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Abstract

Numerous studies on statistical learning (SL) have demon-

strated humans' sensitivity to complex statistical properties

in their sensory environment. These observations have

had a profound impact on the study of language,

highlighting statistical aspects of the linguistic input that

can be learned from experience, leading to the widespread

claim that SL plays a key role in language acquisition and

processing. But how can this theorized link be experimen-

tally demonstrated? One increasingly popular avenue

comes from studies of individual differences, which tie

individual variability in SL to variance in linguistic behav-

ior. This review presents the theoretical advances stem-

ming from this line of research, as well as some of the

challenges it currently faces. It contends that while previ-

ous studies had an important role in establishing the exis-

tence of some coarse-grained link between SL and

language, recent developments in SL research suggest that

the exact nature of this relationship is more complex than

originally conceived and is still far from being fully under-

stood. I specifically discuss three outstanding challenges:

(a) understanding individual differences in light of the

componential nature of SL, (b) mapping the full array of

SL processes given the complexity of real-world statistics,

and (c) estimating the strength of current empirical evi-

dence while taking into account both positive and null

findings. Confronting these issues, I argue, is a necessary

step towards a full theory of the role of SL across language.
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1 | INTRODUCTION

Over the last two and a half decades, statistical learning (SL) has become a major theoretical
construct in the cognitive sciences. The basic premise behind this concept is rooted in the
hundred-year-old observation that humans (as well as other species) are constantly
bombarded by continuous streams of sensory information (James, 1890). SL is defined as the
mechanism by which cognitive systems extract regularities from such sensory stimulation, to
discover its underlying structure. As such, SL is considered to play a key role in various cog-
nitive functions, including among others segmentation of continuous input (e.g., Aslin,
Saffran, & Newport, 1998), categorization (e.g., Maye, Werker, & Gerken, 2002), and predic-
tion of upcoming signal (e.g., Dale, Duran, & Morehead, 2012). SL computations are thus
considered to be involved in all domains of cognition, from low level perception of stimuli
(e.g., Barakat, Seitz, & Shams, 2013) to complex cognitive functions such as music apprecia-
tion (e.g., Salimpoor, Zald, Zatorre, Dagher, & McIntosh, 2015) and face recognition
(e.g., Dotsch, Hassin, & Todorov, 2017).

Yet the main motivation to study SL comes from its proposed link to one cognitive function
in particular: language acquisition and use. Thus, over the past few decades, the idea that SL
computations are particularly important in language has become increasingly popular. Behind
this claim lies a simple argument that can be summarized in the following three steps:

Assumption I Different aspects of language can be characterized as a set of complex statistical
regularities.

The view of languages as statistical creatures is not at all new. In fact, early behaviorist
studies—more than seven decades before the inception of the term SL—were already con-
cerned with whether patterns embedded in the linguistic input can give rise to high-level lin-
guistic knowledge (see Christiansen, 2018 for a comprehensive historical review). As such,
the pioneering work by Esper (1925) showed that participants can extract grammatical cate-
gories from an artificial miniature linguistic system, leading him to hypothesize that similar
statistical information is also available in natural languages. Following the cognitive revolu-
tion, methodologies employing artificial miniature linguistic systems—then labeled artificial
grammar learning tasks—were developed extensively by Miller (1958) and Reber (1967). The
latter was particularly interested in using these paradigms to investigate “implicit learning”
processes, asking how knowledge regarding complex grammatical structures can emerge
without intent simply via the assimilation of the underlying structure of presented
exemplars.

More recent works, within the modern framework of SL, extended this view to virtually all
aspects of language. Thus, for example, works on SL suggest that writing systems can be
thought of as an array of correlations between letters (e.g., Chetail, 2017) and between letters to
sounds (e.g., Treiman & Kessler, 2006); phonology and phonotactics can be described as sets of
co-occurrences between speech sounds (e.g., Onishi, Chambers, & Fisher, 2002), morphology
can be thought of as co-occurrences between morphemes (e.g., Pacton, Fayol, & Perruchet,
2005), word knowledge as co-occurrences between words and their referents (e.g., Yu & Smith,
2007). Recent works also revisit the question regarding the statistical nature of syntax, dis-
cussing what aspects of syntax can be indeed reduced to sets of regularities spanning words and
larger phrases (and see, Saffran & Wilson, 2003; Thompson & Newport, 2007 for a discussion of
this more controversial issue).
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Assumption II Humans can extract complex statistical regularities from the input using SL
computations.

This assertion is based on the definition of SL as a theoretical construct and is supported by
numerous experimental demonstrations (see below).

Then, the juxtaposition of Assumption I—languages are essentially a set of statistical
regularities—and Assumption II—humans can extract such regularities via SL—leads to the
widespread claim that

Conclusion SL plays an important role in language acquisition and use.

Although simple, this argument carries important theoretical implications for the study of
language: it highlights aspects of language that can be learned from experience. Thus, a strong
interpretation of this argument maintains that all aspects of language can be learned from expe-
rience; other, weaker versions do not preclude the possibility of some innate knowledge or con-
straints, but still emphasize parts of the input that are learned from exposure during
development (see Lidz & Gagliardi, 2015; Saffran, 2003; Seidenberg, MacDonald, & Saffran,
2002; Yang, 2004 for discussion). In general, then, this argument goes against the Chomskyan
emphasis of the domain-specific, modular, and innate nature of the language acquisition process
(Chomsky, 1959) and strengthens usage-based approaches to language (e.g., Tomasello, 2003).

Looking back at the SL literature, it seems that the second part of the argument
(Assumption II above)—showing that humans can indeed extract regularities via SL abilities—
is well supported by a large body of empirical work. A key study in this line of research was the
seminal demonstration of Saffran and her colleagues showing that 8-month-old infants can
extract word-like units from continuous input based on the statistical structure of the speech
stream alone (Saffran, Aslin, & Newport, 1996), and their follow-up study with adults (Saffran,
Newport, & Aslin, 1996).1 To do so, Saffran and colleagues developed a task (sometimes referred
to as the “embedded pattern paradigm” or simply as “the SL task”) that consists of two parts: a
familiarization phase, followed by a test phase. During the familiarization phase, participants
are exposed to a continuous stream of stimuli, which (unbeknownst to participants) is com-
posed of several repeated patterns. To illustrate, the original materials comprise four tri-syllabic
“words” (e.g., tupiro, golabu, bidaku, and padoti) randomized and concatenated to create a con-
tinuous speech-like stream (e.g., bidakugolabupadotibidakutupiropadoti…). Importantly, since
there are no breaks or other prosodic cues for word boundaries, the only cue to segment the
stream to its composing trisyllabic words are the co-occurrences between elements. This can be
described as a set of transitional probabilities (TPs) between syllables in the stream, where the
extraction of the word tupiro involves learning that after the syllable tu there is a high probabil-
ity that the syllable pi would appear, which is then likely followed by ro (i.e., there is a high TP
between tu and pi, and between pi and ro), but that after the syllable ro multiple syllables can
appear, each of them with lower TPs. The second part of the SL task is a test phase, which is
used to measure each participant's ability to extract the repeated patterns. In adults (and older
children), the test typically consists of a series of two-alternative-forced-choice (2-AFC) trials. In
each trial, participants are presented with a pattern from the familiarization phase (i.e., with
high TPs between elements), and a foil, composed of elements that appeared in the familiariza-
tion phase but with lower TPs (e.g., piropa or tulati). Participants are asked to choose the pat-
tern that they are more familiar with based on the familiarization phase and are scored
according to the number of correct identifications of patterns over foils.2
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The key to this experimental paradigm is that it can examine whether the sampled partici-
pants, on average, possess some ability to assimilate the statistical contingencies embedded in
the input. Thus, if no SL computations occur, the expected mean performance in this task
would be at chance level, or 50%. Saffran and colleagues showed however that participants'
mean performance in this task is significantly above chance-level. This is taken as evidence for
successful SL computations at the group-level, demonstrating that humans can indeed extract
patterns from the input based on its statistical structure alone.

Since then, a large number of studies have replicated and extended this basic finding, dem-
onstrating the robust and ubiquitous nature of SL. Using modified versions of the embedded
pattern paradigm, studies show that SL phenomena are observed in both the auditory
(e.g., Endress & Mehler, 2009), and visual (e.g., Kirkham, Slemmer, & Johnson, 2002) modality,
with both verbal (e.g., Pelucchi, Hay, & Saffran, 2009) and nonverbal (e.g., Gebhart, Newport, &
Aslin, 2009) material, and can be used to detect regularities comprised of adjacent or non-
adjacent contingencies (e.g., Gómez, 2002; Newport & Aslin, 2004). Moreover, studies show that
SL computations are affected even by subtle changes in the input's statistical structure
(e.g., Bogaerts, Siegelman, & Frost, 2016), can operate without overt attention (Evans, Saffran, &
Robe-Torres, 2009), and are readily available from a very young age (demonstrated already in
1–3 day newborns, Bulf, Johnson, & Valenza, 2011). Together, all of these studies point to a
powerful mechanism, that may help speakers and readers in their quest to master language and
use it efficiently.

Importantly, however, showing that SL abilities exist does not necessarily mean that they
play a role in language acquisition and processing (or in any other cognitive function). Rather,
it is possible that while humans have impressive SL abilities, they do not use these mechanisms
when acquiring or using language. In other words, getting back to the three-step argument
above, even if indeed humans have the ability to perform SL computations (Assumption II) and
even if languages are indeed rich with statistical information (Aassumption I), it still does not
necessarily follow that learners and users of language employ SL computations during language
acquisition and processing. Alternative views that go against the involvement of SL in language
posit that SL abilities cannot scale-up to account for real-world complexity of linguistic inputs.
Instead, such views assert that although SL abilities may play a limited role in some aspects of
language acquisition or processing, many linguistic functions are not based on the assimilation
of statistics due to input's complexity, and these are likely to be rooted in innate, domain-
specific linguistic knowledge (Gervain, Nespor, Mazuka, Horie, & Mehler, 2008; Yang, 2004;
see Johnson, 2012 for review).

So how can the hypothesized link between SL and language be more directly examined?
One promising avenue comes from studies of individual differences. This is because the argu-
ment regarding the involvement of SL in language leads to a clear prediction at the individual
level. Namely, if indeed SL abilities are linked to language abilities, then individual differences
in SL abilities should be predictive of inter-individual variability in language acquisition and
use. In simpler words, if indeed SL plays a key role in language, then individuals with better SL
abilities should be also characterized by better linguistic abilities, whereas those who exhibit
low linguistic capacities should have low SL performance.

Importantly, in order to show that individual differences in SL are related to linguistic abili-
ties (or any other outcome), it is imperative to first show that (a) there is variation in SL abilities
(i.e., that not all individuals have the same SL abilities), (b) this variance reflects a stable char-
acteristic of the individual, and (c) it is not nested within other general abilities, such as intelli-
gence quotient or working memory. Empirical evidence confirms these three prerequisites.
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Using tasks based on the paradigm developed by Saffran and colleagues, Siegelman and Frost
(2015) showed that individuals differ substantially in their ability to extract repeated patterns
(triplets of syllables or sounds) from continuous sensory stream, where some participants per-
form at chance whereas others show near-perfect performance (see also Hunt & Aslin, 2001;
Kalra, Gabrieli, & Finn, 2019; Kaufman et al., 2010 for evidence in the context of implicit learn-
ing tasks). Moreover, by retesting the same subjects using the same SL tasks, and by examining
the correlations between SL performance and other cognitive measures, Siegelman and Frost
showed that performance in a given SL task reflects a stable characteristic of an individual, that
does not overlap with her/his intelligence quotient or memory capacities (and see Conway,
Bauernschmidt, Huang, & Pisoni, 2010; Evans et al., 2009; Isbilen, McCauley, Kidd, &
Christiansen, 2017; Kalra et al., 2019; Kaufman et al., 2010; Misyak & Christiansen, 2012, for
corroborating evidence). These findings establish individual's SL ability as a potential unique
predictor of other abilities, linguistic functions included, allowing to examine whether indeed
individual SL abilities predict linguistic performance as hypothesized by theories that empha-
size the role of SL in language acquisition and processing.

Individual-differences studies from recent years confirm this prediction, suggesting that
individual SL performance in fact predicts variability in linguistic outcomes. In this vein, indi-
vidual differences in SL performance among both children and adults were shown to correlate
with abilities such as syntactic processing (Kidd, 2012; Kidd & Arciuli, 2016; Misyak,
Christiansen, & Tomblin, 2010), lexical knowledge and vocabulary size (Mainela-Arnold &
Evans, 2014; Shafto, Conway, Field, & Houston, 2012; Singh, Steven Reznick, & Xuehua, 2012;
Spencer, Kaschak, Jones, & Lonigan, 2014), speech perception (Conway et al., 2010; Conway,
Karpicke, & Pisoni, 2007; Lany, Shoaib, Thompson, & Estes, 2018), and literacy acquisition in
first language (Arciuli & Simpson, 2012; Tong, Leung, & Tong, 2019; Torkildsen, Arciuli, &
Wie, 2019) as well as second language (Frost, Siegelman, Narkiss, & Afek, 2013; A. Yu et al.,
2019; see Arciuli, 2018 for a review). More direct evidence comes from a handful of longitudinal
studies. Such studies show that infants' SL performance predicts later development of linguistic
abilities (Ellis, Gonzalez, & Deák, 2014; Shafto et al., 2012) and that visual sequence learning
performance at Grade 5 predicts growth in children's reading skills from the fifth to the sixth
grade (van der Kleij, Groen, Segers, & Verhoeven, 2019), although clearly more longitudinal
research is still needed (see Arciuli & von Koss Torkildsen, 2012 for discussion). A related line
of studies examines SL abilities of clinical populations with language deficits. Here also, the pre-
diction is that a SL deficit may explain some of the difficulties these populations have with lan-
guage processing and that they would therefore be characterized by impaired SL abilities.
Special focus was directed to estimating SL abilities of individuals with dyslexia (Gabay,
Thiessen, & Holt, 2015; Kahta & Schiff, 2019; Sigurdardottir et al., 2017), specific language
impairment (Mainela-Arnold & Evans, 2014), and agrammatism (Christiansen, Louise Kelly,
Shillcock, & Greenfield, 2010), all reporting some degree of impaired SL performance among
these clinical samples (see Saffran, 2018 for review). Together, then, all of these individual-
differences studies point to a clear pattern, supporting the involvement of SL in language.3

2 | LINKING SL AND LANGUAGE: MOVING BEYOND THE
PROOF OF CONCEPT STAGE

In a more critical tone, however, this line of research only constitutes a preliminary step: What
is common to the vast majority of these studies is that they observed some correlation between
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some SL task and some measure of linguistic performance. As such, studies of individual differ-
ences in SL so far generally provided a proof of concept regarding the link between SL and lan-
guage: showing that they have something in common. Needless to say, proof-of-concept studies
have an important theoretical role: The fact that it can now be said in a relatively high degree
of certainty that SL is in fact related to linguistic performance, in some form or capacity, is far
from trivial. Nevertheless, I argue that the next generation of SL research is still left with the
task of moving beyond the proof of concept stage, in the quest of fully unveiling the role of SL
across language (and cognition in general). In the second part of this review, I outline some of
the challenges that SL research currently faces, which are key to achieving a deeper theoretical
insight. While discussing these challenges I also review some recent studies in the field that
already go beyond the proof of concept stage. Note that although I review these open issues
from the perspective of individual differences, I believe that most of them apply to studies of SL
in general.

2.1 | What is the structure of SL as a theoretical construct?

Most previous studies examining the link between SL and language-treated SL as a single
“black-box”: Assuming that all SL computations are subserved by a single central mechanism
and therefore that all types of SL computations are equally important in all aspects of linguistic
performance. Historically, this domain-generality assumption stems from studies demonstrating
SL computations across a wide variety of stimuli and domains (reviewed above), leading to the
assertion that if SL is observed across modalities and domains, it is likely that a single mecha-
nism is responsible to all SL phenomena (see Frost, Armstrong, Siegelman, & Christiansen,
2015 for a review). In the context of individual differences, this assumption is reflected by the
fact that the selection of an SL task for a particular study is typically not a matter of deep theo-
retical considerations—one simply selects a SL task to be employed in the study from the large
arsenal of available SL tasks (visual and auditory, involving adjacent or non-adjacent contingen-
cies, involving learning across time or in space, etc.) and uses individuals' performance in this
task as a predictor of some linguistic outcome. This begs the question: Is SL indeed a domain-
general, ubiquitous ability?

A large body of empirical evidence challenges this common view. First, multiple studies pro-
vide evidence for qualitative differences in SL across sensory modalities (i.e., across SL in visual,
auditory, and tactile inputs). Such studies documented different learning biases in the visual,
auditory and tactile modalities (Conway & Christiansen, 2005), different effects of presentation
parameters in learning visual versus auditory material (Conway & Christiansen, 2009;
Emberson, Conway, & Christiansen, 2011), and different developmental trajectories for visual
and auditory SL (Raviv & Arnon, 2017). In addition to these findings that support modality-
specific computations in SL, other studies further point to differences in the assimilation of dif-
ferent types of information, even within a modality. For example, while it is well documented
that humans are sensitive both to the transitional statistics and to the aggregated frequency and
variance of exemplars in the input, Thiessen, Kronstein, and Hufnagle (2013) claimed that from
a computational perspective, the assimilation of these two types of regularities is likely sub-
served by different processes. Concurring behavioral evidence also showed patterns of
informational-specificity (specifically, in learning adjacent vs. non-adjacent contingencies:
e.g., Newport & Aslin, 2004, and verbal vs. nonverbal material: Shufaniya & Arnon, 2018;
Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 2018). Lastly, joining these group-level
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observations are preliminary individual-differences studies revealing patterns of modality and
informational-specificity in SL. As such, studies of individual-differences reported little to no
correlation between auditory and visual SL performance (Misyak & Christiansen, 2012;
Siegelman & Frost, 2015; but see N. Siegelman, L. Bogaerts, & A. Elazar 2018 for a case where a
higher correlation is present) and between learning adjacent and non-adjacent contingencies
(Romberg & Saffran, 2013; Siegelman & Frost, 2015; see also Kalra et al., 2019 for a further
demonstration of low correlations between different implicit learning tasks).

Critically, all of these studies provide converging evidence that SL cannot be simply referred
to as a domain-general construct. In fact, multiple recent works explicitly take this theoretical
stand, and call for a refinement of SL theory, which should be thought of as a componential,
rather than a unified, theoretical construct (Arciuli, 2017; Arciuli & Conway, 2018; Daltrozzo &
Conway, 2014; Frost et al., 2015; Siegelman, Bogaerts, Christiansen, & Frost, 2017; Thiessen
et al., 2013). Importantly, while these studies differ in their exact theoretical approach, they all
share one important principle—SL involves a set of non-overlapping underlying computations.
Thus, they all call for a better understanding of the nature of domain-general versus domain-
specific computations in SL, accompanied by explicit mapping of its sub-components. In that
sense, it seems that SL follows the footsteps of the study of other major theoretical constructs in
the cognitive sciences, which started from a conceptualization as unified constructs but were
later reformulated as componential abilities, such as working memory (e.g., Baddeley, 1992;
Smith, Jonides, Marshuetz, & Koeppe, 1998) and attention (e.g., Knudsen, 2007).

This refined view of SL carries critical implications for studies of individual differences in
SL and their relation to language. First, if SL is not a unified construct, an outstanding chal-
lenge is the mapping of the structure of SL as a multifaceted, complex, theoretical construct. To
do so, the relevant sub-components of SL should be specified, and their (non)overlapping com-
putations should be explicitly discussed (see Arciuli, 2017; N. Siegelman, L. Bogaerts, & M. H.
Christiansen 2017 for detailed discussions; and see Arciuli & Conway, 2018 for a detailed dis-
cussion with a focus on clinical populations). To this aim, studies of individual differences can
be particularly useful, as they can directly examine the correlations between tasks that capture
different SL aspects as a means of estimating the degree of overlap between SL facets (Erickson,
Kaschak, Thiessen, & Berry, 2016; Siegelman & Frost, 2015).

Second, and importantly, the multifaceted view of SL requires a modification of common
methodology as well as the theoretical analyses of studies of the link between individual differ-
ences in SL and language. Concretely, if SL is a componential ability rather than a unified con-
struct, a single task cannot cover the full scope of SL computations. To date, SL research uses
multiple different tasks that are taken to similarly measure “SL abilities”: from the embedded
triplet paradigm modeled after Saffran and colleagues, which focuses on learning of transitional
statistics, to tasks borrowed from the implicit learning literature such as the serial reaction time
task or artificial grammar learning. Because the latter set of tasks also involve the detection of
embedded statistical regularities, they are generally considered to fall under the umbrella term
“SL” (see Christiansen, 2018; Perruchet & Pacton, 2006 for a theoretical discussion of the rela-
tions between SL and implicit learning literatures). Importantly, however, not all tasks are iden-
tical from a componential perspective of SL—as each task involves different type(s) of statistical
regularities to be extracted and thus implicates different computations.

Indeed, the low magnitude of observed correlations between SL tasks suggest that they tap
(at least partially) into different sub-components of SL. Therefore, from an individual-
differences perspective, it is critical to understand what are the exact components tapped by
each task, and to what extent different tasks do or do not overlap. Then, when predicting a

STATISTICAL LEARNING AND LANGUAGE 7 of 19



given linguistic skill, each study should carefully consider the specific components of SL that
are relevant to the investigated linguistic ability and come up with predictions regarding which
SL task(s) should be associated with this linguistic skill based on the overlap in computations
(see Misyak & Christiansen, 2012; Misyak et al., 2010; Qi, Sanchez Araujo, Georgan, Gabrieli, &
Arciuli, 2019 for preliminary directions and discussions). Thus, for example, auditory sentence
processing may be related more to an auditory SL task than to a visual one, while reading may
rely on both visual and auditory SL (see Hung, Frost, & Pugh, 2018; Qi et al., 2019). Similarly,
learning different types of statistical information is predicted to underlie specific aspects of lan-
guage that are predominantly characterized by such regularities (such as distributional SL in
learning phonemic categories, Maye et al., 2002; or non-adjacent SL in certain aspects of syntax,
e.g., Misyak et al., 2010).

Overall, this more refined view holds the promise of moving beyond proof of concept
studies—which only shows that there is something common between SL and language—
towards a mechanistic view, specifying the exact computations that are available to learners,
and the exact role each of them plays in different linguistic processes.

2.2 | SL beyond the lab: The scope of SL phenomena

As noted above, the first studies on SL focused on group-level performance, with the aim of
showing that humans are capable of extracting statistical properties from the sensory input.
Since the goal of these studies was mainly to demonstrate the existence of SL abilities, early SL
studies were not concerned with considerations of ecological validity (that is, the extent to
which the simulated statistical environment as reflected in the in-lab SL task resembles the
actual challenge learners face in the real world; see Erickson & Thiessen, 2015; Frost, Arm-
strong, & Christiansen, 2019; Pelucchi et al., 2009 for reviews). Hence, common SL tasks
involve highly simplistic statistical structures, typically including only a very low number of
embedded patterns (typically 4 to 16), which are all either fully predictable (TP = 1) or of one
predictability level (e.g., TP = 0.5), all of similar length (typically of 3-elements), where regulari-
ties are presented one at a time, in a unimodal manner (i.e., either visual or auditory), and with
short familiarizations that span from a few minutes to about an hour. Individual-differences
studies that followed borrowed their tasks from these earlier investigations of SL, simply by
changing the focus from the mean performance in test, to the number of correct responses of
each participant. As a result, our understanding of individual differences in SL is almost
entirely limited to how individuals differ from one another in their ability to extract simplistic
statistical structures and how does success under these simplistic settings relate to other cogni-
tive functions, such as language. Is that all there is to individual-differences in SL?

My claim here is that previous studies most likely only revealed the tip of the iceberg, focus-
ing on individual differences only in a constrained part of SL phenomena, which is captured in
learning from overly simplistic input. It is very likely however that participants would display
non-overlapping and qualitatively different inter-individual variance when examining SL under
broader, more realistic settings. Mapping this variance is key for understanding what SL is, who
is a good statistical learner, and how do individual differences determine success in real-life
tasks that include a myriad of complex statistical regularities such as language acquisition
and use.

To do so, the next generation of SL research in general, and individual-differences in partic-
ular, should better simulate the SL computations that learners are required to perform in order
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to fully learn complex structures outside the lab. For starters, the vast majority of previous SL
studies assumes that learners come to the learning task tabula rasa. Real-world learning, how-
ever, constantly involves the updating of existing knowledge (see, e.g., Karuza et al., 2016;
Kóbor, Horváth, Kardos, Nemeth, & Janacsek, 2019; Siegelman, Bogaerts, Elazar, et al., 2018;
Siegelman, Bogaerts, Kronenfeld, & Frost, 2018; Weiss, Gerfen, & Mitchel, 2009). Thus, map-
ping individual differences in SL cannot focus only on how individuals differ in their ability to
learn a novel set of regularities from scratch, but should also consider variance in individuals'
capacity to learn novel information given existing assimilated regularities. This can be done by
in-task manipulations that simulate the learning of two consecutive structures, examining how
regularities acquired during exposure to the first stream impacts learning of those in consecu-
tive input (see Starling, Reeder, & Aslin, 2018 for preliminary findings), or alternatively, by
quantifying real-world statistics using corpora and assess how they impact learning of an artifi-
cial stream that requires updating of this statistical knowledge (and see Fine & Florian Jaeger,
2013 for a related work in the context of adaptation to novel syntactic structures). Relatedly,
learning in the real world commonly involves multiple regularities present simultaneously
(in contrast to common SL tasks in which participants are exposed to a single isolated input
stream). Indeed, recent group-level studies show that learners concurrently track more than
one regularity (e.g., simultaneously learning of adjacent and non-adjacent contingencies,
Deocampo, King, & Conway, 2019; Romberg & Saffran, 2013; Vuong, Meyer, & Christiansen,
2016). Do all individuals display similar sensitivity to concurrent statistical information, or do
learners differ in their ability to track multiple regularities? Moreover, the presence of multiple
regularities also requires learners to choose where to allocate their attention given the regulari-
ties across different parts of the input. Studies suggest that on average, learners prefer to attend
to stimuli that are not too predictable or too random, but with a medium level of predictability
(e.g., Kidd, Piantadosi, & Aslin, 2012, 2014). Do all individuals display similar attention alloca-
tion in light of competing concurrent information, or do individuals differ in how they guide
their attention to stimuli given their predictability (which may then have cascading effects on
their performance in learning different inputs)? Lastly, a growing number of group-level studies
of SL focus on cross-modal integration, showing that reliable information present in one modal-
ity can facilitate learning in another (e.g., Glicksohn & Cohen, 2013; Mitchel & Weiss, 2011;
Thiessen, 2010). Here, too, the question is whether there are systematic individual differences
in the ability to use information from one modality to learn in another and whether it predicts
related linguistic outcomes (e.g., the use of facial cues to learn about speech; Mitchel,
Christiansen, & Weiss, 2014, and the use of tactile gestures in word learning; Seidl, Tincoff,
Baker, & Cristia, 2015).

I wish to emphasize that taking into account the complexity of real-world learning tasks
does not mean that researchers should draw an infinite number of distinctions between differ-
ent types of SL computations. In fact, recent work by N. Siegelman, L. Bogaerts, A. Elazar,
(2018) demonstrate the opposite—how considering real-world constraints may lead to the
unveiling of similarities across seemingly non-overlapping SL processes. Concretely, this study
found that when the involvement of prior knowledge is equated across modalities (i.e., when
both modalities use nonverbal stimuli that do not implicate prior knowledge), visual and audi-
tory SL performance are highly correlated. This finding suggests that previous reports of
modality-specificity effects in SL may have been in part due to different involvement of prior
expectations in visual and auditory SL paradigms (since the former typically uses abstract visual
shapes, that do not implicate prior expectations, in contrast to the latter which typically uses
spoken syllables). To emphasize, this example shows that taking into consideration constraints
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that affect SL computations in the wild may result in a better understanding of not only the dis-
similarities between SL components, but also of commonalities between SL processes that were
previously unobserved due to intervening factors.

2.3 | The strength of current evidence: A cause for concern?

The number of studies showing a correlation between SL abilities and linguistic outcomes is
large (and is apparently constantly growing), presenting a seemingly strong body of evidence
regarding the link between the two. Recently, however, some studies have raised concerns
regarding the replicability of these correlations, as well as regarding their magnitude. As
such, two recent studies failed to find any correlations between implicit and statistical learn-
ing measures and different outcomes of language and literacy in children and adults
(Schmalz, Moll, Mulatti, & Schulte-Körne, 2019; West, Vadillo, Shanks, & Hulme, 2018).
Other studies did find some correlations, but these were either of a small magnitude
(Spencer et al., 2014) or limited to only specific tasks (Qi et al., 2019). Joining these studies
are recent meta-analyses suggesting that the evidence in support of a SL deficit among
populations with language impairments is currently inconclusive. Thus, while an earlier
meta-analysis provided evidence for a deficit of individuals with specific language impair-
ment in the serial reaction time task (Lum, Ullman, & Conti-Ramsden, 2013), more recent
meta-analyses on SL in dyslexia, which examined also other tasks (artificial grammar learn-
ing and embedded pattern paradigm), suggest that the observed deficits may be limited to
only some tasks and/or affected by publication bias (Schmalz, Altoè, & Mulatti, 2017; van
Witteloostuijn, Boersma, Wijnen, & Rispens, 2017). Do these studies undermine the validity
of earlier studies relating SL abilities to language?

Here, I argue that to fully understand the implications of these null (or partial) findings, we
first need to answer a basic question: What determines the magnitude of a correlation between
a given SL task and a given linguistic outcome? One critical factor is the task's reliability:
Whether a task produces a measure that consistently ranks individuals (e.g., Nunnally & Bern-
stein, 1994), or, in simpler words—whether high performing individuals in some task are con-
sistently classified as high performers, whereas low performers are consistently classified as
such. In the context of individual differences, reliability is critical as it limits the predictive
validity of the task—since, as noted already by Spearman (1904), reliability presents an upper
bound to the correlation between a task and an outcome measure. A recent work showed that
tasks developed for group-level investigations are often characterized by compromised reliabil-
ity (Hedge, Powell, & Sumner, 2018). This is because tasks developed for group-level investiga-
tions strive to minimize between-subject variability (considered in group-level analysis as error
variance), while individual-differences studies require measures that are sensitive enough to
detect such variation. In the context of individual differences in SL, the question therefore is
whether current SL tasks—generally originating from earlier group-level investigations in the
field—produce reliable signal at the individual-level. Without reliable measurement of SL abili-
ties, one cannot accurately assess the strength of the evidence in favor (or against) the associa-
tion between SL and any other outcome.4

Indeed, the issue of the reliability of SL tasks has received increasingly more attention over
the past few years. It started from studies showing how SL tasks developed for group-level
investigations are generally characterized by low to mediocre reliability both in adults
(Bogaerts, Siegelman, Ben-Porat, & Frost, 2017; Siegelman & Frost, 2015), and perhaps even
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more so in children (Arnon, 2019; West et al., 2018). As a result, the development of more reli-
able SL tasks is now recognized as a key methodological challenge, with recent works already
presenting some promising advances. First, research shows that simply altering easy-to-control
task parameters—such as the number of trials in the test, their task demands, and their diffi-
culty level, can substantially improve SL task reliability in adults (Siegelman, Bogaerts, & Frost,
2017). In parallel, other studies aim to further improve SL measurement by adding a continuous
(or online) assessment of SL, focusing on the familiarization phase as subjects actually extract
the regularities from the input stream. Behavioral studies using online measures typically use a
task examining RTs to the stimuli during the exposure phase, and assess the magnitude of
speed up to predictable compared to unpredictable items (Batterink, 2017; Kuppuraj, Duta,
Thompson, & Bishop, 2018; Siegelman, Bogaerts, & Frost, 2017). Such online measures present
an alternative to the reliance on the commonly used offline measures of SL (such as 2AFC
tests), which only tap into performance after learning has occurred, and thus may interfere with
the representations actually learned during familiarization (Siegelman, Bogaerts, Christiansen,
et al., 2017). Lastly, studies have also developed measures that are based on changes in related
cognitive functions as a result of SL, examining the impact of statistical contingencies on short-
term memory (Isbilen et al., 2017), or on attention as reflected in neural entrainment
(Batterink & Paller, 2017). This line of studies not only provides potentially improved methods
for assessing SL, but from a theoretical standpoint can also shed light on the cognitive processes
impacted by and related to SL.

Together, these recent efforts suggest that SL measurement can indeed be vastly
improved and calls for the widespread use of such improved measures in future research,
particularly in studies of individual-differences. In parallel, however, still more methodologi-
cal work is needed to fully estimate—and improve—the reliability of the wide arsenal of
available SL tasks. This seems to be particularly true in studies with children, where recent
reliability estimates present mixed findings. Thus, some studies report reasonable reliability
estimates within a session (i.e., split-half reliability or internal consistency, Tong et al., 2019;
Torkildsen et al., 2019; van der Kleij et al., 2019), but others reveal low test–retest reliability
(Arnon, 2019; West et al., 2018), suggesting that current SL tasks still do not tap into a stable
characteristic of a child (see also Conway, Arciuli, Lum, & Ullman, 2019; Krishnan & Wat-
kins, 2019; West, Vadillo, Shanks, & Hulme, 2019 for commentaries discussing the impact of
task reliability on outcomes of individual- and group-level studies). In general, more research
is needed to fully understand how both task-related factors (e.g., number of trials, input
modality, type of embedded regularities, and measurement domain) and sample-related prop-
erties (in particular—participants' age) influence task reliability, and how to maximize the
reliability of a given task for a given population. To this aim, future studies can combine
data from more than one form of measurement, for example by using composite offline–
online behavioral metrics (Siegelman, Bogaerts, Kronenfeld, et al., 2018), or by combining
behavioral measures with neural indices from electroencephalography recordings
(e.g., Batterink & Paller, 2017; Vasuki, Sharma, Ibrahim, & Arciuli, 2017). In addition, note
that when estimating the strength of the association between a SL task and a linguistic out-
come, one should also consider the reliability of the linguistic task, as it similarly constrains
the magnitude of the observed correlation between the two.

Importantly, however, the association between a given SL task and a given linguistic out-
come is also determined by theoretical reasons that have to do with the joint computations that
are involved in the predictor and the outcome. Discussions of the link between a SL task and a
linguistic outcome should therefore not only consider the reliability of the predictor(s) and the
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outcome, but also the validity of the investigated SL component given the statistical computa-
tions that underlie the outcome at hand. Throughout this paper, I have reviewed evidence that
SL is not a single, unified construct. Rather, SL is a multifaceted construct, shaped and con-
strained by the complexity of real-world statistics, and SL research has only recently begun to
map all processes that are available to learners as they extract regularities from the input. Simi-
larly, linguistic outcomes are not a unified construct, and the statistical computations that are
involved in each sub-component of language vary, given the relevant linguistic information to
be extracted (i.e., what are the relevant contingencies—whether they are adjacent or non-adja-
cent, in what modality are they presented—print, speech, or both, what prior knowledge they
implicate, and how do they relate to concurrent and sequential regularities both within and
across modalities). Moreover, these computations are shaped not only by the linguistic task, but
also by the idiosyncrasies of the statistical structure of a given language (i.e., the relevant statis-
tics to be learned in English are very different than that of Chinese; see Frost, 2012; Hung et al.,
2018 for a discussion in the context of cross-linguistic differences in reading). A full understand-
ing of individual differences in SL and their role in language requires then an explicit theory
regarding the exact computations that are tapped by each SL task, and the available statistical
information that needs to be extracted from the sensory input in order to achieve successful
attainment of different linguistic skills in different languages. This perspective is compatible
with individual-differences studies already showing that some linguistic outcomes are only
predicted by some SL sub-component(s), but not others (Misyak & Christiansen, 2012; Qi et al.,
2019; van der Kleij et al., 2019). Future studies should further refine the predictions regarding
when and why one should expect positive relations between a SL measure and a linguistic out-
come. Importantly, both positive and null results are equally informative in testing these predic-
tions, demonstrating when a SL component and a linguistic outcome overlap, but also when
they do not.

3 | CONCLUSIONS

For more than two decades, researchers have aimed to understand the role of SL across cogni-
tion in general and language in particular. The prism of individual differences has opened a
novel way for investigating this issue, and indeed a growing body of evidence documents a por-
tion of shared variance between individual variability in SL and different aspects of linguistic
behavior. In parallel, however, recent advances have revealed the complexity of SL as a theoret-
ical construct, highlighting various sub-components and processes that fall under the umbrella
of SL computations. This calls for further refinements of the methodologies used to capture var-
iability in SL abilities as well as the theoretical discussions regarding the exact computations
that are used by learners as they assimilate different types of linguistic information, towards a
better understanding of the role of SL in language.
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ENDNOTES
1 As noted above, early demonstrations of related abilities exist in the “implicit learning” literature, such as the
early work of Esper (1925) and the seminal artificial grammar learning studies by Reber from the 1960s
(e.g., Reber, 1967). Here, I focus on the more recent works in the field, typically labeled as “statistical learning”
studies. I return to the issue of the relations between SL and implicit learning tasks when discussing the com-
ponential nature of SL, below.

2 Note that the first study by Saffran and colleagues was conducted with infants, and hence, no explicit decisions
were of course involved in the test: rather, it was based on a comparison of looking times at targets and foils
(Saffran et al., 1996).

3 The current focus on individual differences does not mean to undermine the importance of other lines of
research in establishing the link between SL and linguistic abilities. Notably, a large body of evidence points to
shared neuro-circuitry between SL and language, including neuro-imaging studies (e.g., Christiansen, Con-
way, & Onnis, 2012; Karuza et al., 2013) as well as neuropsychological studies with clinical populations
(e.g., Christiansen et al., 2010). Another intriguing (albeit smaller) line of studies suggest that a SL training
may produce improvements in linguistic skills (e.g., Hoen et al., 2003). Together with studies of individual dif-
ferences which are the focus here, these works provide converging evidence for a link between SL and lan-
guage. Nonetheless, I believe that the challenges described below pertain also to most of these studies.

4 To be clear, this issue is not at all unique to SL research. Researchers have dealt with challenges related to task
(un)reliability from the inception of experimental psychology (see e.g., classic work on the reliability of
change/difference scores, e.g., Cronbach & Furby, 1970; Lord, 1958). These issues have recently regained the
attention of the research community and discussed in detail with particular focus on how task reliability
impacts the replicability of individual- and group-level study outcomes (e.g., Hedge et al., 2018; Lebel &
Paunonen, 2011; Loken & Gelman, 2017).
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