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Abstract

In order to extract the regularities underlying a continuous sensory input, the individual ele-

ments constituting the stream have to be encoded and their transitional probabilities (TPs) should

be learned. This suggests that variance in statistical learning (SL) performance reflects efficiency

in encoding representations as well as efficiency in detecting their statistical properties. These pro-

cesses have been taken to be independent and temporally modular, where first, elements in the

stream are encoded into internal representations, and then the co-occurrences between them are

computed and registered. Here, we entertain a novel hypothesis that one unifying construct—the

rate of information in the sensory input—explains learning performance. This theoretical approach

merges processes related to encoding of events and those related to learning their regularities into

a single computational principle. We present data from two large-scale experiments with over 800

participants tested in support for this hypothesis, showing that rate of information in a visual

stream clearly predicts SL performance, and that similar rate of information values leads to similar

SL performance. We discuss the implications for SL theory and its relation to regularity learning.
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1. Introduction

Statistical learning (SL)—learning from the distributional properties of sensory input

across time and space—is taken to be involved in a wide range of basic and higher-order

cognitive functions (Frost, Armstrong, Siegelman, & Christiansen, 2015). In the last two

decades, therefore, extensive research has focused on demonstrating that regularities in

different inputs are rapidly perceived and learned by newborns (e.g., Bulf, Johnson, &

Correspondence should be sent to Noam Siegelman, Haskins Laboratories, 300 George St. #900, New

Haven, CT 06511. E-mail: noam.siegelman@yale.edu

1977

mailto:


Valenza, 2011), children (e.g., Saffran, Newport, Aslin, Tunick, & Barrueco, 1997),

and adults (e.g., Saffran, Newport, & Aslin, 1996), as well as non-human species (e.g.,

Toro & Trobal�on, 2005). What remains controversial, however, is the precise nature of

the computations underlying SL (e.g., Siegelman, Bogaerts, Armstrong, & Frost, 2019;

and see Frost, Armstrong, & Christiansen, 2019, for extensive discussion).

In a typical SL experiment, participants are presented with a continuous stream of ele-

ments. This stream consists of repeating embedded patterns, which can also be described

as an array of transitional probabilities (TPs) between the basic elements in the stream.

Research on SL has unequivocally demonstrated that humans are sensitive to the statisti-

cal properties of the input, which allows them to recognize the patterns embedded in the

stream in a subsequent test phase, in the visual (e.g., Kirkham, Slemmer, & Johnson,

2002), auditory (e.g., Saffran, Newport, Aslin, Tunick, & Barrueco, 1997), or tactile

(Conway & Christiansen, 2005) modality.

Statistical learning performance, however, cannot be explained by considering only the

statistical properties of the input. Consider, for example, the visual statistical learning

(VSL) task, in which the input stream consists of abstract shapes (e.g., Turk-Browne,

Junge, & Scholl, 2005), fractal stimuli (e.g., Schapiro, Gregory, Landau, McCloskey, &

Turk-Browne, 2014), or cartoon aliens (e.g., Arciuli & Simpson, 2012). In order to learn

the pattern of co-occurrences between the stream’s elements, participants must (a) acquire

robust representations of these elements, and (b) compute their pattern of co-occurrences.

This approach served as the basis for a recent account of SL performance (Frost et al.,

2015). In this schematic model, SL outcomes are the product of the interplay between

encoding-related (and modality-specific) mechanisms that form representations from the

input, and higher-order learning-related (and domain-general) mechanisms that compute

the transitional statistics of the encoded representations. Critically, this model naturally

assumes some form of temporal modularity; first, elements in the stream must be encoded

into internal representations, and then the co-occurrences between these internal represen-

tations can be computed and registered. Moreover, the model argues for neuro-biological

separability—with encoding of stimuli occurring in lower cortical regions (visual, audi-

tory and somatosensory cortices) that feed into statistical computations in higher cortical

regions such as the medial temporal lobe (MTL) system (and see Schapiro et al., 2014;

Schapiro, Turk-Browne, Botvinick, & Norman, 2017, for discussion). The model also out-

lines implications for understanding individual differences in SL. It suggests that these

may arise either from variance in efficacy of encoding stimuli in a given modality, or

from variance in the efficacy in computing their TPs.

This view, however, was challenged by a recent experimental work that aimed to test

the model, focusing on the demarcation line between encoding and learning (Bogaerts,

Siegelman, & Frost, 2016). The study used a within-subject design with an independent

manipulation of exposure duration (ED) of each shape in the stream (i.e., the amount of

time that the stimulus is physically available for processing, a parameter affecting the

efficacy of encoding the individual shapes), and the extent of the TPs in the stream (a

parameter related to the registration of the co-occurrences between shapes). In contrast to

the model proposed by Frost et al. (2015), which considered these two processes to be
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independent, temporally modular, and therefore, additive, a substantial interaction

between ED and TPs was found, so that the impact of ED was modulated by TPs and

vice versa. This interaction suggested that the ability to encode the individual shapes and

the sensitivity to their co-occurrences are not independent processes, but rather that the

statistical properties of the stream may facilitate encoding, and conversely, that optimal

conditions of encoding can serve to enhance sensitivity to the statistical structure of the

input. The interaction of ED and TPs was further demonstrated by tracking individual dif-

ferences in performance. Participants who showed greater sensitivity to changes in ED

tended to show greater sensitivity to changes in TPs, and vice versa. These sets of find-

ings are consistent with other studies demonstrating the interdependence of perceptual

processes and regularity learning. For example, Barakat, Seitz, and Shams (2013) reported

that the presence of statistical regularities enhances the detection of individual visual ele-

ments even when they appear outside the context of the learned regularities. In a similar

vein, Grieco-Calub, Simeon, Snyder, and Lew-Williams (2017) showed that auditory SL

performance is impaired when the familiarization stream comprises spectrally degraded

speech sounds. From a broader perspective, the interaction between encoding and learning

aligns with the well-documented benefits of context on stimulus encoding, such as the

classic effect of schema congruency on subsequent memory of new events (Hintzman,

1986).

However, whereas the account provided in Bogaerts et al. (2016) adequately describes

the data, it does not truly explain it. Finding that two processes interact does not tell us

much about what drives this interaction and what computations underlie it. Importantly, it

does not elucidate the nature of individual differences in visual SL abilities. How should

these be explained and predicted? Why is sensitivity to rate of presentation correlated

with sensitivity to extent of stimuli predictability? The present paper targets, therefore,

the intriguing interaction between encoding of elements in vision and computing their

transitional statistics. Our following experimental work aimed to offer a novel computa-

tional principle for understanding visual SL, building upon the principles of Information

Theory. To preview our findings, we suggest that one unifying computational principle

can account for SL abilities, jointly explaining the effects of encoding- and learning-re-

lated factors, as well as their interaction. Note, that although we target here the learning

of abstract visual shapes as a test case, our computational principle can be extended to a

range of learning situations across cognition.

1.1. A unifying principle—Rate of information

In the current work, we adopt an information theoretic approach to SL. We therefore

aim to quantify the input to which learners are exposed in terms of the available informa-

tion it carries. In information theory, the basic measure for the amount of the available

information in an input is entropy. The basic idea behind entropy is that when the input

is more random, events in the stream are less predictable, and therefore, each event car-

ries more information by itself (also referred to as higher surprisal). In contrast, if events

in an input stream are highly predictable, each event on average carries little information
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(or has lower surprisal) because it can be predicted from other events. Operationally, in

the context of SL, the average amount of information found in each element, given the

element that preceded it, can be quantified using Markov entropy (measured in bits/ele-

ments; see, for example, Nastase, Iacovella, & Hasson, 2014)1:

Markov entropy ¼ �
Xn
i¼1

p ið Þ
Xn
j¼1

p jjið Þ � log pðjjiÞ:

This formula quantifies the average extent of new information provided by each element

in the stream, by summarizing the average predictability of each element, weighted by its

overall frequency.2 To illustrate, consider an input stream with four elements: A, B, C,

and D. In an input stream in which these four elements appear randomly one after the

other (e.g., D B A C C B C A D B, etc.), all elements in the stream are unpredictable,

and therefore each event provides maximal new information, leading to high entropy. In

contrast, if the same four elements are organized in a stream consisting only of the pairs

AB and CD (e.g., A B A B C D A B C D, etc.), the second element in each pair does

not carry any new information, because it is fully predictable by the element preceding it,

leading to low entropy. Indeed, calculating the Markov entropy for these two streams

reveals higher entropy for the random stream (2 bits/element) versus the structured stream

(0.5 bits/element).

In the context of SL, the higher the TPs between elements within-patterns (i.e., a

stream that consists of more regular patterns), the lower the entropy value. Importantly,

however, while Markov entropy and TP are correlated, they are far from being equiva-

lent. From the inception of the SL literature, TP was used as a way of summarizing the

degree of structure in the presented input and was calculated simply by averaging the

probabilities of transitions within patterns (e.g., Aslin, Saffran, & Newport, 1998; Saffran,

Aslin, & Newport, 1996). This has led later experimental work to manipulate the degree

of structure in the input by changing this parameter (see, e.g., Bogaerts et al., 2016; Hay,

Pelucchi, Estes, & Saffran, 2011). In contrast to TP, Markov entropy is calculated on the
full matrix of transitions of all elements in the stream (all transitions i, j), including both

between- and within-pattern transitions. Thus, Markov entropy is impacted by all parame-

ters that affect the full matrix of transitions between elements (e.g., within-pattern TPs,

the ways in which noise is introduced to the input, the overall number of patterns, the

length of patterns, etc.), and thus quantifies the average amount of information that is pro-

vided by each element. Note, however, that in the present design, changes of entropy val-

ues resulted from manipulation of TPs alone, and not via other parameters.

However, looking only at the entropy level, the average extent of new information pro-

vided by each element is not enough to predict learning outcomes. Another important fac-

tor that affects information processing is the time available to process each element.

Therefore, a unifying computational principle for SL performance must also take into

account the time dimension. In the context of SL paradigms, a straightforward measure

for the time dimension is rate of presentation—the number of elements that appear in

4 of 25 N. Siegelman, L. Bogaerts, R. Frost / Cognitive Science 43 (2019)



each second. A faster stream of elements (with higher rate of presentation) will be more

difficult to process as there is less time to process the extent of novel information carried

by each element. In contrast, a slower stream of information will be easier to process,

therefore leading to better learning outcomes.

A single computational principle, which takes into account both the entropy and time

dimensions, is, therefore, Rate of Information (RI). As shown in the formula below, RI is

simply the multiplication of Markov entropy (average extent of new information per ele-

ment, measured in bits/element) by the rate of presentation (the time available to process

each element, measured in elements/second).

Rate of Information
bits

second

� �
¼ entropy

bits

element

� �
� rate of presentation

element

second

� �
: ð1Þ

Since RI is the multiplication of bits/element by element/second, the units of this measure

are bits/second. Intuitively, therefore, RI quantifies the extent of new information per second
to be processed (or, in more formal terms, the amount of bits of new information to be pro-

cessed per second). In the context of SL, it measures how much new information is available
in each second of the familiarization stream. Importantly, note that RI takes into account

both the average extent of predictability of elements as well as the time available to process

each unit given its predictability. Therefore, it could potentially explain the effects of both

encoding-related and learning-related factors, as well as their interaction. Specifically, here

we propose that RI could account for both the effect of TPs between elements (with higher

TPs leading to lower entropy, therefore lower RI, and vice versa), the effect of ED (with

longer ED for each element leading to slower rate of presentation—less shapes per second,

therefore lower RI, and vice versa), and their interaction.

How would we know whether it is indeed RI that drives VSL performance? The RI

hypothesis generates two straightforward predictions. First, if indeed RI drives SL perfor-

mance, then a clear monotonic function, where higher levels of RI lead to worse SL per-

formance, should be found (as documented in other domains in the Cognitive Sciences,

e.g., de Fleurian, Blackwell, Ben-Tal, & M€ullensiefen, 2017; Fan, 2014; Miller, 1956).

Whereas, in principle, the shape of this function is not unequivocally clear a priori, in the

context of VSL performance, a logarithmic function seems the most probable: At lower

levels of RI (i.e., streams with lower amounts of information to be extracted) we expect a

substantial impact of changes in the amount of information on SL performance, which is

expected to decrease at higher levels of RI as SL performance gets closer to chance level.

We therefore hypothesize that SL performance would be predicted from log-transformed

RI. A second even stronger prediction is that similar SL performance should be observed

in learning conditions with identical RI levels regardless of the specific task parameters.

In the context of the VSL paradigm, it is thus predicted that even if two learning condi-

tions have different combinations of TPs and ED (i.e., a condition with high ED and low

TP vs. a condition with low ED and high TP), a similar SL performance should be

observed as long as their RI level is identical.
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In light of these two predictions, the current work employed two experimental strate-

gies. In order to test the first prediction—whether RI indeed monotonically predicts SL

performance—we examined VSL performance across a large number of conditions, with

different RI levels (through a re-analysis of Bogaerts et al., and Experiment 1). This

allowed us to test whether there is a logarithmic relation between SL performance and

RI. In order to examine the second prediction—similar VSL performance for conditions

with similar RI regardless of specific ED and TPs parameters—we compared performance

in a series of paired conditions with identical RI, but different combinations of ED and

TPs (Experiment 2).

1.2. Preliminary evidence—Re-analysis of Bogaerts et al. (2016)

Before turning to the new experimental work, in the current section we examine some

preliminary evidence for the RI hypothesis, through a reanalysis of the data from

Bogaerts et al. (2016). The data are based on a sample of 42 subjects, each participating

in nine VSL conditions. In each of these conditions, the VSL task included eight pairs of

shapes. Using a within-subject factorial design, Bogaerts et al. (2016) found significant

effects of ED (a factor with three levels: 200, 600, 1,000 ms per shape), within-pattern

TPs (0.6, 0.8, 1), and their interaction on VSL performance. Here we re-examined these

results, now asking whether VSL performance is indeed predicted not from ED and TPs

(and their interaction), but rather from a single factor: RI. We therefore calculated the RI

level in each of the nine conditions employed by Bogaerts et al. (2016; see Table 1),

then, we examined the relation between VSL performance and RI across the nine condi-

tions. As shown in Fig. 1, we observed a very high logarithmic fit between VSL and RI

(R2 = 0.84). This preliminary analysis already supports, to some extent, the first predic-

tion regarding RI, showing that it indeed accounts for performance in a VSL task. More-

over, it clearly shows that this possible relation is characterized by a logarithmic

function. This is further supported by the fact that a linear fit between VSL and RI was

substantially lower, R2 = 0.66.

Table 1

Rate of information levels for the 9 conditions from Bogaerts et al. (2016)

Condition Parameters Rate of Information (bits/sec) SL Performance (% correct)

ED = 1,000, TP = 1 1.50 72.8

ED = 1,000, TP = 0.8 2.22 65.6

ED = 600, TP = 1 2.50 67.6

ED = 1,000, TP = 0.6 2.71 61.8

ED = 600, TP = 0.8 3.68 59.7

ED = 600, TP = 0.6 4.53 59.5

ED = 200, TP = 1 7.50 58.4

ED = 200, TP = 0.8 11.08 56.3

ED = 200, TP = 0.6 13.53 54.8

Note. ED, exposure duration; SL, statistical learning; TP, transitional probabilities.
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Admittedly, however, this reanalysis cannot be taken to provide anything more than

preliminary support, due to some limitations. First, it was based on a small number of

experimental conditions—only nine overall. Second, RI levels in these conditions were

not well distributed over a wide range of possible values, as there were many conditions

with a small amount of information per second (6/9 conditions had a RI of 4.53 or less).

The goal of Experiment 1 was therefore to examine whether a logarithmic function

between VSL scores and RI is indeed obtained, over a larger number of experimental

conditions, spanning a wide range of RI values.

2. Experiment 1

In Experiment 1, we examined VSL performance across 24 RI levels, created through

different combinations of ED and TPs. We predicted that RI would account for VSL per-

formance, and that it would do so better compared to other possible factors. Therefore, in

operational terms, we predicted that a clear logarithmic function between VSL perfor-

mance and RI would (again) be observed across the whole range of RI levels, and, impor-

tantly, that a regression model with RI as a single predictor would best fit the data,

compared to models with ED, TPs, and their interaction as predictors.

2.1. Methods

2.1.1. Participants
A total of 217 students of the Hebrew University (43 males) participated in the study

for payment or course credit. Participants had a mean age of 22.8 years (range: 18–35)

Fig. 1. Statistical learning (SL) performance by rate of information (RI) (bits/sec) in the nine conditions from

Bogaerts et al. (2016). Line shows best logarithmic fit.
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and reported no history of learning or reading disabilities, ADD, or ADHD. They were

randomly assigned into one of the 24 VSL conditions (resulting in a sample of 8–12 sub-

jects in each condition).

2.1.2. Design, materials, and procedure
In designing the experiment, we calculated the RI levels of 72 possible VSL condi-

tions, resulting from all possible combinations of nine possible ED values (from 200 ms

to 1,000 ms in intervals of 100 ms, i.e. 200 ms, 300 ms, 400 ms, . . ., 1,000 ms), and

eight TPs values (from 0.3 to 1 in intervals of 0.1, that is, 0.3, 0.4, 0.5, . . . 1). The RI

levels of these possible conditions are presented in Table 2. From these 72 possible com-

binations, we selected 24 conditions (highlighted cells in Table 2), by selecting 2–3 con-

ditions from each value of ED and TPs (i.e., 2–3 conditions from each row/column in

Table 2), so as to evenly cover a wide range of possible RI levels.

All other task parameters were similar to that of Bogaerts et al. (2016). The VSL task in

all conditions employed the same 22 shapes (e.g., Turk-Browne et al., 2005; see

Appendix A). For each subject, 16 of the 22 shapes were randomly chosen and organized to

create eight pairs (the remaining 6 shapes were used for the “lie detection” trials, see

below). Similar to typical SL tasks, the first part of the VSL was a familiarization phase, in

which the eight pairs were presented continuously, one after the other, in a random order.

Each pair appeared 24 times during familiarization, with the only constraint that the same

pair could not appear twice in a row. In all conditions, there was a 100 ms interval between

shapes, both within- and between-pairs. The manipulation of TPs was done by including

random noise in conditions with TPs smaller than 1: for example, in a condition with

TPs = 0.8, for each pair AB during familiarization, shape B appeared after shape A 80% of

the time, while in 20% of the time shape B was randomly replaced by another shape X,

while avoiding immediate repetition of shapes. The familiarization stream lasted between 2

and 7 min (depending on the ED condition). Prior to familiarization, participants were

instructed to carefully attend the stream as they would later be tested, but they were not told

that the stream consisted of pairs or any form of sequential regularities.

Table 2

Rate of information levels for 72 possible combinations of ED and TPs. Highlighted cells are the conditions

selected for Experiment 1

Exposure Duration (ED)

200 300 400 500 600 700 800 900 1,000

Transitional

probability (TPs)

0.3 16.22 10.82 8.11 6.49 5.41 4.64 4.06 3.60 3.25

0.4 15.46 10.3 7.72 6.19 5.16 4.42 3.86 3.43 3.09

0.5 14.57 9.70 7.29 5.82 4.85 4.16 3.64 3.23 2.91

0.6 13.53 9.01 6.76 5.41 4.53 3.87 3.39 3.01 2.71

0.7 12.42 8.26 6.20 4.97 4.13 3.54 3.09 2.75 2.47

0.8 11.08 7.39 5.53 4.42 3.68 3.16 2.77 2.46 2.22

0.9 9.54 6.34 4.78 3.82 3.17 2.73 2.39 2.12 1.91

1.0 7.50 5.00 3.75 3.00 2.5 2.14 1.87 1.67 1.50
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Following the familiarization phase, a 38 2-Alternative Forced Choice (2-AFC) test

phase started. Thirty-two of the test-trials examined SL abilities, by contrasting (a)

“true pairs”—two shapes that appeared as a pair during the familiarization phase, and

(b) “foils”—two shapes that did not appear as a pair during familiarization. Foils were

constructed without violating the position of the shapes within the original pairs (e.g.,

for two true pairs AB and CD, possible foils could be AD or CB, but not AC or DB).

Scores in the SL task ranged then from 0 to 32, according to the number of correct

identifications of pairs during the test phase. The remaining 6 test-trials were “lie detec-

tion” trials, examining whether subjects attended the familiarization stream. These trials

contrasted “true pairs” with a pair containing a novel shape that did not appear at all

during familiarization (see Bogaerts et al., 2016; Romberg & Saffran, 2013, for a simi-

lar procedure).

2.1.3. General procedure
Participants completed the VSL task from their home computers, through an online

platform. Participants were instructed to do the task alone in a quiet room, to avoid exter-

nal distractions (turn-off their cell phone, and turn off music) and to have only the experi-

ment window open on their computer.

2.2. Results and discussion

Performance on the lie detection trials was high (86.6%, significantly different than

chance-level of 50%, t(216) = 29.15, p < .001), showing that subjects (at the

group level) indeed kept their attention on the familiarization stream. Note that, in con-

trast to previous studies (e.g., Bogaerts et al., 2016; Romberg & Saffran, 2013), we (a

priori) opted not to use performance on lie detection trials as a method to screen partic-

ipants at the individual level, due to the small number of trials (only 6 per subject),

which might lead to a high error rate (i.e., screening subjects who actually did attend

to the stream).

Across the 24 conditions, performance on the SL trials was significantly different

than chance (56%, t(216) = 6.89, p < .001). Fig. 2 shows VSL performance as a func-

tion of RI level. As can be seen, the results of Experiment 1 replicate the logarithmic

function between RI and VSL performance from the preliminary analysis based on the

results of Bogaerts et al. (2016). Admittedly, Fig. 2 presents a noisier picture compared

to Fig. 1 above (across the 24 conditions R2 = 0.35, substantially lower than the fit

across the 9 conditions in Fig. 1 where R2 = 0.84). This additional noise is most likely

due to the smaller number of subjects represented by each data point (n varied between

8 and 12 for each data point in Fig. 2, compared to n = 42 in Fig. 1) and the between-

subject design in Experiment 1 (as opposed to the within-subject design in Bogaerts

et al., 2016).

Next, we turned to examine whether indeed (log-transformed) RI outperforms other

possible predictors in accounting for VSL performance. To do so, we ran a series of

logistic mixed effect models (Jaeger, 2008). All models had correctness in each SL
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trial as the dependent variable, the trial number (1–32) and the position of the true-

pair within the 2-AFC trial (first or second) as control variables, and a by-subject ran-

dom intercept. Each of the models had different fixed effects, representing the differ-

ent possible predictors of SL performance (see Table 3). We predicted that the model

with only log-transformed RI would best account for the data. We compared the mod-

els by looking at Bayesian Inference Criteria (BIC) values, which are a standard way

of model comparison in mixed effect models (e.g., M€uller, Scealy, & Welsh, 2013). A

lower BIC represents a better model, with the natural exponent powered by half the

difference between the BIC of two models to be interpreted similarly to a Bayes Fac-

tor (i.e., eDBIC/2 � Bayes Factor; e.g., Masson, 2011). Thus, for example, a DBIC = 5

between model A and model B means that model A account for the data e5/2 = 12.18

times better than model B.

As predicted, the logarithmic model with only log-transformed RI level (top row of

Table 3) best fit the data, as reflected by its lowest BIC value compared to all other

models. The minimum difference between this model and any other model without Rate

Information as a predictor (i.e., models 3–5 in Table 3) was DBIC = 8, meaning that

(log-transformed) RI accounted for the data e8/2 = 54.5 times better compared to any of

these models. Note also that the logarithmic transformation of RI improved model fit

by DBIC = 5 (see model 1 vs. model 2 in Table 3), showing strong evidence for a loga-

rithmic (rather than a linear) relation between VSL and RI. Taken together, the results

of Experiment 1 show that (log-transformed) RI can indeed account for VSL perfor-

mance, and that it does so better than other predictors. Importantly, RI had better

explanatory power than a model with separate predictors for ED, TPs, and their interac-

tion. This suggests that the main effects for ED and TPs, as well as their interactive

Fig. 2. Statistical learning (SL) performance by rate of information (RI) (bits/sec) in the 24 conditions of

Experiment 1. Line shows best logarithmic fit.
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effect, can all be explained by a single computational principle—RI. Theoretically, this

suggests that both encoding-related and learning-related effects (as well as their interac-

tion) operate along a single axis—the amount of information per second in the input

stream.

An even stronger test of the RI account can be achieved by comparing the model with

log-transformed RI (model 1 in Table 3 above) to an alternative model that instead con-

siders separately the mathematical constituents of RI: rate of presentation and Markov

entropy. Mathematically, the RI model, SL ~ a + b*log(RI), can be expressed as

SL ~ a + b*log(entropy*presentation_rate), which is equivalent to: SL ~ a + b*log(en-
tropy) + b*log(presentation_rate). Critically, in this specification of the model, the coeffi-

cient of entropy and rate of presentation are equal. The question is, therefore, whether

this model better predicts the data compared to a model in which the two coefficients are

not constrained to be equal (i.e. SL ~ a + b1log(entropy) + b2log(presentation_rate)).
Examining this unconstrained model revealed that it had a BIC value of 9463, indeed

higher than that of the log(RI) model where BIC = 9460, meaning that the unified log-RI

accounted for the data e3/2 = 4.48 times better than the unconstrained model. This pro-

vides additional evidence that RI, as a unified construct, accounts best for the data.

3. Experiment 2

Our aim in Experiment 2 was to extend the findings of Experiment 1 and show that

not only RI determines VSL performance in a logarithmic manner, but importantly, that

similar RI levels lead to similar VSL performance, regardless of ED and TPs values. Our

experimental strategy was to employ a within-subject design with different pairs of ED

and TPs combinations that have identical RI levels. In two sub-experiments (Experiments

2a and 2b), each participant thus performed two VSL tasks with the same RI level: one

with fast stimulus presentation (low ED) and a high degree of regularity (high TP), and

the other with slow stimulus presentation (high ED) and a low TP. We examined whether

these led to similar performance.

Table 3

Model comparison results for Experiment 1

Model BIC

1) VSL ~ log (Rate of Information) 9,460
2) VSL ~ Rate of Information 9,465

3) VSL ~ ED + TPs + ED:TPs 9,475

4) VSL ~ ED:TPs 9,469

5) VSL ~ ED + TPs 9,468

6) VSL ~ ED + TPs + log (Rate of Information) 9,475

7) VSL ~ ED + log(TPs) + ED:log(TPs) 9,476

Note. ED, exposure duration; TP, transitional probabilities; VSL, visual statistical learning.
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4. Experiment 2a

4.1. Methods

4.1.1. Participants
An additional sample of 250 Hebrew University students was recruited to participate

in Experiment 2 for course credit or payment. Participants were randomly assigned to

one of five experimental conditions (n = 50 in each condition). From this initial sample,

243 participants (56 males, n = 47–50 in each condition) completed their participation in

the study (i.e., participated in both experimental sessions; see below), and their data are

used for all subsequent analyses. Participants’ mean age was 22.89 years (range: 18–35),
and they reported no history of reading or learning disabilities, ADD, or ADHD.

4.1.2. Design, materials, and procedure
Each experimental condition in Experiment 2 consisted of a pair of VSL tasks with

similar RI level but different combinations of ED and TPs. To select the five pairs, we

again examined all 72 possible combinations of 9 ED levels (200–1,000 ms in intervals

of 100) and 8 TP levels (0.4–1 in intervals of 0.1). From these possible conditions, we

then selected five pairs, each consisting of two ED-TP combinations with similar RI val-

ues (see Table 4). Importantly, in each pair, one condition had a combination of lower

value of ED and higher value of TPs (labeled low ED/high TP condition), while the other

had a combination of a higher ED and lower TPs (labeled high ED/low TP).
Experimental parameters in the VSL tasks were identical to Experiment 1. Each partic-

ipant performed both conditions within each pair condition, at least 7 days apart (mean:

14.24 days; range: 7–50 days). As in Experiment 1, participants took the tasks from

home, through an online platform, and were requested to avoid any external distractions.

4.2. Results and discussion

Performance on the lie detection trials was high—84.1%. This value significantly dif-

fered from chance (t(242) = 30.99, p < .001), showing that again participants kept their

Table 4

Highlighted cells show the conditions selected for Experiment 2a. Each color represents one condition pair

Exposure Duration (ED)

200 300 400 500 600 700 800 900 1.000

Transitional probability (TPs) 0.3 16.22 10.82 8.11 6.49 5.41 4.64 4.06 3.60 3.25

0.4 15.46 10.3 7.72 6.19 5.16 4.42 3.86 3.43 3.09

0.5 14.57 9.70 7.29 5.82 4.85 4.16 3.64 3.23 2.91

0.6 13.53 9.01 6.76 5.41 4.53 3.87 3.39 3.01 2.71

0.7 12.42 8.26 6.20 4.97 4.13 3.54 3.09 2.75 2.47

0.8 11.08 7.39 5.53 4.42 3.68 3.16 2.77 2.46 2.22

0.9 9.54 6.34 4.78 3.82 3.17 2.73 2.39 2.12 1.91

1.0 7.50 5.00 3.75 3.00 2.5 2.14 1.87 1.67 1.50
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attention to the familiarization stream. Overall SL performance (across conditions) also

differed from chance level (56.2%, t(242) = 9.67, p < .001), reflecting successful SL at

the group level.

Fig. 3 (left panel) presents VSL performance in each of the five condition pairs as a

function of RI. As can be seen, the pattern of results across RI levels replicates those of

Experiment 1, with an observed logarithmic relation between VSL performance and RI.

More important, we then examined VSL performance within each condition pair, to

assess whether it was similar across the low ED/high TP and the high ED/low TP combi-

nations. In line with our predictions, a series of paired t tests showed no significant differ-

ence between the two combinations across all five condition pairs (from lowest to highest

RI levels: pair 1: t(47) = 0.15, p = 0.88; pair 2: t(49) = 1.46, p = .15; pair 3: t
(48) = 1.81, p = .08; pair 4: t(46) = 0.65, p = 0.52; pair 5: t(46) = 0.63, p = .53). Note,

however, that the use of t-tests in this context is limited. Our a-priori prediction in this

experiment was that a similar VSL performance should be observed in each of the five

condition pairs—that is, we predicted a lack of an effect. t tests, as all other null-hypothe-
sis-significance-testing (NHST) procedures, cannot provide support for the null hypothesis

(i.e., no difference between combinations), but only for the alternative (some difference

between combinations; see, e.g., Dienes, 2014). We therefore next calculated, for each

condition pair, a Bayes Factor (BF), quantifying the ratio between the likelihood of the

data under the alternative hypothesis and the likelihood of the data under the null (i.e.,

BF ¼ pðDjH1Þ
pðDjH0Þ). We predicted that across the five pairs, support for the null hypothesis

would be observed, as reflected by BFs smaller than 1. We used “Bayesian paired t tests”
(Rouder, Speckman, Sun, Morey, & Iverson, 2009) using the BayesFactor package in R

Fig. 3. Statistical learning (SL) performance by rate of information (RI) (bits/sec) across condition pairs in

Experiment 2a. Each pair of conditions is represented by two points in the same RI level: Blue points repre-

sent high ED/low TP combinations, whereas orange points represent low ED/high TP combinations. Left:

Results of the original five condition pairs. Right: Results of the follow-up study: replication of pairs 3 and

4. Error bars depict 95% confidence intervals.

N. Siegelman, L. Bogaerts, R. Frost / Cognitive Science 43 (2019) 13 of 25



(Morey, Rouder, & Jamil, 2014), with default priors (i.e., Cauchy distribution with a

width of
ffiffiffi
2

p
=2 on effect size). As predicted, in all five pairs, a BF smaller than 1 was

observed, reflecting support for the null hypothesis (from lowest to highest RI levels: pair

1: BF = 0.19; pair 2: BF = 0.19; pair 3: BF = 0.7; pair 4: BF = 0.41; pair 5: BF = 0.16).

Similarly, a combined analysis of all data across all five pairs revealed substantial support

the null, meaning, as predicted, no difference in VSL performance between high ED/low

TP and high ED/low TP combinations across RI levels (BF = 0.2).

Note, however, that the strength of evidence for the null was somewhat weaker in two

out of the five condition pairs with medium RI levels. Specifically, in pairs 3 and 4, the

null hypothesis predicted the data only 1.42 or 2.44 times better than the alternative,

respectively, values that are typically considered as “weak” evidence for the null over the

alternative (e.g., Wetzels et al., 2011). We therefore conducted a follow-up study in

which we re-ran these two condition pairs with a new sample of 100 Hebrew University

students. Eighty-nine of them (20 males, Mage = 22.4, age range: 19–30) completed their

participation (n = 42 in pair 3, n = 47 in pair 4, mean interval between tests 11.3 days

with range: 7–36 days). Performance on the lie detection trials for this sample was 86.9%

(significantly different from chance: t(88) = 23.01, p < .001) and mean SL performance

again differed from chance level 56.6%, t(88) = 7.25, p < .001). The right panel of

Fig. 3 presents VSL performance in the two replicated conditions as a function of RI.

Again, no significant difference was observed between high ED/low TP vs. low ED/high

TP combinations in the two pairs (pair 3: t(41) = 0.12, p = .9; pair 4: t(46) = 1.7,

p = .1). Bayes Factor analysis also provided support for the null hypothesis in both con-

ditions, although the extent of support again differed between the two pairs: pair 3:

BF = 0.17; pair 4: BF = 0.60. Given the variance in findings between pairs in Experi-

ment 2b, we aimed to further estimate the actual effect of ED and TP combinations

across a wider range of RI levels.

5. Experiment 2b

Experiment 2b again used conditions with identical RI levels, but different combina-

tions of ED and TP. The experiment had a total of five condition pairs: three “replication

pairs” from Experiment 2a (which were not already replicated in the follow-up study)

and two “new pairs,” with different RI values. The goal of Experiment 2b was therefore

to collect further data, both replicating and extending Experiment 2a.

5.1. Methods

5.1.1. Participants
Since we exhausted most of the Hebrew University student pool in Experiments 1 and

2a, in Experiment 2b we turned to a different platform—Amazon Mechanical Turk. This

also allowed us also to extend the validity of our findings to a wider and heterogeneous
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sample of participants. We first recruited 500 participants through Mechanical Turk, who

were randomly assigned into one out of the five condition pairs (n = 100 in each condi-

tion), and participated in one (random) combination of ED and TP within this pair. After

7 days, we recontacted all participants via e-mail and offered them the chance to partici-

pate again in the experiment, sending them a link to the other ED/TP combination of the

condition pair to which they were assigned. A total of 279 participants out of the original

500 agreed to participate also in the second session (between 43 and 66 in each condition

pair)—their data were used in all analyses presented below.

5.1.2. Design, materials, and procedure
The five condition pairs in Experiment 2b are presented in Table 5. As noted above,

the three “replication pairs” conditions were pairs from Experiment 2a (those that were

not already replicated in the follow-up study): pair 1 from Experiment 2a, RI ffi 2:2; pair
2, RI ffi 3:2; and pair 5, RI ffi 7:6. In addition, two new pairs were selected

(RI ffi 3:65,RI ffi 6:3), to cover more of the RI range. All other task parameters were iden-

tical to Experiment 2a. The mean time interval between sessions within each condition

pair was 10.9 days (range: 7–20 days).

5.2. Results and discussion

As in previous Experiments, performance on the lie detection trials was high—72.8%

(significantly different from chance: t(278) = 19.88, p < .001) showing that participants

kept their attention to the familiarization stream. Admittedly, lie detection performance

was somewhat lower than the observed values in Experiments 1 and 2a (in which lie

detection performance was around 85%). This is probably due to the difference in partici-

pant pool (Hebrew University students in Experiments 1 and 2a vs. Mechanical Turk

workers in Experiment 2b). Nonetheless, overall SL performance (across conditions) sig-

nificantly differed from chance level (55.17%, t(278) = 9.44, p < .001), reflecting suc-

cessful SL at the group-level. Fig. 4 presents VSL performance in the five condition pairs

Table 5

Condition pairs in Experiment 2c. Each color represents one condition pair. Yellow, orange, and purple pairs

are replications of pairs 1, 2, and 5 in Experiment 2a, respectively (RI ffi 2:2, RI ffi 3:2, and RI ffi 7:6). The
two other pairs are new conditions

Exposure Duration (ED)

200 300 400 500 600 700 800 900 1,000

Transitional probability (TPs) 0.3 16.22 10.82 8.11 6.49 5.41 4.64 4.06 3.60 3.25

0.4 15.46 10.3 7.72 6.19 5.16 4.42 3.86 3.43 3.09

0.5 14.57 9.70 7.29 5.82 4.85 4.16 3.64 3.23 2.91

0.6 13.53 9.01 6.76 5.41 4.53 3.87 3.39 3.01 2.71

0.7 12.42 8.26 6.20 4.97 4.13 3.54 3.09 2.75 2.47

0.8 11.08 7.39 5.53 4.42 3.68 3.16 2.77 2.46 2.22

0.9 9.54 6.34 4.78 3.82 3.17 2.73 2.39 2.12 1.91

1.0 7.50 5.00 3.75 3.00 2.5 2.14 1.87 1.67 1.50
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as a function of RI levels. Below we describe these results, discussing separately the

replication pairs, and the new pairs.

5.2.1. VSL performance: Replication pairs
We start by examining VSL performance in the “replication pairs” from Experiment

2a: pairs 1 (RI ffi 2:2), 2 (RI ffi 3:2), and 5 (RI ffi 7:6). As in Experiment 2a, no signifi-

cant difference was observed between high ED/low TP and low ED/high TP combina-

tions in the three pairs, and Bayes Factor analysis revealed some support for the null

hypothesis (BF < 1) in all three pairs (pair 1: t(42) = 1.88, p = .07, BF = 0.82; pair 2:

t(51) = 1.36, p = 0.18, BF = 0.36; pair 5: t(58) = 0.52, p = .61; BF = 0.16).

5.2.2. VSL performance: New pairs
In line with previous experiment, VSL performance in the two new pairs (new-pair 1:

RI ffi 3:65, new-pair 2: RI ffi 6:3) showed no significant difference between high ED/low

TP and low ED/high TP combinations, and the Bayes Factor analysis showed some sup-

port for H0 in both condition pairs (new-pair 1: t(58) = 1.73, p = .08, BF = 0.58; new-

pair 2: t(65) = 0.12, p = .91; BF = 0.14).

Taken together, the results of Experiment 2a and 2b suggest that indeed RI provides

an overall good predictor of VSL performance. Across the three sub-experiments, on a

total 12 sub-samples (all n > 40), not one statistically significant difference was found

between VSL conditions with identical RI level, having different combinations of ED and

TPs. Bayes Factor analyses complemented this finding: When looking at the experimental

conditions separately, Bayes Factors for all 12 RI pairs had a BF < 1 value, signaling some

Fig. 4. Visual statistical learning (VSL) performance by rate of information (RI) (bits/sec) in the five condi-

tion pairs of Experiment 2b. Blue points represent high ED/low TP combinations, whereas orange points rep-

resent low ED/high TP combinations. Replication pairs are marked with dashed rectangles. Error bars depict

95% confidence intervals.
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support for the null hypothesis. Moreover, in 6 out of the 12 pairs, we found that BF < 1/3,

signaling substantial support for the null. Our results thus conform with the predictions of

RI determining VSL performance. They suggest that similar VSL performance is obtained

within the same rate of information, regardless of ED and TP combinations.

5.3. Aggregated analysis

Although our results show that RI does a good job at predicting VSL performance,

some data points we obtained seem to be discrepant with the RI account. Specifically,

some of the pairs comparisons resulted in BFs that are typically considered “inconclu-

sive” (i.e., BF larger than 1/3; e.g., Wetzels et al., 2011). This raises the question of

whether such variance in findings simply reflects noise, or whether it points to some more

fundamental bias of RI as a predictor of VSL performance. In light of the multiple com-

parisons throughout Experiment 2, and the error measurements characteristics to the 2-

AFC test (see Siegelman, Bogaerts, & Frost, 2017 for discussion), it is possible that the

discrepant data points are due to noisy performance measures. However, when consider-

ing the combined results of Experiments 2a and 2b, it seems that the lowED/highTP com-

bination had a slight advantage in VSL performance compared to the highED/lowTP

combination (see Figs. 3 and 4, above). Indeed, when merging the data across all condi-

tions in all sub-experiments across all condition pairs, a 2% difference in performance

between combinations emerged, which was found to be significant (lowED/highTP

mean = 56.8%, highED/lowTP mean = 54.8%, t(610) = 3.33, p = .001; BF = 10.7). It

thus seems that when considering VSL performance across all conditions, the effect of

ED seems perhaps less pronounced than that of TPs—that is, a change from a low-ED to

a high-ED condition impacts VSL performance less than a parallel change from a low-TP

to a high-TP condition. In more theoretic terms, it is possible that while combining the

two measures together, ED has a lesser influence on VSL compared to TPs. What could

be the source of imbalance between ED’s and TPs’ impact on VSL performance?

One possible source could be a nonlinear impact of ED on task performance. As docu-

mented in many fields (e.g., Carver, 1973; Sable, Gratton, & Fabiani, 2003; Sherman &

Turvey, 1969), presentation rate tends to have a nonlinear effect on performance, where a

change in very fast EDs (e.g., a change in ED from 200 ms to 300 ms) have a greater

impact on performance than a parallel change in slower EDs (e.g., a change from 900 ms

to 1,000 ms, which is negligible). This would suggest that for obtaining an even better fit

of the data, the simple multiplication of entropy (bits/element) by rate of presentation

(elements/second) for computing RI (see Eq. 1, above) should incur some correction.

Mathematically, this can be done by having a power smaller than 1 for the rate of presen-

tation part of the equation (noted as x in formula (2) below), which aims to capture the

decrease in the effect of presentation rate with increasing baselines:

Modified RI ¼ entropy � rate of presentationx where x\1ð Þ ð2Þ

To examine whether such modification improves the predictive power of RI, we con-

ducted an aggregated analysis of all data from Experiments 2a and 2b (n = 611 subjects
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overall). The data were analyzed using logistic mixed-effect models, with correctness in

each trial as the dependent variable, as well as a by-subject random intercept. We then

used a bootstrapping procedure3 to find the value of x (the exponent of rate of presenta-

tion) that best predicts the data. The average exponent of rate of presentation which pro-

duced the best model fit was x = 0.7 (SD = 0.11). The value being smaller than 1 with a

small SD suggests that, indeed, a modification of the RI calculation was beneficial. To

cross-validate this proposed modification of the RI calculation, we returned to the results

of Experiment 1 and examined whether a better model fit would be reached by a (log-

transformed) modified-RI, compared to the (log-transformed) “simple RI” we used before.

A slightly lower BIC value was found when using modified-RI as a predictor, with

BIC = 9,458, as compared to the original “linear-RI,” which had a BIC = 9,460. This

suggests that modified-RI accounted for the data e2/2 = 2.72 times better than the “simple

RI” model.4 To illustrate this finding, Fig. 5 presents SL performance in the different

conditions of Experiment 1 as a function of log-transformed modified-RI, which accounts

for 38.5% of the variance across conditions (cf. Fig. 1 above which presents the same

results with the “linear-RI,” and where R2 = 35%). To avoid making a claim based on

overfitting the available data, however, we should caution that firm conclusions regarding

the exact power of ED for RI computations require further investigation (and see Sec-

tion 6, below).

6. General discussion

Learning the regularities embedded in a continuous input stream has been taken to be

a basic cognitive ability demonstrated across modalities, age, and species. In the visual

modality, it has been shown across a wide range of stimuli differing in complexity. In the

present paper, we address the question of how precisely SL computations are done, aim-

ing to offer a theoretical account regarding the possible nature of computed representa-

tions. Assuming that learning the embedded regularities between elements in an input

stream requires encoding the elements’ representations as well as computing their TPs,

our starting point was the surprising interaction between encoding constraints and TPs

computations (Bogaerts et al., 2016). This interaction ruled out an account based on two

separate stages of processing, one in which stimuli are encoded, the other which subse-

quently computes the TPs between the elements (Frost et al., 2015), suggesting that these

processes occur in parallel. But how can we account for such parallel processing? What

is the nature of the computed representations during learning? Here we offer a unified

principle that subsumes this interaction and considers in parallel both TPs (the amount of

information carried by each element in the stream) and the time allocated to compute this

information. As such, we suggest that the representations of the amount of information

encompassed in each element in the stream (entropy), and how they are built over time,

belong to one unified construct—Rate of information. This account blurs the distinction

between the encoding of elements and the extraction of the statistical properties embed-

ded in the stream (cf. Frost et al., 2015). Instead, it suggests that learning patterned
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regularities in an input can be described as a process of information extraction, a process

constrained either by extent of unpredictability of elements or by challenging presentation

parameters, and these two components can be interchangeable. This view thus conforms

with neurobiological findings, showing entropy-related computations already in early sen-

sory cortices (Nastase et al., 2014; Tobia, Iacovella, & Hasson, 2012; and see Hasson,

2017 for a detailed discussion of possible underlying neurobiological mechanisms).

We provide substantial evidence supporting this theoretical claim, based on data from

more than 800 subjects overall. In Experiment 1 we show across a wide range of TPs

and ED combinations that RI monotonically determines VSL performance in a function

that is logarithmic. Our findings demonstrate that log-transformed RI provides by far the

best fit of VSL performance, predicting learning outcomes significantly better than the

joint combination of ED, TP, and ED by TP interaction. In Experiments 2a and 2b we

take this finding a step further, testing the strong prediction that similar RIs will result in

similar performance regardless of ED and TP combinations. Using Bayesian analysis, we

show that RI offers the most probable account for VSL performance.

Considering SL theory, an important question is whether our findings from the visual

domain can be extended to auditory inputs. From a pure information theory perspective,

entropy can be assessed in any input regardless of modality. Indeed, recent studies target-

ing speech production suggest that the extent of word surprisal determines speech rate so

that unpredictable (informative) words are spoken more slowly (e.g., Cohen Priva, 2017).

However, whereas it is possible that speakers naturally adjust their speech rate given

word surprisal, the extrapolation of RI calculations to the auditory modality is not trivial

and requires targeted research. First, the visual and auditory cortices vastly differ in the

parameters defining efficiency in computing representations from continuous input

streams (Conway & Christiansen, 2006; Emberson, Conway, & Christiansen, 2011; Frost

et al., 2015). Second, and perhaps more important, when linguistic stimuli compose the

input stream (as is the case in the Saffran et al., 1996 task), participants have

Fig. 5. Results of the cross-validation procedure, depicting statistical learning (SL) performance by modified

rate of information (RI) in the 24 conditions of Experiment 1. Line shows best logarithmic fit.
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well-established linguistic representations they bring to the learning task (see Siegelman,

Bogaerts, Elazar, Arciuli, & Frost, 2018). Such prior expectations may either increase or

decrease the input’s initially perceived entropy, based on the overlap between the input

and prior linguistic exposure, as well as potentially alter the impact of rate of presentation

on SL computations. Thus, how RI impacts auditory SL with linguistic elements (as well

as other facets of SL, see Siegelman, Bogaerts, Christiansen, & Frost, 2017) remains an

outstanding question.

The current results also provide a new perspective to the role of SL in language acqui-

sition and processing. Under the common view, efficient language use relies on SL abili-

ties as it requires sensitivity to regularities embedded in the input (see, e.g., G�omez &

Gerken, 2000; Romberg & Saffran, 2010). The current work refines this view, suggesting

that the joint shared mechanism behind SL and language is information extraction.

According to this perspective, languages can be viewed as a mean for transferring novel

information in a given time unit (see also, e.g., Cohen Priva, 2017; Linzen & Jaeger,

2015), which is then extracted through SL computations. In the same vein, our account

also refines the interpretation of individual-differences studies showing a correlation

between SL performance and linguistic abilities (e.g., Arciuli & Simpson, 2012; Frost,

Siegelman, Narkiss, & Afek, 2013). It suggests that the source of these correlations is dif-

ferent information extraction capacities of different individuals, where some individuals

can process more information per time unit compared to others. This view thus resembles

the classic work by George Miller, who argued that individuals exhibit varying working

memory performance as they differ from one another in the maximal amount of informa-

tion they can process (Miller, 1956).

Our findings, however, raise additional questions that require further investigation. Recall

that to account for the decreasing effect of ED on RI in slower presentation rates, we

employed a transformation on RI using a power smaller than 1 on presentation rate. This

transformation seems to fit best the range of EDs employed in our study, EDs that are typi-

cally employed in SL experiments. One possibility to consider, however, is that very long

EDs may have an adverse effect on learning (leading to worse VSL performance), because

they implicate higher demands on working memory. Investigating this possibility requires

data collected in conditions with EDs longer than 1 s, combined with an exploration of dif-

ferent possible mathematical transformations that allow for non-monotonicity. Relatedly,

we should stress that the exact mathematical transformation of ED needs to be further vali-

dated using other visual stimuli that differ in complexity from those used here. We should

also note that in our present investigation we did not employ a separate and independent

measure to estimate a-priori participants’ encoding abilities. Rather, we manipulated encod-

ing and learning related factors within the SL task. Our RI account highlights the interplay

of encoding and assimilation of statistics in accounting for SL performance. A future exten-

sion of this work could therefore examine whether and to what extent individual differences

in SL performance can be traced back to individuals’ encoding abilities.

Another important outstanding question concerns the impact of RI on the dynamics of

learning. Our current RI formulations only consider the expected mean of RI in an input

stream, and examine its power in accounting for learning outcomes following a relatively
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long exposure phase. What remains unexplored is how RI modulates performance contin-

uously throughout learning. Future work is left with the task of assessing the impact of

RI dynamically, measuring how the rate of information presented to learners at each time

point during familiarization is related to their gradual accumulation of knowledge, eventu-

ally leading to final SL performance. This requires, however, more advanced models that

estimate changes in information as stimuli unfold (see, e.g., Kidd, Piantadosi, & Aslin,

2012), combined with online measures of SL which continuously tap into learning abili-

ties throughout the familiarization phase (see Siegelman, Bogaerts, Kronenfeld, & Frost,

2018, for discussion).

Lastly, the current work also opens broad theoretical questions regarding the role of

SL across cognition, and in language in particular. We found that over the course of an

experimental session, adults show above-chance learning of streams involving few bits of

information to be learned (0–10 bits in our experimental setting). This amount of infor-

mation is smaller tenfold compared to the amount of information that needs to be

extracted by learners in real-world tasks. A recent work estimated that an average human

has to extract and store around 1.5 million bits of information during language acquisition

(Mollica & Piantadosi, 2019). This discrepancy in scale raises questions regarding

whether and how SL findings scale up to account for real-world learning tasks in general,

and language acquisition and processing in particular. Assuming that SL plays a key role

in language acquisition and use, SL research should explicitly consider the exact mecha-

nisms that are available to learners, as well as the full array of statistical and non-statisti-

cal cues that are available to them in the input, to provide a comprehensive account of

how learners assimilate the huge amounts of information that they eventually learn.

To conclude, we suggest that learning regularities in the visual modality is best

described by considering the rate of novel information that has to be processed in the

input stream. The advantage of RI as a theoretical construct is that it offers a unifying

computational principle that combines the extent of informativeness (or entropy) in the

stream and the time that is allocated to process it. This approach holds the promise of

generating precise computational accounts and, therefore, testable predictions for under-

standing how regularities in an input stream are learned.
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Notes

1. Note that Markov Entropy focuses on the amount of information of each element

given the TPs in the stream. This type of entropy is specifically relevant to learning

situations in which TPs between elements are the available cues for learning, such

as in typical SL tasks on which we focus here. In other learning situations, other

measures of entropy should be applied. For example, some learning situations

require the learning of the overall distribution of elements, rather than the TPs

between them (see Thiessen, Kronstein, & Hufnagle, 2013, for discussion). In these

situations, the information in the input should be quantified by Shannon Entropy,

which focuses on the (marginal) probability of each element (regardless of the TPs

between elements).

2. Entropy can be calculated using Log in different bases (2, e, or 10). Here we use Log
in the basis of 2 in all calculations following the convention in Information Theory.

3. In each run, we randomly sampled n = 200 subjects. We then ran a series of mixed

effect models, each time with a different exponent x, running from x = 0.2 to

x = 1, in intervals of 0.05 (i.e., 0.2, 0.25, 0.3, . . ., 1). For each x, a mixed model

was run, with log-transformed modified-RI as a fixed-effect. After running on all

values from 0.2 to 1 for this sub-sample, the optimal value of x for this run was

selected, based on the value that resulted in a lowest BIC value for the model (rep-

resenting best model fit). We reiterated this bootstrapping procedure k = 100 times.

4. To re-validate the RI account and its superior predictive power compared to models

comprising of ED and TP, we also compared the model with the modified RI to

models with power-transformed ED (i.e., ED0.7), TP, and their interaction. Thus,

we ran two additional models with ED powered by 0.7, with either TP or log-trans-

formed TP, and their interaction, namely: (1) VSL ~ ED0.7 + TP + ED0.7:TP, and

(2) VSL ~ ED0.7 + log(TP) + ED0.7:log(TP). Both models produced BIC values

substantially higher compared to the modified RI model: BIC = 9,474 and

BIC = 9,475, respectively (DBIC of at least 16 compared to the modified RI

model; see main text).
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