic
measures account for variance beyond typical measures, but
also that the consistency measures have predictive value be-
yond that of the information-theoretic measures. This was
revealed by parallel analysis examining the improvement in
fit when adding typical consistency measures (vowel and
body-rime consistency) to base models that include the infor-
mation theoretic measures (surprisal or information gain in the
three grain sizes; see Table 7). Together, the results of these
two sets of models suggest that typical consistency measures
and our information-theoretic measures have at least some
unique (non-overlapping) predictive value. We return to this
point in the General Discussion.

Additional investigations

Effects of orthography-to-phonology transparency
on lexical decision

The effects of the information-theoretic measures on behavior
are not confined to tasks where reading aloud is required.
Table 8 shows the results of 6 regression models, examining
the impact of information gain on accuracy and log-
transformed RT in the lexical decision portion of the ELP4.

As can be seen, information gain still has significant effects on
lexical decision response latencies and errors (while control-
ling for word frequency and length) in five out of six models,
albeit with smaller effect sizes compared to the naming data.

Orthography-to-phonology versus
phonology-to-orthography

An additional question is whether naming behavior is affected
only by the consistency in the mapping between orthography
and phonology, or also by that in the other direction – between
phonology-to-orthography (e.g., the mapping between the
sound /ɛ/ and the vowel grapheme ea; see, e.g., Lacruz &
Folk, 2004; Ziegler, Petrova, & Ferrand, 2008). As noted
above, one of the advantages of the information-theoretic
framework is in its flexibility in capturing information across
different types of mappings. We thus repeated the estimation
of the information-theoretic measures described above, but
this time using probabilities of mappings from phonology-
to-orthography. As might be expected, positive correlations
between orthography-to-phonology and phonology-to-
orthography information gain were observed in each of the
three grain sizes: unconditional: r = 0.6; coda-conditional: r
= 0.46; onset-conditional: r = 0.37: That is, words that are
more transparent in one mapping direction are also generally
more transparent in the other direction.

We next examined the predictive value of the phonology-
to-orthography measures on naming performance. Our analyt-
ic strategy here was similar to that above comparing the
information-theoretic metrics to standard consistency mea-
sures (Tables 6 and 7). We first ran six baseline models (with
either accuracy or log-RT as DV) including log-frequency,
word length, and the articulation parameters, as well as an
orthography-to-phonology information gain measure in one
grain size (unconditional, coda-conditional, or onset-condi-
tional). We then compared these baseline models to models
that included all of these parameters, plus an information gain
measure of phonology-to-orthography (in the same grain
size). This examined whether the structure of the phonology-
to-orthography mapping explains naming behavior above and
beyond orthography-to-phonology transparency. The results
are presented in Table 9. In all six model comparisons, we
found a significant improvement in model fit when adding
the phonology to orthography information gain measure.
This suggests that indeed the mapping between phonology-
to-orthography accounts for additional variance that is not
accounted for by orthography to phonology alone.

General discussion

In this paper, we propose a new framework for assessing the
transparency of the mapping between orthography to

4 The focus here on information gain measures, and not surprisal, is simply
due to conciseness considerations. Further analyses revealed that running the
same models reported in this section with surprisal values instead of informa-
tion gain showed a similar pattern of results with significant effects in all six
models. This is true also for the next section on phonology-to-orthography vs.
orthography-to-phonology effects.

Table 5 Correlations between information-theoretic measures and typ-
ical consistency measure

Measure 2 3 4 5 6 7 8

1. Unconditional surprisal .63 .76 .93 .47 .62 .86 .60

2. Coda-conditional surprisal ― .29 .6 .79 .19 .55 .90

3. Onset-conditional surprisal ― .69 .17 .81 .66 .30

4. Unconditional Information gain ― .51 .67 .72 .53

5. Coda-conditional information gain ― .1 .37 .56

6. Onset-conditional information gain ― .49 .20

7. Vowel consistency ― .55

8. Body-rime consistency ―

Note: For readability, values appear here in absolute values. Actual cor-
relations between surprisal measures and information gain/consistency
measures are negative due to opposite scales
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phonology. Our approach is rooted in the mathematical tools
provided by Information Theory, specifically relying on three
information-theoretical notions. First, we assessed the
surprisal of a grapheme-to-phoneme correspondence, as a
measure for the extent of unpredictability in a mapping.
Second, we calculated the entropy of a grapheme, to quantify
the uncertainty implicated by it. Last, we looked at the infor-
mation gain of a grapheme-to-phoneme correspondence,
quantifying the difference between the expected amount of
information in a grapheme and the information provided by
the actual grapheme-to-phoneme mapping (i.e., the difference
between entropy and surprisal). To reiterate, by assessing both

surprisal and entropy our approach accounts for the unpredict-
ability of the mapping between a given grapheme and pho-
neme as well as the overall uncertainty implicated by a graph-
eme.We first demonstrated how these measures can be used to
quantify different aspects of the English writing system and its
transparency. Then, we showed that these measures are related
to reading behavior, accounting for inter-item variability in
naming and word recognition more broadly. Throughout these
analyses, the flexibility of the current approach was demon-
strated, by examining transparency in different grain sizes
(i.e., context independent, coda-dependent and onset depen-
dent), and by quantifying the amount of information not only

Table 6 Added predictive value of information-theoretic measures over typical consistency measures for word naming accuracy and RT

DV Model with information-theoretic predictors Fa p ΔR2 (%)

Accuracy Base model +
All surprisal measures

32.793 < .001 1.5

Base model +
Unconditional surprisal +
Coda-conditional surprisal

46.473 < .001 1.4

Log-RT Base model +
All surprisal measures

25.399 < .001 1.0

Base model +
Unconditional surprisal +
Coda-conditional surprisal

34.003 < .001 0.9

Accuracy Base model +
All IG measures

19.012 < .001 0.9

Base model +
Unconditional IG +
Coda-conditional IG

22.837 < .001 0.7

Log-RT Base model +
All IG measures

20.799 < .001 0.8

Base model +
Unconditional IG +
Coda-conditional IG

26.964 < .001 0.7

Note: DV: dependent variable; IG: information gain; RT: reaction time. Base model predictors are vowel consistency, body-rime consistency, log-
transformed frequency, length, and the set of 15 dichotomous articulation characteristics.
a df for all models with three additional predictors compared to base models are 3, 5693 and df for all models with two additional predictors are 2, 5694

Table 7 Added predictive value of typical measures to information-theoretic measures for word naming accuracy and RT

DV Predictors in base model Model with information-theoretic predictors Fa p ΔR2 (%)

Accuracy Controls, surprisal measures Base model +
Vowel consistency,
Body-rime consistency

20.354 < .001 0.7

Log-RT Controls, surprisal measures Base model +
Vowel consistency,
Body-rime consistency

27.817 < .001 0.7

Accuracy Controls, information gain measures Base model +
Vowel consistency,
Body-rime consistency

14.731 < .001 0.4

Log-RT Controls, information gain measures Base model +
Vowel consistency,
Body-rime consistency

15.440 < .001 0.4

Note: DV: dependent variable; RT: reaction time. Control predictors are log-transformed frequency, length, and the set of 15 dichotomous articulation
characteristics
a df for all models with two additional predictors are 2, 5694
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in the mapping of orthography-to-phonology, but also in the
opposite direction from phonology-to-orthography.

The motivation behind this study was to offer a compre-
hensive account of print-speech transparency, which can be
flexibly used to capture regularities in different mappings and
considering both the predictability of a grapheme-phoneme
correspondence as well as the overall uncertainty (entropy)

regarding a full distribution of possible pronunciations.
Indeed, we demonstrated that our approach diverges from
standard consistency measures. Interestingly, the analyses re-
vealed that the information-theoretical measures and the stan-
dard measures of consistency – vowel consistency and body-
rime consistency – account for non-overlapping variance in
naming and lexical decision behavior (see Tables 6 and 7

Table 8 Effect of information gain (IG) on mean word RT and accuracy in ELP lexical decision

Model DV Predictor β SE t p R2 (%)a

1 Acc. Unconditional IG 0.011 0.0017 6.303 < 0.0001 0.5%

Log Freq. 0.045 0.0009 48.807 < 0.0001 29.2%

Word length 0.049 0.0022 22.446 < 0.0001 6.2%

2 Log-RT Unconditional IG – 0.010 0.0016 – 6.189 < 0.0001 0.4%

Log Freq. – 0.036 0.0007 – 53.602 < 0.0001 33.0%

Word length – 0.010 0.0016 – 5.918 < 0.0001 0.4%

3 Acc. Coda-conditional IG 0.004 0.0039 0.976 0.329 0.01%

Log Freq. 0.044 0.0009 48.233 < 0.0001 28.7%

Word length 0.049 0.0022 22.374 < 0.0001 6.2%

4 Log-RT Coda-conditional IG – 0.009 0.0029 – 3.170 0.002 0.1%

Log Freq. – 0.036 0.0007 – 53.202 < 0.0001 32.7%

Word length – 0.010 0.0016 – 5.902 < 0.0001 0.4%

5 Acc. Onset-conditional IG 0.020 0.0031 6.442 < 0.0001 0.5%

Log Freq. 0.044 0.0009 48.768 < 0.0001 29.2%

Word length 0.050 0.0022 22.593 < 0.0001 6.3%

6 Log-RT Onset-conditional IG – 0.011 0.0023 – 4.785 < 0.0001 0.3%

Log Freq. – 0.036 0.0007 – 53.386 < 0.0001 32.8%

Word length – 0.011 0.0016 – 6.020 < 0.0001 0.4%

Note: Acc. = Accuracy; DV = dependent variable; Log-RT = Log-transformed response time; Log. Freq. = Log-transformed frequency; SE = standard
error
a R2 values for each predictor are the difference between the R2 of a model without this predictor and that of a full model that includes it

Table 9 Added predictive value of phonology-to-orthography measures to orthography-to-phonology measures

DV Predictors in base model Model with information-theoretic predictors Fa p ΔR2 (%)

Accuracy Controls,
O2P unconditional IG

Base model +
P2O unconditional IG

20.448 < 0.001 0.4%

Log-RT Controls,
O2P unconditional IG

Base model +
P2O unconditional IG

27.366 < 0.001 0.5%

Accuracy Controls,
O2P coda-conditional IG

Base model +
P2O coda-conditional IG

20.448 < 0.001 0.4%

Log-RT Controls,
O2P coda-conditional IG

Base model +
P2O coda-conditional IG

31.008 < 0.001 0.5%

Accuracy Controls,
O2P onset-conditional IG

Base model +
P2O onset-conditional IG

4.687 0.030 0.1%

Log-RT Controls,
O2P onset-conditional IG

Base model +
P2O onset-conditional IG

14.218 < 0.001 0.2%

Note: DV = dependent variable; Log-RT = Log-transformed response time; IG: information gain; O2P: orthography to phonology; P2O: phonology to
orthography; RT: reaction time; SE: standard error. Control predictors are log-transformed frequency, length, and the set of 15 dichotomous articulation
characteristics
a df for all models are 1, 4240
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above). To understand the reasons behind this finding, it is
important to underline the similarities and differences between
the information-theoretical and standard measures. One inher-
ent difference between information-theoretical and consisten-
cy measures is that the former set of measures capture an
aspect that the later by-definition do not: the overall uncertain-
ty over the possible pronunciations of a grapheme, assessed by
entropy. For example, standard measures would only consider
the probability of i➔ /ɪ/ to assess the consistency of the word
mint, whereas entropy (and information gain) considers the
predictability of this correspondence as well as the full distri-
bution of possible phonemes given i. Thus, graphemes with
many possible pronunciations are generally characterized by
higher entropy, even when the probability of many of these
pronunciations are low andmight not affect standardmeasures
of consistency. More broadly, and as exemplified above, two
grapheme-phoneme correspondences with an equal probabil-
ity might still diverge in their entropy. It seems that the effect
of entropy on behavior (see Table 3, above) leads to at least
some of the added predictive value of the information gain
measures (which are a function of both entropy and surprisal)
beyond standard consistency measures.

Moreover, taking entropy (and not only predictability) into
account leads also to differences between the approaches in
how they assess the transparency of words with very rare vowel
graphemes or bodies ("hermit words"). Consider as an example
the word laugh. Given the rareness of the body –augh, which
appears only in this word, the body-rime consistency of this
word is perfect – it has one friend (the word itself) and no
enemies, resulting in a body-rime consistency of 1. This will
also be reflected in the surprisal estimate of the word, which
will be minimal because p(i) = 1, log(p(i)) = 0, hence no sur-
prisal, or maximal predictability. In contrast, the information
gain of this word will not be set to the maximum level of
transparency. This is because in hermit words the entropy of
the vowel grapheme or body is also zero (the entropy of a
distribution with only one option with a probability of 1), and
since surprisal is equal to zero the information gain is zero, too.
In other words, while consistency (or surprisal) measures con-
sider hermit words as fully predictable, information gain mea-
sures assess them as neutral in terms of their transparency.

In addition to these differences between information gain
and consistency measures, two differences between surprisal
and consistency measures should also be noted. These mea-
sures are highly similar as both are calculated based on the
probability of some grapheme-to-phoneme correspondence at
a given grain size. Thus, at the vowel level, vowel consistency
and unconditional surprisal are both calculated according to
the probability of a given grapheme-to-phoneme correspon-
dence. The only difference between these two measures is the
use of a different scale: Consistency is calculated over raw
probabilities, while surprisal uses log-transformed values.
The results above raise the possibility that the psychological

effect of grapheme-to-phoneme correspondences may be lin-
ear as well as log-linear, or, alternatively, that it follows a
different non-linear function that resembles some combination
of linear and log-linear effects. This issue can be addressed by
future research, potentially by using subtler statistical analysis
(e.g., random forest analysis, Matsuki, Kuperman, & Van
Dyke, 2016) combined with designs with stimuli in values
that are maximally informative in distinguishing between lin-
ear and log-linear effects, which fall at different regions on the
probability distribution (and see, e.g., Smith & Levy, 2013, for
a related discussion in the context of word predictability).

Last, there is also another, subtler, difference between
body-rime consistency measure and its information-theoretic
parallel, coda-dependent surprisal. Our coda-dependent mea-
sure (as well as the onset-related measure) examines the trans-
parency of the vowel grapheme given the coda as a
constraining context. In contrast, body-rime consistency con-
cerns the transparency of the mapping of the full unit, the
coda, and is therefore also affected by the pronunciation of
the consonants. As a result, a word like lease would be con-
sidered inconsistent using standard body-rime consistency (as
lease does not rhyme with words such as please or tease),
whereas coda-dependent surprisal would consider lease trans-
parent because the vowel ea is pronounced as /i/, as expected
given the coda -se. Because inconsistency in consonants is
relatively rare in English, this difference is limited to a rela-
tively small number of words but may nevertheless be the
source of some of the differences between these measures.
Note also that in other languages, which have substantial de-
gree of irregularity in the pronunciation of consonants, ac-
counting for this difference is even more important. This
seemingly small difference points to a fundamental theoretical
question: What are the basic units of the mapping between
orthography to phonology — vowels or codas/onsets. At a
practical level, the question is what orthographic units should
serve as the basis for the calculation of the different
information-theoretic measures (e.g., whether to estimate the
body-level transparency of the word mint by examining the
surprisal/entropy of the grapheme i given the coda –nt, or of
the body –int as a whole).

One other point that deserves emphasis is that all of our
analyses examined whether differences in print-speech trans-
parency are related to inter-item variability in reading (i.e.,
whether words that are more transparent are read more easily).
To do so, our analyses focused on aggregated data from a
megastudy (the ELP), examining mean response latencies
and accuracy of a large number of words, aggregated across
a sample of highly skilled readers. As such, our results do not
speak to two important issues. First, it is still an open question
how the current results would generalize to in lab studies: that
is, whether the information-theoretic measures can capture
significant variance also in smaller-scale studies (see Balota,
Yap, Hutchison, & Cortese, 2012 for discussion of the
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differences between megastudies and more traditional
factorial experiments). A second issue is that our analyses
do not speak to the question of how does reliance on
orthography-to-phonology account for individual-differences
in reading (cf., e.g., Steacy et al., 2018). In general, analyses
conducted using data from mega-studies, such as the ELP,
only concerns the average behavior of the skilled reader: In
the current case, demonstrating that on average skilled readers
recognize faster and more accurately words with more trans-
parent O-P mapping. These findings, however, overlook the
extensive inter-individual variability in reading behavior, and
does not necessarily mean that the same measures can be used
to account for meaningful variability across individuals (see
Andrews, 2012 for discussion). To address this question, fu-
ture studies should examine the degree to which each individ-
ual is impacted by letter to sound transparency and examine its
correlation with overall reading proficiency skills. The current
information-theoretical metrics can be useful to this aim be-
cause they can quantify different aspects of transparency (e.g.,
surprisal vs. entropy) at different grain sizes (e.g., context
dependent/independent) to which individuals may be differ-
entially sensitive. In this context, it is also important to note
that the extent to which the reliance on orthography-to-
phonology mapping accounts for individual differences in
reading proficiency may be less pronounced in highly profi-
cient readers (the subjects in the ELP dataset used here), who
are likely to be very efficient in computing phonology and
who therefore may show decreased consistency effects in
word reading compared to younger readers (Sprenger-
Charolles, Siegel, Béchennec, & Serniclaes, 2003; but see,
Ziegler, Bertrand, Lété, & Grainger, 2014). Future studies
can use the measures provided here to examine these associ-
ations across development, accounting for the different as-
pects of the information distribution between orthography
and phonology.

Another general finding stemming from the current in-
vestigation is the significant effect of phonology-to-
orthography transparency on visual word recognition.
Whether such feedback effects indeed exist was a matter
of much debate in the reading literature for over two de-
cades (see, e.g., Chiarello, Vaden, & Eckert, 2018; Lacruz
& Folk, 2004; Lee, Hsu, Chang, Chen, & Chao, 2015;
Perry, 2003; Stone, Vanhoy, & Van Orden, 1997;
Ziegler, Montant, & Jacobs, 1997a; Ziegler et al., 2008).
As noted above, one of the advantages of the current
approach is its flexibility to easily capture the information
distribution of mappings in various directions. Our
information-theoretic approach, combined with the use
of large databases, revealed evidence for the existence of
phonology-to-orthography feedback effect on word nam-
ing performance (cf. Kessler, Treiman, & Mullennix,
2008, who did not find a feedback consistency effect in
an analysis of a large-scale naming database using

standard consistency measures). Nonetheless, note that
these effects were somewhat weaker than the feedforward
effects of orthography-to-phonology, as reflected in their
smaller effect sizes.

We also wish to comment on some other open ques-
tions that are beyond the scope of the current study. The
first is the expansion of the current approach to multi-
syllabic words. As a first step, we opted to limit our cur-
rent investigation to mono-syllabic words. This was done
because in such words the definition of conditioning con-
texts that are relevant for the mapping of vowel graph-
emes to phonology is relatively straight-forward, as
mono-syllabic words are built from a structure of onset-
vowel-coda. Defining the relevant conditioning contexts
in multisyllabic words is a task for future studies (and
see Chateau & Jared, 2003; Yap & Balota, 2009 for
extended discussion and promising avenues). Moreover,
assessing the transparency of multi-syllabic words re-
quires a theory regarding how to combine multiple infor-
mation values to a single value (e.g., what is the overall
information value of a word with one vowel that incur a
high amount of information and another with a low
amount of information, such as island?). Second, and as
noted above, our investigation focused only on the pro-
nunciation of vowels. This was due to the structure of
English, where the majority of orthography-to-phonology
opaqueness is concentrated in vowels. It is important to
note however that the information-theoretical approach is
not limited to vowels (or to consonants) and can be easily
extended to the full mapping of graphemes to phonemes
in a writing system. Third, here we only examined a sin-
gle writing system – English. This was done due to prac-
tical reasons, namely, the availability of a corpus of
English written words and their pronunciations. Future
cross-linguistic studies are left with the task of comparing
the information distributions of orthography-to-phonology
of different writing systems. Indeed, previous studies used
some information-theoretical notions to compare ortho-
graphic depth across languages, looking at entropy of re-
stricted parts of the input as a basis for their calculation
(e.g., letter-to-sound and sound-to-letter mappings of
word onsets, Borgwaldt et al., 2004, 2005; Ziegler et al.,
2010). The metrics presented here can help extend these
studies and cross-linguistically compare orthography-to-
phonology transparency in a more comprehensive manner,
taking into account different aspects of the written input.

On a broader note, it is important to note that one of the
unique advantages of the information-theoretic approach is
that it is not limited to assessing regularities only in the context
of print-speech correspondences. Needless to say, print-
speech correspondences are only one source of information
among multiple additional cues that readers can rely on in the
task of visual word recognition (e.g., the consistency of the
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mapping of orthography-to-semantic, Marelli & Amenta,
2018)5, cues that are joined by additional sources of informa-
tion in continuous text reading (in particular word
predictability, Staub, 2015). As reviewed in the introduction,
information-theoretic measures are used throughout all do-
mains of spoken and written language, including among
others morphological, syntactic, and orthographic regularities
(and see Mollica & Piantadosi, 2019 for an estimation of the
total linguistic information held by language users across all
domains). This presents an opportunity to estimate the impact
of the information distribution across different levels of the
written input on reading, their relative weighing, and their
possible interactions. The current paper shows that indeed
print-speech correspondences, and their impact on single
word recognition, can be captured using information-
theoretic measures. This can serve as a springboard for ad-
dressing theoretical questions regarding how the degree to
which print-speech correspondences, along with other regu-
larities that are present in the written input (regularities
between print and morphology, e.g., Milin et al., 2009;
semantics, e.g., Montemurro, 2014; syntax, e.g., Linzen &
Jaeger, 2015, etc.) impact reading, and whether they interact
in any ways (e.g., whether the impact of print-speech regular-
ities is more pronounced when other regularities are absent,
such as in orthographically unpredictable words). We believe
that the generalizable tools of information-theory can prove to
be extremely useful in pursuing these critical questions.

To conclude, the current work provides a powerful and
flexible set of tools to quantify the information provided by
the input that readers are exposed to, based on the regularities
between words' orthographic and phonological forms. It joins
efforts across various sub-domains of language research that
use related measures to capture the information distribution of
different elements in the written and spoken input. We believe
that exact quantification of the information present in the lin-
guistic input is a critical step in understanding how linguistic
phenomena, including literacy acquisition and reading, are
shaped by the regularities that are available to learners and
users of the language.
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