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A B S T R A C T

It is well documented that humans can extract patterns from continuous input through Statistical Learning (SL)
mechanisms. The exact computations underlying this ability, however, remain unclear. One outstanding con-
troversy is whether learners extract global clusters from the continuous input, or whether they are tuned to local
co-occurrences of pairs of elements. Here we adopt a novel framework to address this issue, applying a gen-
erative latent-mixture Bayesian model to data tracking SL as it unfolds online using a self-paced learning
paradigm. This framework not only speaks to whether SL proceeds through computations of global patterns
versus local co-occurrences, but also reveals the extent to which specific individuals employ these computations.
Our results provide evidence for inter-individual mixture, with different reliance on the two types of compu-
tations across individuals. We discuss the implications of these findings for understanding the nature of SL and
individual-differences in this ability.

It is well documented that humans are highly sensitive to the sta-
tistical structure of their surrounding input. Since the seminal in-
vestigation by Saffran, Aslin, and Newport (1996), a large number of
studies demonstrated learners' ability to detect patterns in continuous
streams of sensory input, across modalities and materials, in different
stages of development, and under a range of learning conditions (see,
Frost, Armstrong, Siegelman, & Christiansen, 2015 for review). This has
led to vast interest in this ability – commonly labelled “Statistical
Learning” (SL) – and its relation to other cognitive functions.

Yet despite the presumed role of SL across cognition and its nu-
merous experimental demonstrations, key questions regarding its un-
derlying computations are still mostly unanswered. One major con-
troversy is whether learners extract global clusters from the continuous
stream, or whether they are primarily tuned to local co-occurrences of
pairs of elements. To exemplify, consider a stream consisting of the
patterns A-B-C and D-E-F. According to the global view, successful
learning means creating representations of the full patterns “A-B-C” and
“D-E-F”. Learning such patterns could occur through transitional
probabilities (TPs) tracking, in which low TP between adjacent ele-
ments signal the pattern boundaries. This is a common interpretation of
the seminal findings of Saffran et al. (1996), showing that infants re-
cognize “words” in a continuous speech stream. Alternatively, full

pattern extraction could also occur without tracking TPs. Such an ac-
count assumes that the continuous stream is parsed into repeatedly
encountered “global clusters”, or chunks, where representations of
chunk candidates are reinforced or decayed given consistent repetitions
of the chunks in the stream (e.g., the PARSER model; Perruchet &
Vinter, 1998; and see Perruchet & Pacton, 2006; Saffran & Kirkham,
2018; Thiessen, 2017 for discussion).

Yet another possible account of the computation underlying
learning in a continuous stream of elements is to assume that learners
simply register co-occurrences of local adjacent elements, akin to
Hebbian learning. These “atomic” units of learning may eventually
cluster into larger more complex chunks with lengthy exposures,
however, the local co-occurrences are the primary object of learning,
rather than the full global clusters (see, e.g., Frank, Goldwater,
Griffiths, & Tenenbaum, 2010; Swingley, 2005, for discussion). Thus, in
the simple example above, learning the stream consisting A-B-C and D-
E-F entails the independent learning that element B follows A, that C
follows B, E follows D, and F follows E. One major attempt at deli-
neating between these different accounts was undertaken using the
Phantom-word paradigm developed by Endress and Mehler (2009). In
this study the familiarization stream included the following 6 patterns,
all with TPs=0.5 (each letter stands for one element): A-B-C, D-B-E, A-
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F-G, H-F-J, H-I-E, D-I-J. Based on the structure of these patterns, the
sequence A-B-E constitutes a “phantom-word”: it maintains a local-TP
structure similar to the original six patterns (i.e., TP= 0.5), but it never
appeared in the familiarization stream as a full chunk. The rationale
behind this design is that it can potentially differentiate between
learning via local co-occurrences versus full global patterns: If SL relies
on the assimilation of the local co-occurrences between elements,
phantom sequences like A-B-E would be treated similar to “word”
patterns, since they consist of two local elements A-B, and B-E, with
identical TP structure. If, however, SL is based on the extraction of
larger global patterns from the stream, “words” should be preferred
over phantom-words, since the three elements of phantom-words never
fully appeared together during familiarization.

This debate has attracted significant attention since it touches upon
a fundamental issue in SL theory: understanding the computations in-
volved in learning the regularities embedded in a continuous input
stream. Yet, almost ten years since the original report by Endress and
Mehler, there are no clear conclusions regarding the nature of SL
computations, because studies using this paradigm have provided
mixed evidence. For example, from three large-scale multi-experiment
investigations one supported local computations (Endress & Mehler,
2009), another supported learning of full patterns (Perruchet & Poulin-
Charronnat, 2012), and the third presented mixed evidence across ex-
periments (Endress & Langus, 2017). Notably, these contrasting results
were observed despite the use of the same procedure, and in some
cases, the exact same stimuli (see Experiment 1 in Perruchet & Poulin-
Charronnat, 2012, vs. Endress & Mehler, 2009).

Why similar manipulations with identical stimuli lead to such mixed
findings? One possible factor is methodological. The phantom-word
paradigm (as well as related experimental procedures) measure success
in a recognition test administered only at the end of familiarization
(e.g., Giroux & Rey, 2009; Orbán, Fiser, Aslin, & Lengyel, 2008;
Perruchet, Poulin-Charronnat, Tillmann, & Peereman, 2014; but see
Rey, Minier, Malassis, Bogaerts, & Fagot, 2018 for an exception). Such
“offline” tests examine the post-hoc outcomes of SL, which may differ
from the representations that are available to learners as they actually
learn the statistical structure of the input. Importantly, the testing
procedure consists of repeated presentations of “words”, “phantom-
words”, and “part words” which merge with the learned representa-
tions, contaminating the assessment of learning (see Siegelman,
Bogaerts, Christiansen, & Frost, 2017; Siegelman, Bogaerts, Kronenfeld,
& Frost, 2018, for extended discussion). This would inevitably in-
troduce variability in the experimental outcomes. In addition, offline
measures are often characterized by mediocre reliability, potentially
also contributing to inconsistent findings across studies (and see
Siegelman, Bogaerts, & Frost, 2016, for discussion).

However, an alternative and more intriguing account is deeply
theoretical. One hypothesis to consider is that the previously mixed
results actually reflect a true mix of learning strategies. Specifically, it is
possible that not all participants in the experiment employ identical
computations for learning, but that different individuals employ dif-
ferent computations, reflecting individual sensitivity to local co-occur-
rences of elements vs. larger patterns. This may contribute to overall
different learning scores across different samples of participants.
Importantly, examining only group-level mean performance, as was
typically the case in previous studies, by-definition cannot reveal such
an inter-individual mix.

The goal of the current study is to simultaneously address these
methodological concerns and theoretical hypothesis. First, our study
refrains from using only an offline test of SL performance. Instead, we
focus on an online measure of learning, which monitors response la-
tencies to predictable versus unpredictable stimuli throughout the fa-
miliarization phase. Second, we employ an alternative analytical ap-
proach – Bayesian Latent Mixture Modeling, that speaks to the issue of
whether learning proceeds through local co-occurrences versus global
patterns on the average, but critically, examines also the extent to

which specific individuals employ these computations. To preview our
findings, we demonstrate that our novel approach, applied to online SL
data, leads to new important insights regarding SL computations.
Specifically, we show that indeed SL computations cannot be described
as based only on local co-occurrences or full patterns, since different
individuals display behavior consistent with different computations
while processing a continuous stream of visual elements.

1. Methods

1.1. General analytical approach: Bayesian modeling and latent-mixture
models

The central analysis in this paper uses a hierarchical Bayesian ap-
proach to account for response latencies during a self-paced visual
statistical learning task. In this task, participants are presented with a
continuous stream of shapes (which consists of regular patterns) and
are required to advance the shapes at their own pace. Learning of
regularities is reflected by faster responses to predictable vs. un-
predictable stimuli. Importantly to our investigation, the data from this
task were fit to a Bayesian model that examined whether an individual's
pattern of responses reflects reliance on full patterns versus local co-
occurrences (see details below).

In general, Bayesian models are based on the specification of a
generative model that presumably gives rise to the observed data. To do
so, one specifies the relevant latent parameters, prior distributions re-
garding these parameters (reflecting researchers' a-priori knowledge),
and relations between the various parameters as well as between
parameters and observed data. Then, the data are used to update the
priors and estimate the latent parameters. The output of such a model is
therefore a posterior distribution for each latent parameter, reflecting
researchers' belief regarding each parameter, given priors and data.

To illustrate, consider an IQ test, conducted to estimate a given
person's latent score (θ). In a case where we do not have a-priori ex-
pectations regarding this person's true score, we may assign a prior that
follows the IQ's distribution in the general population: a normal dis-
tribution with an expected value of 100 and SD of 15 (i.e., θ∼N(100,
15)). Different a-priori expectations would be reflected in different
prior distributions. For example, if a more specific a-priori expectation
regarding this person's IQ exists (e.g., IQ of a person who was sampled
from a group of gifted individuals), a more restrictive prior with higher
expected value can be chosen to reflect that knowledge (e.g., θ∼N
(130, 15)). If, however, we do not have any knowledge regarding the
population from which an observation is sampled, we may want to use
a uniform prior distribution, assigning an equal a-priori probability for
each value in some wide range (referred to as an 'uninformative prior').

After specifying the priors, the observed data are used to compute a
likelihood function (i.e., p(D|θ)) for each value of θ. Bayes theorem is
then applied to update the priors given the likelihood values in light of
the observed data. This process results in a posterior distribution (p
(θ|D), reflecting researchers' updated beliefs regarding the latent
parameter, given the priors and after having seen the data. The output
of this analysis is a full distribution (as opposed to a single point esti-
mate) for each parameter. Various measures can then be extracted from
this distribution, such as its mode, median, or mean (reflecting a central
tendency for the estimated parameter), SD (reflecting the uncertainty in
the estimation), or different interval measures (e.g., 95% credible in-
terval, e.g., Chen & Shao, 1999).

Practically, since in most cases there is no simple analytical solu-
tions for computing posterior distributions, Monte Carlo Markov Chains
(MCMC) sampling procedures are used to estimate them (see, e.g., Lee
& Wagenmakers, 2013, for details). Here we used JAGS (Depaoli,
Clifton, & Cobb, 2016), and the rjags package in R (Plummer, 2016), to
run MCMC samples. In all estimations we used three separate MCMC
chains with random starting points. Each chain included 3000 itera-
tions (after 1000 burn-in iterations). To check whether the 3 chains
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converged to a similar distribution we used the Gelman-Rubin diag-
nostic measure (Gelman & Rubin, 1992). Values under 1.1 are generally
interpreted as high agreement across chains and good model con-
vergence.

For the purposes of our main research question, we use a sub-type of
Bayesian modeling: Latent-mixture modeling (e.g., Ortega,
Wagenmakers, Lee, Markowitsch, & Piefke, 2012). In this approach,
two competing models are first specified. In our case, we thus first
define two latent models –model A that depicts a local learning process,
and model B that reflects SL based on full patterns (see Results section
below). We then pit these two models against each other, by defining a
larger model that includes the two competing models and a classification
parameter. This classification parameter examines, for each individual,
whether his/her data are more likely given model A compared to model
B. We get as output for each individual i a posterior distribution for the
classification parameter. This distribution reflects the certainty in
classification of subject i as following model A (in comparison to model
B). Importantly, such models allow for individual differences or mixture
in the data (hence their name): that is, a situation in which some in-
dividuals in the sample are classified as following model A, whereas
others as B.

1.2. Participants

Seventy-six students of the Hebrew University (24 males) partici-
pated in the study for payment or course credit. Participants had a
mean age of 23.5 (range: 18–36), and had no reported history of
reading disabilities, ADD or ADHD. One subject was removed from
further analysis since he did not follow the instructions and did not
advance the stream of shapes. Data from two additional subjects were
discarded due to abnormally slow mean RTs in the self-paced portion of
the task: more than 2 SDs from the sample mean. Analyses below are
therefore based on the remaining 73 participants.

1.3. Design, materials, and procedure

Our design is closely similar to the self-paced visual SL task, a
paradigm that was shown to produce a reliable and valid online mea-
sure of visual SL performance (Siegelman et al., 2018; see also Karuza,
Farmer, Fine, Smith, & Jaeger, 2014). The only major change from this
previous study was that the regular patterns here were quadruplets
rather than triplets. As in a typical SL task, this task consisted of a fa-
miliarization phase, followed by a test phase. Materials included 24
complex visual shapes (identical to Siegelman et al., 2018). For each
participant shapes were randomly organized to create six quadruplets,
with a TP of 1 between shapes within patterns. As explained below, the
rationale for these larger units was to allow for better differentiation
between the two types of underlying computations. The familiarization
stream consisted of 24 blocks, where all six quadruplets appearing once
(in a random order) in each block.

Before familiarization, participants were told that they would be
shown a sequence of shapes, appearing on the screen one after the
other. Participants were instructed that some of the shapes tend to
follow each other and that their task is to try to notice these co-oc-
currences. Following Siegelman et al. (2018), and in contrast to stan-
dard SL tasks, stimuli did not appear at a fixed presentation rate. Ra-
ther, participants were asked to advance the stream of shapes at their
own pace, by pressing the space bar each time they wanted to advance
to the next shape. RTs for each press were recorded and served as a
basis for computing an online measure of SL: the difference in log-
transformed RTs between unpredictable and predictable shapes (i.e.,
between shapes in position 1 within quadruplets vs. the mean RT of
shapes in position 2, 3 and 4). Note that importantly, the self-paced
data also served as input to the Bayesian models.

Following familiarization, participants completed a two-alternative
forced choice (2-AFC) offline test, consisting of 36 trials. In each trial,

participants were sequentially presented with two four-item sequences
of shapes: (1) a target: four shapes that formed a quadruplet during
familiarization (TP= 1), and (2) a foil: four shapes that appeared in the
familiarization, but never together (TP=0). Foils were constructed
without violating the position of the shapes within the original quad-
ruplets (e.g., from the four quadruplets ABCD, EFGH and IJKL, MNOP, a
possible foil could be AFKP, but not BGLM). During the offline test,
shapes appeared in a fixed presentation rate of 800ms, with an ISI of
200ms between shapes within targets/foils, and a blank of 1000ms
between the two sequences. Each of the six targets appeared six times
throughout the test, against all six foils (and thus each foil also ap-
peared six times throughout the test, against all quadruplets). 2-AFC
test trials were presented in a random order. At the start of the test,
participants were instructed that in each trial they would see two
groups of shapes and that their task was to choose the group that they
were more familiar with as a whole. The offline test score ranged from 0
to 36, according to the number of correct identifications of targets over
foils. Given the 2-AFC format, chance performance corresponds to a
score of 18/36.

2. Results

2.1. Outlier removal

Prior to all analyses we removed RTs outside the range of 2 SD from
the participant’s mean (4.8% of all trials).1 Note also that, to account
for variance in baseline RTs, all analyses were conducted on log-
transformed RTs (rather than raw RTs). The use of a log-scale allows us
to better compare differences in response latencies across individuals
with different baselines (see Siegelman et al., 2018, for details).

2.2. Basic findings

Before turning to the main research question, we first review some
basic findings from the self-paced SL task, following Siegelman et al.
(2018). Table 1 presents mean response latencies to shapes in position
1, 2, 3, and 4 within quadruplets. As predicted, there was a significant
effect of position on log-transformed RTs (repeated measures ANOVA: F
(3, 216)= 11.93, p < .001). Subsequent paired t-tests revealed a dif-
ference between shapes in the first versus second position (t
(72)= 3.41, p= .001), first versus third position (t(72)= 3.99,
p < .001), and first versus fourth (t(72)= 4.38, p < .001). In con-
trast, there was no evidence for an RT difference between shapes in
second versus third positions (t(72)= 0.52, p= .60) and third versus
fourth (t(72)=−0.1, p= .99).2 Fig. 1 presents the log-transformed
RTs to shapes in positions 1, 2, 3, and 4 over the course of the famil-
iarization phase.

Next, we examined the time-course of SL during familiarization, as
reflected by the change in the online measure (log-RT difference be-
tween unpredictable and predictable shapes) across the 24 blocks in the
familiarization stream (Fig. 2). Replicating Siegelman et al. (2018), this
trajectory followed a logarithmic function. One-sample t-tests revealed
significant learning (log-RT difference larger than zero, p < 0.05) in all
blocks from block 9 until the end of familiarization, showing stable
group-level learning already after 9 repetitions (cf. significant learning

1 This outlier removal criterion was a-priori selected to match that of
Siegelman et al. (2018). It is important to emphasize, however, that our results
are not limited to this approach and generalize to a more conservative proce-
dure of outlier removal. In the Supplementary Material we thus repeat the main
analyses below, only removing trials with RTs shorter than 100ms or longer
than 5000ms, showing qualitatively similar results.

2 All p-values here are two-tailed, and are reported without correction for
multiple comparisons. It is worth noting however that applying a Bonferroni
correction does not change the overall pattern of results, as all significant tests
remain significant also under a stricter threshold.
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from block 7 onwards in Siegelman et al., 2018). We also calculated the
reliability of the online measure of learning using a split-half procedure
(i.e. the correlation of log-RT difference between odd and even quad-
ruplets) finding a very high estimate of r=0.9.

Lastly, we examined the individual-level correlation between the
online SL measure and the 2-AFC offline test. As in Siegelman et al.
(2018), a positive significant correlation was found: r=0.33,
p=0.004. Overall, these basic findings replicate Siegelman et al.’s
previous findings and re-validate the self-paced SL paradigm using
patterns with four as opposed to three elements.

2.3. Bayesian mixture-model

As described above, the first step in latent-mixture modeling is to
specify two competing models, depicted in Fig. 3. The full-pattern
model assumes that RTs to predictable shapes within a pattern are

uniformly faster than RTs to the first (unpredictable) shape. The local
co-occurrence model assumes that RTs within a pattern may be faster or
slower given the independent learning of co-occurrences of shapes. We
follow a graphical notation (based on Lee & Wagenmakers, 2013) that
represents latent parameters using white nodes, and observed data
using grey nodes. Priors for latent parameters are listed to the right of
each model.

The top panel depicts a local co-occurrence model. The input for this
model is the log-transformed RTs for shapes in position 1, 2, 3, and 4, in
each quadruplet j, for each participant i (averaged across blocks). RTs
for each position are assumed to be drawn from a normal distribution,
with some expected value for each position: thus, the parameter μi j,

1

reflects the expected log-RT for the shape in position 1 for participant i
and for the quadruplet j, μi j,

2 reflects the expected log-RT for the shape in
position 2 for participant i for quadruplet j, and so on. For simplicity,
standard deviations are assumed to be equal in all positions within a
participant. Importantly, the expected values are determined through
another set of latent variables: Z Z Z, ,i j i j i j,

1
,
2

,
3 . These are Bernoulli trials

that reflect whether a given participant i learned some local co-occur-
rence in quadruplet j: Z= 1 stands for successful learning of this co-
occurrence and Z=0 reflects no learning. Importantly, there are three
such Bernoulli trials for each quadruplet: Zi j,

1 reflects learning of the co-
occurrence between the first and the second elements within a quad-
ruplet, Zi j,

2 reflects the co-occurrence between the second and the third
elements; and Zi j,

3 reflects the co-occurrence between the third and the
fourth elements. The probability of these Bernoulli trials is determined
via another parameter ki, which reflects the percent of co-occurrences
learned by a participant i (out of the full array of local co-occurrences in
the stream). The parameter Δi reflects the speed-up in log-RTs given a
learned co-occurrence – that is, given that a participant i learned some
local co-occurrence A-B, Δi is the speed-up in log-RT for the shape B,
compared to the shape A. The expected value of the shape in position 1
(i.e., an unpredictable shape) is always set to some baseline RT, μi

base,
estimated for each participant. Then, the parameters Z's and Δ are used
to determine the expected values of RTs in positions 2, 3, and 4.
Specifically, the expected RT for shape in position 2 in quadruplet j for
participant i would be similar to the baseline RT in the quadruplet
(reflecting an unpredictable shape) if the participant did not learn their
co-occurrence (i.e., whenZi j,

1 =0). In contrast, if the participant did
learn this transition (Zi j,

1 =1), the expected RT for position 2 would be
the expected RT for position 1 minus the speed-up parameter Δi.
Similarly, the expected RT for position 3 would be equal to that the
baseline RT if the participant did not learn the co-occurrence of 2 and 3
(Zi j,

2 =0). If, however, the participant did learn the transition between
position 2 and 3 (Zi j,

2 =1), the expected RT for position 3 would be
faster by Δ compared to that of position 2. The same holds for the
transition between position 3 and 4.

To emphasize, since this model simulates learning of local co-oc-
currences, Z Z Z, ,i j i j i j,

1
,
2

,
3 are independently estimated for each subject in

each quadruplet. This is because this model assumes that a participant can
either learn, or not learn, each local co-occurrence within each pattern,
regardless of other transitions. As a result, this model posits that RTs may
be faster or slower even within a quadruplet based on the specific
learned co-occurrences. For example, in the pattern ABCD, if only the
co-occurrence BC was learned, there will be faster responses to shape C,
but slower expected RTs to shapes in positions A, B, and D. Note also
that perfect learning in this model (k= 100%, learning of all possible
co-occurrences) would result in graded RTs as a function of position,
where position 4 < position 3 < position 2 < position 1 (since
learning all co-occurrences entails speed up to position 2 vs. 1, position
3 vs. 2, and position 4 vs. 3).

As a side note, even without the use of the latent-mixture model,
which is the central aim of the current investigation, some interesting
insights can be gained simply by running this first model and examining
the resulting posterior distributions. For example, the proportion of
learned co-occurrences for each participant can be drawn from the

Table 1
Means and SEs for RTs and log-transformed RTs for shapes in first, second, third
and fourth positions within quadruplets.

1st position 2nd position 3rd position 4th position

Raw RT (SE) 960.5 (60.6) 884.3 (47.8) 880.5 (46.9) 878.1 (47.4)
Log-transformed RT

(SE)
6.62 (0.062) 6.55 (0.056) 6.54 (0.054) 6.54 (0.055)

Fig. 1. Response latencies to shapes in first, second, third, and fourth position
within a quadruplet over familiarization blocks.

Fig. 2. Learning trajectory as reflected by the change in the online measure
(i.e., difference between log-RT to predictable vs. unpredictable shapes)
throughout familiarization blocks. Error bars represent standard errors. The
dashed line represents the best logarithmic fit.
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Fig. 3. Graphical depiction of the two competing models. The top panel depicts the local co-occurrence model. The bottom panel shows the full pattern model. Note
that input to both models were log-transformed RTs.

Fig. 4. Parameter estimation based on the separate models (local co-occurrences or full patterns). Panel A: examples of posterior distributions of k for two subjects
under the local model. Panel B: mean of k across participants, under the local co-occurrence model. Panel C: mean of k across participants, under the full-pattern
model.
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model by examining the posterior distribution of ki. Fig. 4, panel A,
presents two illustrative posterior distributions of this parameter: an
individual who learned a large proportion of the embedded co-occur-
rences (mean=74%), and an individual who learned a smaller portion
(mean=35%). We can also estimate the full distribution of proportion
of learned co-occurrences across individuals. To do so, we take the
mean of the posterior distribution for ki for each subject, and then plot
the distribution of these mean ki's across subjects. Fig. 4, panel B,
presents the resulted histogram, which shows that on average partici-
pants learn 48.2% of the co-occurrences embedded in the stream
(SD=12.1%).

Returning to our central research question, the bottom panel of
Fig. 3 depicts a global full pattern SL model. The input for this model is
identical to the local co-occurrence model: namely, log-RT for each
quadruplet for each participant, in positions 1 to 4 (averaged across
blocks), and so is its overall architecture. The critical difference be-
tween this and the local co-occurrence model is that it only has a single
Z parameter per quadruplet for each participant. This reflects the fact
that according to the global full-pattern model, each quadruplet can be
either learned, or not learned, as a whole. Consequently, the inter-
pretation of the parameters ki and Δi changes in comparison to the
previous model: ki now depicts, for each subject i, the percent of learned
patterns (as opposed of local co-occurrences), and Δi depicts the speed-
up given a learned pattern of all shapes in position 2, 3, and 4. The
specification of the expected values of each position within-quadruplet
is now different too. For each subject i, quadruplet j, the expected va-
lues of positions 2, 3, and 4 (μi j,

2 , μi j,
3 , μ )i j,

4 would be identical to that of
the baseline RT (which is identical to the expected RT of position 1) if
the pattern was not learned (that is, ifZi j, =0). In contrast, if this pat-
tern was learned (Zi j, =1), the expected RTs for positions 2–4 in this
quadruplet would be set to the first position RT minus the speed-up
parameter Δi. Note that under this model, positions 2–4 within a
quadruplet always have identical expected response latencies. This
would also be the case under perfect learning of all patterns (i.e.,
k= 100%) under this model. Again, as a side note, simply running this
model on the RT data can already provide some insights. For example,
Fig. 4, Panel C, shows the histogram of mean ki, now reflecting the
average percent of learned patterns, across participants (mean=47%,
SD=14.2%).

Most central to the current investigation, after specifying these two
models we combined them to a single latent-mixture model by adding a
classification parameter si: A Bernoulli trial estimated as either 1 or 0 in
each iteration of the model. This classification parameter reflects the
group membership of each participant i: where s=1 reflects a classi-
fication of the participant as a local co-occurrence learner; s=0 reflects a
classification as full-pattern learner. Note that the classification para-
meter (si) is simply an additional parameter to be estimated in a larger
Bayesian model that includes both the local and global models. Thus,
the model estimates a posterior distribution for the group classification
parameter from the specified prior and the likelihood function calcu-
lated given the data. As a result, the mean of this classification para-
meter across MCMC iterations reflects the model’s certainty in classi-
fying participant i as a local learner (versus a full pattern learner). The
a-priori distribution of si=1 was defined as a uniform distribution from
0 to 1, meaning that there was no a-priori assumption regarding the
probability of a given subject to be classified as a local (or global)
learner. Note also that the model was characterized by good con-
vergence on the si parameter: in all subjects the point estimate of
Gelman-Rubin diagnostic measure was smaller than 1.1, and in all but
one participant the upper boundary of the 95% CI of the measure was
also smaller than 1.1.

Fig. 5 presents examples of posterior distributions of the latent
parameter si from three individuals. On the left panel of this figure, an
example for a local co-occurrence learner: reflected by classification as
a local learner in 84% of the model iterations. In contrast, the middle

panel shows an example for a global learner, which was classified as a
full pattern learner in 93% of iterations. The right panel presents an
additional interesting case: a participant that was classified either as a
local or global learner in ∼50% of the iterations, thus showing no clear
tendency for neither model. Looking at this distribution alone, it is
unclear whether this is because this subject used both two strategies
interchangeably, or whether s/he just did not learn any of the statistical
properties and therefore could not be classified successfully (but see
General Discussion for an additional investigation, comparing group
classification to offline performance).

The critical question for our current investigation has to do with the
distribution of group membership (si) across participants. We thus next
extracted the mean value of si for each individual (reflecting the
model’s overall tendency to classify subject i as a local vs. global
learner). Fig. 6 presents the distribution of mean si across individuals.
On average, mean group classification was equal to 47.8%. This value is
very close to 50% suggesting that, overall, there is no clear group-level
tendency to either local or full-pattern learning. Yet, a closer inspection
of Fig. 5 leads to two more important conclusions. First, the distribution
of group classification was close to symmetrical: despite the fact that
slightly more participants were classified as local learners (40/73
subjects with si > 50%) as opposed to full-pattern learners (33/73
subjects with si < 50%), this ratio was close to what is expected in a
fully symmetrical distribution (36.5 subjects out of 73). Most im-
portantly, whereas nearly symmetrical, the distribution was not normal
around its mean, displaying substantial inter-individual differences
(also apparent with the high SD of 28.1%). Namely, whereas some in-
dividuals were classified with a high certainty as local co-occurrence
learners, others were clearly classified as full patterns learners. We wish
to emphasize that many subjects clearly followed either the local or the
global model: 42% of the subjects (31/73) are twice as likely to be local
learners according to the model (mean of si > 66.67%), and 34% (25/
73) are twice as likely to be global learners according to the model
(mean of si < 33.33%). This suggests that the majority of subjects
clearly exhibit an overall tendency to learn either locally or globally.3

Together, the results thus point to inter-individual mixture in the re-
liance on local co-occurrences versus full patterns. We return to this
point in the General Discussion, below.

Following up on this finding, we next examined the time-course of
learning: that is, whether there is a trajectory towards reliance on local
co-occurrences versus global patterns as learning proceeds (see, e.g.,
Rey et al., 2018). For example, one possibility is that learners start by
attending to local co-occurrences, but begin to merge them and attend
to larger units after extensive exposure (see Batterink & Paller, 2017 for
a related discussion). To examine this issue, we re-ran the latent-mix-
ture analysis on data from each 6 consecutive repetition blocks (i.e.,
blocks 1–6, 7–12, 13–18, and 19–24). Fig. 7 presents the distribution of
mean si across individuals in these four quarters of familiarization. As
can be seen, in the first two quarters of the familiarization phase (blocks
1–6 and 7–12) there was no clear tendency to rely on either local co-
occurrences or global patterns, with the majority of subjects having a
mean classification value around 0.5 (73% and 77% of subjects with a

3 It is worth noting that while the local and global models are mostly similar
in their specification, the two models diverge slightly in their complexity: the
local model has two more parameters compared to the global model. This raises
a possible concern that the distribution of group classification might be slightly
biased towards the more complex (i.e. flexible) model, if the larger number of
parameters to be estimated leads to a higher chance of overfitting. To ensure
that this is not the case, we ran a simulation in which we sampled hypothetical
subjects under a null hypothesis of no learning (i.e. no difference between
positions 1, 2, 3, and 4, other than random noise). Virtually all simulated
subjects had a mean si around 0.5, as expected under no signal (no actual
learning). This suggests that there is no bias in classification towards one model.
The full details and results of this simulation are presented in the
Supplementary Material.
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mean si between 1/3 and 2/3 in the first and second quarter, respec-
tively). Only in the third and fourth quarter of the familiarization phase
a clear classification into group membership emerged, with the ma-
jority of subjects having a clear group distinction (62% and 70% of
subjects with mean si smaller than 1/3 or larger than 2/3 in the third
and fourth quarters). Importantly, the distributions of group member-
ship in blocks 13–18 and in blocks 19–24 were similar, and both re-
sembled the group membership distribution based on the full famil-
iarization phase (Fig. 6 above). These results suggest that there is no
clear shift from one strategy to another over the course of learning.
Rather, participants increasingly lean towards one strategy or the other
as learning proceeds. To further examine this issue, we also calculated
the correlations between each individuals' group membership estima-
tion (mean of si) between the four quarters. As shown in Table 2, there
were no significant correlations between group classification in the first
two quarters, or between the classification in the first and second
quarter to that of later quarters (all r’s < 0.2). In contrast, there was a
strong positive correlation between classification in the third and fourth
quarter (r=0.67). This again suggests that in the first two quarters
subjects do not have a reliable and clear reliance on either strategy, and

only in the later stages of learning they lean towards a global or local
strategy, which remains consistent for the reminder of the learning
phase.

3. General discussion

What is learned in visual SL, the local co-occurrences between ele-
ments or global patterns? This critical question was the center of
multiple previous studies as it represents a fundamental building block
of a theory of how complex patterns, embedded in a continuous input
stream, are learned. Most investigations so far have searched for a
binary answer, in the form of either account A, or account B. The
current investigation suggests, however, that the answer to this ques-
tion is neither A nor B, rather it is both, differing between individuals.
This is reflected in the results of a Bayesian model, providing strong
evidence for an inter-individual mixture of local co-occurrences and full
patterns in SL, showing different reliance on the two types of compu-
tations across different participants. This provides a novel perspective
regarding the computations underlying SL, suggesting that multiple
types of computations co-exist (at least across different individuals). As
such, the current results may go a long way in explaining the incon-
clusive and inconsistent results observed in previous studies probing
this issue.

Our local and global generative models are not meant to directly
represent computational models previously proposed in the literature.
However, they are undoubtedly conceptually related to some of them.
Specifically, the simple recurrent network model (SRN; Elman, 1990;
Mirman, Graf Estes, & Magnuson, 2010) is based on prediction of ad-
jacent co-occurrences (at least in a network where there is only one
memory layer). In contrast, chunking models, such as PARSER
(Perruchet & Vinter, 1998), propose that high frequency sequences are
clustered together as chunks, and thus they priorities the larger units
embedded in the stream (see also Giroux & Rey, 2009; Slone & Johnson,
2018). Our generative models provide an important insight regarding
the contrast between these two broad types of learning architectures,
suggesting that models with only one type of computations may be an
over-simplification of SL behavior. Indeed, a recent model (TRACX(2),
Mareschal & French, 2017) is based on a combination of local-TP
learning and chunking, and is more compatible with the current find-
ings (even though in this model there is no direct reference for inter-
individual mixture). More generally, our results call for caution when
interpreting data on the group level as supportive of contrasting model
predictions, and for a careful examination of individual-level behavior
patterns.

Of course, in formulating our Bayesian models, it was necessary to
make multiple assumptions about the parameters that drive behavior.

Fig. 5. Examples of posterior distributions of group classification for three subjects. Left: example of a local co-occurrence learner; middle: example of a full-pattern
learner; right: example of a subject that was classified in ∼50% as each model.

Fig. 6. Distribution of mean group classification across participants. Dashed
line represents 0.5. Values closer to 1 reflects classification as local learning;
values closer to 0 reflects full pattern learning.
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As researchers move towards being more computationally explicit
about their specific theoretical accounts, the formal versions of their
accounts will inevitably differ to some degree from the exact im-
plementations that were tested here. Importantly, the current frame-
work provides a clear way of incorporating and testing such mod-
ifications in a formal manner. Different assumptions regarding either
the local or global model can be reflected by changes to the generative
models, which can then be pitted against one another using a latent
mixture model. We illustrate this capacity in the Supplementary
Material, wherein we change the exact assumptions underlying how
RTs decrease across successive correctly predicted elements in the local
model. In this alternative local model, a learned transition, regardless of
whether it is in the first, second, or third position, always results in a
speed-up relative to baseline (and not relative to the preceding shape).
In this case, the results were very similar, but non-identical to those
reported above. This also demonstrates the robustness of our main
conclusion – inter-individual mixture of local and global learning -

across a variation of our proposed local model.
On a more concrete methodological level, the current work also

joins recent studies in exemplifying the usefulness of online SL mea-
sures – that is, measures that track learning as it unfolds. It shows that
using an online SL task, especially when combined with a generative
model, offers new insights into SL computations. In the current case,
this approach revealed new information regarding local versus global
SL, an information that typical offline measures are generally blind to.
This becomes very apparent when looking at the correlation between
the individual-level classification as local/full-pattern learner (si), and
offline test scores, presented in Fig. 8. As can be seen, there was an
overall negative correlation between group classification and offline
test performance (r=−0.42, p < .001). Examining the scatter plot
suggests that it stems from the fact that full-pattern learners (i.e., those
for whom mean group classification approaches 0) show in the vast
majority of cases perfect or near-perfect offline performance. Im-
portantly, however, Fig. 8 shows that individuals can achieve such
perfect offline test accuracy either via learning the local co-occurrences
or via assimilation of full patterns (in the 2-AFC test, a quadruplet can
be preferred over the foil already given one learned co-occurrence).
This is reflected by the fact that high offline test scores are present both
for participants who exhibit global learning (si→ 0) and those who
show local co-occurrence learning (si→ 1).

This last point also raises an important general implication for re-
search on individual-differences in SL. Our results suggest that in-
dividuals differ in the underlying computations they use to learn a new
set of statistical properties. This is a feature that was so far overlooked
in studies of individual differences in SL, which focused only on

Fig. 7. Distribution of mean group classification over the four quarters of the familiarization phase (blocks 1–6, 7–12, 13–18, 19–24). Dashed line represents 0.5.
Values closer to 1 reflects classification as local learning; values closer to 0 reflects full pattern learning.

Table 2
Correlations between individuals' group classification in the four quarters of the
familiarization phase. p-Values are shown in parenthesis; significant correla-
tions are in bold.

Blocks 1–6 Blocks 7–12 Blocks 13–18 Blocks 19–24

Blocks 1–6 *** 0.01 (0.98) 0.04 (0.74) 0.09 (0.46)
Blocks 7–12 *** 0.15 (0.21) 0.2 (0.1)
Blocks 13–18 *** 0.67 (< 0.001)
Blocks 19–24 ***
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differences in the overall success in assimilating the statistical proper-
ties from the input. Hence, our study provides an additional potential
layer of individual-differences in SL: the tendency to learn via tracking
of local co-occurrences versus reliance on larger chunks. Given recent
claims regarding the importance of chunking in language acquisition
and processing (Christiansen & Chater, 2016; Page & Norris, 2009), it
would be interesting for future research to investigate whether a ten-
dency to rely on larger chunks during SL has a unique predictive value
in accounting for variance in linguistic abilities. That is, in contrast to
the common experimental approach which estimates the correlation
between some overall measure of SL performance and some linguistic
outcome (see Siegelman et al., 2017), our findings raise the possibility
that differences in the underlying computations through which each in-
dividual extracts regularities from the input carry unique explanatory
power. To re-iterate, previous works on individual differences in SL
overlooked this possibility due to their reliance on coarse-grained
measures of SL (either offline or online) that only examine the extent of
sensitivity of an individual to a set of statistical regularities without
considering the specific computations that yielded it.

Lastly, although our work shows strong promise for advancing the
understanding of SL computations, some open questions should be
underlined. The first question arises from the fact that a non-negligible
number of individuals were not clearly classified to either the local or
global model. Interestingly, some of these subjects still presented some
successful SL computations: Fig. 8 shows that a number of subjects
without clear classification into local/global computations (si around
0.5) nevertheless exhibited high offline performance. How to classify
such subjects remains an open question, and it is possible that more
data would have led to a clearer classification of these subset of parti-
cipants. Thus, future research should aim to develop more refined
models and designs with a large enough number of patterns to allow an
even higher detection rate of the different types of computations.
Second, in contrast to many previous studies, we focused here on visual,
rather than auditory SL. Future research should examine whether si-
milar inter-individual mixture occurs also in the auditory modality.
Such research will also have to deal with an outstanding methodolo-
gical challenge, and come up with reliable online SL measures in the
auditory domain (see Batterink, 2017; Batterink & Paller, 2017;
Kuppuraj, Duta, Thompson, & Bishop, 2018, for possible avenues).
Third, our design used larger embedded patterns: four-element long
(i.e., quadruplets). This stands in contrast to typical SL studies using
mostly triplets (or sometimes pairs) of elements. The rationale behind
this design was to have better differentiation between the two models,

by having a larger number of transitions within patterns. Future work is
left with examining whether the current results generalize to other
learning situations, either with another fixed length of patterns, or non-
uniform distribution of pattern lengths (e.g., Hoch, Tyler, & Tillmann,
2013). Fourth, our models only account for the learning of adjacent
contingencies, disregarding the assimilation of non-adjacent de-
pendencies, despite recent evidence that the two types of computations
can occur in parallel (Vuong, Meyer, & Christiansen, 2016). Future
models can be used to account for such concurrent learning of different
types of information.

Taken together, our theoretical and methodological approach, as
well as our insightful pattern of results, have shed important new light
on debates surrounding the computations underlying SL. It stresses the
importance of assessing learning online, taking into account critical
differences in the computations underlying learning across different
individuals, and in developing formal models of a theory’s assumptions.
Going forward, the computational framework used here can also serve
as a foundation for comparing the performance of alternative theore-
tical accounts in explicit, quantifiable terms, allowing for the assess-
ment of how major qualitative differences and subtle quantitative dif-
ferences across models could refine our understanding of SL
computations. This approach should therefore prove valuable in
moving beyond underspecified verbal accounts to a fully fleshed out
account of SL phenomena.
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