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As one learns to dance or play tennis, the desired somatosensory state is typically unknown. Trial and error is important as motor
behavior is shaped by successful and unsuccessful movements. As an experimental model, we designed a task in which human partici-
pants make reaching movements to a hidden target and receive positive reinforcement when successful. We identified somatic and
reinforcement-based sources of plasticity on the basis of changes in functional connectivity using resting-state fMRI before and after
learning. The neuroimaging data revealed reinforcement-related changes in both motor and somatosensory brain areas in which a
strengthening of connectivity was related to the amount of positive reinforcement during learning. Areas of prefrontal cortex were
similarly altered in relation to reinforcement, with connectivity between sensorimotor areas of putamen and the reward-related ventro-
medial prefrontal cortex strengthened in relation to the amount of successful feedback received. In other analyses, we assessed connec-
tivity related to changes in movement direction between trials, a type of variability that presumably reflects exploratory strategies during
learning. We found that connectivity in a network linking motor and somatosensory cortices increased with trial-to-trial changes in
direction. Connectivity varied as well with the change in movement direction following incorrect movements. Here the changes were
observed in a somatic memory and decision making network involving ventrolateral prefrontal cortex and second somatosensory cortex.
Our results point to the idea that the initial stages of motor learning are not wholly motor but rather involve plasticity in somatic and
prefrontal networks related both to reward and exploration.

Key words: reinforcement; resting-state fMRI; sensorimotor learning; somatosensory

Introduction
One of the challenges a beginner faces in learning a golf swing or
a tennis serve is that the desired somatosensory state is initially

unknown. Of necessity, learning proceeds largely by trial and
error and involves a process in which the acquisition of motor
commands and the development of somatic targets occur in par-
allel. The functional brain networks that subserve this stage of
learning are largely unknown and constitute the focus of the pres-
ent investigation. Much of the current literature on motor learn-
ing focuses on adaptation paradigms, in which some form of
perturbation impairs movement to well-learned sensory targets.
A prominent feature in adaptation is the introduction of system-
atic error followed by a progressive reduction of this error
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Significance Statement

In the initial stages of motor learning, the placement of the limbs is learned primarily through trial and error. In an experimental
analog, participants make reaching movements to a hidden target and receive positive feedback when successful. We identified
sources of plasticity based on changes in functional connectivity using resting-state fMRI. The main finding is that there is a
strengthening of connectivity between reward-related prefrontal areas and sensorimotor areas in the basal ganglia and frontal
cortex. There is also a strengthening of connectivity related to movement exploration in sensorimotor circuits involved in somatic
memory and decision making. The results indicate that initial stages of motor learning depend on plasticity in somatic and
prefrontal networks related to reward and exploration.
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through adjustments to motor commands. Accordingly, neuro-
imaging studies investigating motor adaptation have highlighted
the role of areas, such as cerebellum, as a key node for error
correction (Diedrichsen et al., 2005), and of the posterior parietal
cortex, involved in the sensorimotor transformations that are
necessary during adaptation to replan spatially guided move-
ments (Bernier and Grafton, 2010).

The role that these previously identified networks may play in
situations in which sensorimotor targets have to be acquired in
the first place is unknown. In such a situation, it is possible to
hypothesize that a different set of brain areas will show changes in
conjunction with motor learning. First, recent behavioral work
points to the importance of the somatosensory system for this
kind of task. For example, using an experimental manipulation
similar to the one used here, Bernardi et al. (2015) showed that
somatosensory experience delivered through passive movements
generated learning comparable with that seen in participants
trained with active movements. Second, the process of skill ac-
quisition can be memory-dependent in the sense that one must
be able to repeat the correct or successful actions and avoid pre-
viously incorrect movements. Accordingly, one might expect the
recruitment of somatic memory and decision-making circuits in
this sort of learning (Romo et al., 1999, 2002), and more generally
the prefrontal cortex (Miller and Cohen, 2001). Finally, the in-
volvement of reinforcement-related brain networks would be ex-
pected, as positive feedback may effectively shape learning and
compensate for the lack of detailed error information in the early
stages of learning. Previous behavioral studies have shown the
contribution of reinforcement to motor learning in tasks, such as
those involving arm reaching (Izawa and Shadmehr, 2011;
Shmuelof et al., 2012; Manley et al., 2014), saccadic eye move-
ment (Takikawa et al., 2002; Madelain et al., 2011), and precision
gripping (Dayan et al., 2014). Brain networks that support rein-
forcement and reward-based learning in general have been stud-
ied and comprise, among others, the ventromedial prefrontal
cortex (vmPFC) and striatum (Schultz et al., 2000; Berns et al.,

2001; O’Doherty et al., 2004; Haruno and Kawato, 2006;
Bischoff-Grethe et al., 2009).

In the present study, we examined changes in functional con-
nectivity (FC) in resting-state brain networks that occurred fol-
lowing movements to a small unseen target. When the movement
landed within the target zone, positive feedback was provided to
indicate success. This task was designed as an analog to the early
stages of learning a novel motor skill, for which reinforcement-
based selection of the sensory targets is central, rather than error-
based adjustments of the motor commands. We found that
training resulted in improvements in movement that were ac-
companied by changes in FC (�FC) in both reinforcement-
related networks and those related to memory and decision
making. The results point to the idea that reward-related prefron-
tal regions contribute to the early stages of learning in sensorimo-
tor circuits. Somatic memory and decision making networks
support movement variability and presumably exploration.

Materials and Methods
Experimental setup. A total of 22 right-handed participants were re-
cruited (14 females, mean � SD age, 22.5 � 3.19 years) and provided
written consent. All procedures were approved by the McGill University
Institutional Review Board. The participants were healthy adults with no
prior physical or neurological conditions. The experimental session for
each participant was completed within the same day.

The behavioral paradigm in this study was based on that used by
Bernardi et al. (2015). Briefly, we used a two degree-of-freedom robotic
manipulandum (Interactive Motion Technologies), with a vertical han-
dle attached to the end-effector. The handle position was provided by a
set of 16-bit optical encoders (Gurley Precision Instruments). Partici-
pants were seated in front of the robot with their right shoulder abducted
to �70° and the elbow supported by an air sled. A semisilvered mirror,
which served as a display screen, was placed just below eye level and
blocked the vision of the arm and the robot handle. A green circle, 20 mm
in diameter, was positioned on the display screen along the subject’s body
midline and was used as the start position of each movement. To the left,
a 1-cm-thick target stripe, tilted at 45° with respect to the horizontal,
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Figure 1. A, Schematic diagram showing what the subject sees during the experiment. The robotic manipulandum and the subject’s own arm are situated underneath the display mirror.
Participants are supposed to reach out 45° to the left toward the target stripe. Movement trajectories are not visible at any time during the experiment. B, Three different target zone widths (W) are
used during the training blocks. If the movement ends inside the target zone, positive feedback is given. C, Schematic illustrating the lateral PD at the movement endpoint. Motor improvement of
each subject was quantified as the reduction in the average magnitude of PD between the PRE and POST training blocks. D, Block diagram showing the overall experimental sequence.
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extended the entire width of the display screen (Fig. 1A). Within this bar,
there was an unseen rectangular target zone, the center of which was
located 15 cm from the center of the start circle. A thin yellow line served
as a visual cue to indicate the distance of the hand from the target stripe.
A small 12-mm-diameter yellow circle attached to the yellow line corre-
sponded to hand position. This circle was shown briefly at the beginning
of each movement and disappeared as soon as the subject left the start
position. No information about the lateral displacement of the hand was
provided during movement or at movement end.

Experimental blocks. Participants were first given a set of instructions
about the experiment followed by 15 familiarization trials. They were
told to perform outward reaching movements, 45° to the left of the
midline, until they reached the target stripe. They were told that the
trajectory had to be as straight as possible with no corrective movements
throughout. Each trial had to be completed within 800 ms, and partici-
pants received feedback about their speed by means of a target color
change (red, green, and blue corresponding to too fast, correct speed, and
too slow, respectively). However, there was no penalty if the movement
did not end on time. Once the movement ended, the robot would bring
the arm back to the start position.

The experiment began with a block of 15 baseline trials in which par-
ticipants performed reaching movements toward the target stripe. No
feedback was provided as to whether the movements were accurate. Fol-
lowing this, they proceeded to the Brain Imaging Centre at the MNI for a
first scanning session. This neuroimaging session comprised two resting-
state scans with eyes closed, followed by a gradient field map acquisition
and a T1-weighted scan. A more detailed description of the functional
imaging procedures is presented below.

After the initial scanning session, participants returned to the labora-
tory and completed four training blocks of 50 trials each. They were told
that this was the opportunity to learn which movement to the unseen
target was successful. A particular movement was defined as successful
when the trial ended within the hidden target zone. The success was
determined based on the lateral dimension of the movement endpoint,
not the movement speed. Following a successful trial, an animated ex-
plosion and the words “Nice shot!” appeared on the screen to provide
positive feedback. The participant was told to pay attention to the expe-
rience of moving to the target correctly and to collect as much positive
feedback as possible. The feedback was binary; that is, no information
about error magnitude or direction was given for movements that ended
outside the target zone.

To facilitate learning progressively, the width of the target zone (W)
was changed over the course of training, keeping the center position fixed
(Fig. 1B). We adopted this progressive level of difficulty as a form of
behavioral shaping (Skinner, 1965; Darshan et al., 2014). In the first
training block, the width of the target zone was calculated as the lateral
range within which 50% of the baseline movements ended. In the second
block, the width was set to half the distance between the first and the last
target width. A final target width of 8 mm was used for the remaining two
training blocks and was the same for all participants. A short break was
given between successive training blocks.

After the completion of the final training block, the participants were
brought to the imaging center for a second series of fMRI scans. The scans
consisted of two resting-state scans, a gradient field map acquisition, a
T1-weighted structural scan, and a task-based movement localizer that
will be described below. Following these scans, the participant again
returned to the laboratory to perform 15 movements without any feed-
back. The last block served to evaluate motor performance following
learning.

Data analysis. Motor performance was quantified at movement end
based on the unsigned magnitude of the lateral perpendicular deviation,
�PD�, with respect to a straight line connecting the center of the start
position and the center of the target zone (Fig. 1C). Movements that
ended closer to the center had smaller �PD� scores. For each subject, the
average �PD� before (PRE) and after (POST) training was calculated using
the 15 trials without feedback, and the difference served as a measure of
the participant’s improvement in accuracy, ��PD���PRE � ��PD���POST, with
larger positive values corresponding to greater learning. We also assessed
the training-related performance in terms of the number of successful

trials on which feedback was presented. To check the linear dependency
between the improvement in accuracy and the overall number of success-
ful trials, we computed Pearson’s correlation coefficient between the
improvement in movement accuracy from PRE to POST with the total
number of successful trials in all training blocks.

Trial and error in search for the correct movement trajectory is
presumably important for learning. To see how the feedback or its
absence influenced the movement on the following trial, we assessed
how trial-to-trial movement direction changed after every successful
trial (S � 1) and every unsuccessful trial (S � 0). We quantified this
with �mn � �PDn�1 	 PDn�, which signifies the difference in PD
between trial n and n � 1, contingent upon trial n being successful or
unsuccessful. For each subject, we first computed the mean �m in
these two conditions and then used the set of means in each condition
to estimate the group mean and variability of the sampling distribu-
tion. We tested whether the average �m was different following suc-
cessful and unsuccessful trials.

MRI acquisition. MRI data were acquired at the MNI using a 3.0 T MRI
scanner (Tim Trio, Siemens). To reduce head motion and scanner noise,
foam padding and earplugs were provided to the participants. During
resting-state scans, each participant was instructed to lie quietly with eyes
closed and avoid any head motion during the scan.

Functional images were obtained using the Simultaneous Multi-Slice
BOLD-EPI WIP sequence (Setsompop et al., 2012) as follows: slice accel-
eration factor � 3
; TR � 1690 ms; TE � 25 ms; slices � 63; thickness �
2 mm (no gap); FOV � 200 mm 
 200 mm; and flip angle (FA) � 90°.
Each functional scan lasted for �7 min and yielded 250 volumes. Two
scans were performed before and after training, respectively. We ac-
quired two 7 min resting-state runs, rather than a single continuous 14
min scan, for the practical reason that it keeps subjects from falling
asleep. Structural images were acquired with a T1-weighted 3D
MPRAGE sequence as follows: TR � 2300 ms; TE � 2.98 ms; slices �
192; thickness � 1 mm (no gap); FA � 90°; and FOV � 256 mm 
 256
mm, iPAT mode � ON (GRAPPA, acceleration 2
). We used a multi-
band accelerated imaging sequence in the current studies because we
could acquire more data in a relatively short scan time (Moeller et al.,
2010). Simultaneous acquisition was achieved using 32-channel multi-
array head coil.

fMRI data preprocessing and independent component analysis (ICA).
Data preprocessing was performed using FSL version 6.0 software pack-
ages (www.fmrib.ox.ac.uk, FMRIB, Oxford, United Kingdom) (Smith et
al., 2004). Briefly, image preprocessing consisted of the following: the
removal of the first three volumes in each scan, nonbrain removal using
BET, motion correction (using a six parameter affine transformation
implemented in FLIRT), spatial smoothing with Gaussian kernel of
FWHM 5 mm, and temporal high-pass filtering (Gaussian-weighted
least-squares straight line fitting, � � 100.0 s). The boundary-based reg-
istration with fieldmap correction aligned the subject’s functional image
to the subject’s structural space (Greve and Fischl, 2009) and the 12 DOF
nonlinear registration using FNIRT normalized the structural space to
the standard MNI152, 2 mm template.

Noise artifacts in the individual datasets were identified using ICA in
FSL-MELODIC (Beckmann and Smith, 2004). There is presently no con-
sensus on the optimal number of components for the noise removal. For
our present application, the ICA dimension was determined automati-
cally by the software. On average, the total number of independent com-
ponents ranged from 45 to 60. From this, components associated with
the physiological noise, signal dropout, and sudden head motions were
identified by visual inspection following the guidelines by Kelly et al.
(2010). The number of components classified as noise and then removed
was �10% of the total. We found that removing additional components
did not yield further changes to the group statistical map.

ROI identification. Using seed-based analysis, we assessed the temporal
correlation of specific brain ROI with all other voxels in the brain. ROI
locations were identified using a task-based localizer fMRI (Vahdat et al.,
2011). Briefly, the task involved movement of the right arm with six
alternate blocks of movement and rest, each lasting for 30 s. The move-
ment speed was 1/3 Hz and was paced by visually presented stimuli.
During the rest block, the participant remained still.
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Subject-level statistical analyses of the localizer task were performed
using the FEAT toolbox in FSL (Beckmann and Smith, 2004). Here, the
block design was convolved with the hemodynamic response function as
the main predictor in the linear model. After this analysis was completed
for each participant separately, a group-level mixed-effect model analysis
(FLAME) was performed using the same toolbox. The statistical map was
subsequently thresholded using Z � 4.0 and p � 0.01, corrected for
multiple comparisons. This map identified regions in the brain that were
on average activated across subjects during the task. The map was then
used to identify seed locations in the MNI coordinates. Each ROI was
represented as a spherical mask of 5 mm radius around the local
maximum.

A list of ROIs used in this study with their corresponding MNI coor-
dinates and the Z value of the local maximum can be found in Table 1.
Briefly, seeds were placed in the primary motor and somatosensory cor-
tices (M1 and S1), the dorsal premotor cortex (PMd), the supplementary
motor area (SMA), and the second somatosensory cortex (SII) in the
parietal operculum (Vahdat et al., 2014). One seed was placed in the
cerebellar lobule V and another seed in the motor region of the left
putamen, all of which corresponded to the local maxima as identified by
the localizer task.

Seed-based analysis with behavioral factors. Analysis of the resting-state
fMRI data was performed using a seed-based approach. We first obtained
the time series of the nuisance components using the ICA process de-
scribed above. Additionally, to account for further potential artifacts, the
average signals within the white matter, the ventricles, and the whole-
brain mask were regressed out in the present analysis (Desjardins et al.,
2001). To do so, white matter and ventricles were first segmented using
FSL-FAST before being mapped into the subject’s native functional
space. To increase tissue precision, both images were thresholded using a
tissue probability of 90%. We then used the resulting image as a mask to
extract the average time series inside the white matter and ventricles.

To extract the temporal correlation between a seed and other brain
regions, a multiple regression analysis was performed using FEAT. Spe-
cifically, the ROI time series was the main predictor of interest, whereas
the average time series of white matter, ventricles, global signal, the nui-
sance components obtained from ICA earlier, and six motion parameters
were regressed out from the whole-brain time series. The results were
brain regions that were temporally correlated with the seed after regress-
ing out unwanted temporal noise. We repeated this step for all seeds on
every run of each subject.

After this stage was completed, a group-level repeated-measures t test
was performed for each seed using a mixed-effect model (FLAME) pack-
age in FSL. The design matrix consisted of a series of explanatory vari-
ables or predictors. The first set explained the subject average or common
effect among different runs. The second set comprised a behavioral factor
with the aim of finding differences that were associated with our behav-
ioral manipulation (Vahdat et al., 2011). Specifically, we examined �FC
in relation to the number of trials with positive feedback during training.
Only successful trials in the last two training blocks were used for this
analysis because the width of the target was the same for all subjects. An
analysis of connectivity changes related to improvements in movement
accuracy was also conducted. The patterns were similar to those reported
below for connectivity changes related to successful movements. These
are not presented separately because subject feedback during training
was restricted to binary feedback on movement success; hence, we con-

sidered positive feedback as the main factor determining the increase in
accuracy in the post-training session thereafter. Moreover, the two be-
havioral measures of reinforcement and accuracy were significantly cor-
related (see below).

In a second set of group-level analyses, we examined �FC related to
trial-to-trial changes in movement direction. For each subject, we aver-
aged the changes in movement direction (�m) regardless of the trial
outcome and applied this as the behavioral predictor. In a subsequent
analysis, we examined �FC that were uniquely attributed to the change in
movement following either successful or unsuccessful trials. Here, we
separately averaged �m following only successful (S � 1) and only un-
successful trials (S � 0). We put these two sets of values as the predictors
within one general linear model to determine changes that were uniquely
explained by one factor independent of the variability shared with the
other factor.

For both group analyses, a correction for multiple comparisons was
performed using Gaussian random field theory using a cluster forming
threshold Z � 2.40 with p � 0.05. Two different contrasts were evaluated
(i.e., POST � PRE and POST � PRE) to test for increases or decreases in
FC following training. The thresholded group statistical maps of each
seed revealed clusters whose changes in connectivity with the seed region
were reliably associated with the corresponding behavioral predictor. To
correct for multiple seeds (i.e., Bonferroni correction for choosing seven
seeds), clusters obtained from the group-level analyses were considered
to be significant if the probability level was lower than p � 0.05/7.

The whole-brain global signal in the resting-state data is usually in-
cluded as one of the unwanted components. However, the removal of the
global signal has been controversial as it introduces a negative bias to
the resting-state statistical map (Saad et al., 2012). Because we computed
the difference between the PRE and POST training scans, this negative
bias did not affect the difference maps presented below. To quantify the
strength of the FC measure in each scan before and after training trials,
we repeated the same analysis but without removing the global signal
time series. The results of the group analyses without the global signal
removal yielded similar statistical maps.

Results
Behavioral performance
Figure 2A depicts movement accuracy as quantified using the
absolute lateral deviation at the end of movement during the
baseline test (PRE), the four training blocks, and the motor eval-
uation block (POST). The reduction in the mean �PD� over 15
movements between the PRE and POST training blocks provides
a measure of how accuracy improved as a result of training. On
average, the reduction was found to be significant (t(21) � 2.080,
p � 0.05) and reliably correlated with the total number of suc-
cessful trials over the course of training (r � 0.44, p � 0.05) (Fig.
2B). Participants that achieved a greater number of successful
trials had a tendency to display a greater improvement in move-
ment accuracy.

We gave the participants the opportunity to improve their
movement accuracy with four training blocks during which they
received positive feedback if the movement ended within the
target zone and no feedback otherwise. Three target zones that
gradually decreased in width were incorporated during training
trials to progressively shape subjects’ behavior. During the first
and second training blocks, the percentage of success was in the
range of 70%– 80%. When the target width was reduced to the
smallest, the percentage decreased to 30%– 40% but nevertheless
increased over the course of training (Fig. 2A, inset). We checked
the relationship between subjects’ performance in the first two
blocks, in which the width of the target varied and that in the last
two blocks, in which target width was fixed (8 mm). We found
that subjects that had more successful movements during the first
two blocks did so as well in the last two blocks (r � 0.46, p �
0.05). The fact that the target was smaller in the last two blocks

Table 1. List of ROIs used in the resting-state analysesa

Seed Anatomical label x y z Z value

S1 Primary somatosensory cortex, BA2, left hemisphere 	28 	42 58 7.25
M1 Primary motor cortex, BA4, left hemisphere 	28 	28 58 7.44
CbV Cerebellar lobule V, right hemisphere 22 	42 	24 6.33
PMd Dorsal premotor cortex, BA6, left hemisphere 	24 	16 72 7.12
Pu Putamen, rostral motor region, left hemisphere 	26 0 8 4.80
SII Second somatosensory cortex, OP1, left hemisphere 	52 	22 18 5.68
SMA Supplementary motor area 	6 	4 54 5.54
aThe coordinates (in millimeters) are according to the MNI standard template. Z values indicate the local maxima at
the ROI center obtained from the group task-based localizer.
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likely contributed to the slowing of learning seen in the third and
final block (Zone III) of Figure 2A.

To assess the effect of feedback on subsequent movements, we
calculated �m as the absolute change in PD between the current
and next immediate movement. We used training data from
blocks 3 and 4 for this calculation because the target size was
uniform across subjects. Figure 2C illustrates the distributions of
�m following successful and unsuccessful trials as a half-normal
Gaussian curve. The figure shows that the average �m after suc-
cessful trials is significantly less than the average �m after failed
trials (t(21) � 3.988, p � 0.001). In other words, failing to get
positive feedback resulted in a greater trial-to-trial change in
movement direction, presumably in search of the correct target
zone. The average �m after successful and unsuccessful trials
were linearly related (r � 0.53, p � 0.05). In addition, subjects
who had a greater number of successful movements, and hence
received more positive feedback, displayed a smaller change in
movement direction following both successful (r � 	0.72, p �
0.001) and unsuccessful movements (r � 	0.58, p � 0.005).

Furthermore, again restricting the analysis to the data from
the final two training blocks, we assessed the trial-to-trial change
in movement direction (�m) as a function of the number of
consecutive successful trials and of the number of consecutive
failed trials. A weighted least-squares regression was calculated to

predict these relationships (Fig. 2D). We found, using a simple
linear mixed model, that the average �m increased with the
number of failed trials since the last successful movement
(F(1,17.13) � 6.97, p � 0.05). On the other hand, there was a
reduction in average �m when preceding movements were
successful (F(1,10.64) � 10.81, p � 0.01). Thus, movement vari-
ability, and presumably exploration, progressively increased
following unsuccessful movements and decreased following
successful movements (Sutton and Barto, 1998).

Selection of ROIs (seeds)
We assessed changes in �FC associated with the number of suc-
cessful trials during learning using a seed-based approach. We
identified seven seed locations based on the local maxima in the
group-level task-based localizer data. The seeds regions were lo-
cated in the left M1 (primary motor cortex, BA4), left S1 (primary
somatosensory cortex, BA2), left dorsal premotor cortex (PMd,
BA6), the SMA, left second somatosensory cortex SII (parietal
operculum, OP1), right cerebellar lobule V (CbV), and the left
rostral motor area of putamen (Pu). The seed location of puta-
men in this study is restricted to the motor region as defined by
the Oxford-GSK-Imanova Striatal Atlas (Tziortzi et al., 2014).
The MNI coordinates of each seed region along with its corre-
sponding Z score are listed in Table 1.

Figure 2. A, Behavioral performance (n�22 participants) during baseline movements before training (PRE), training trials with feedback, and motor assessment following learning (POST). Zone
I to Zone III refers to different sizes of the target zone. Positive feedback was provided following a successful trial when the reaching movement ended in the corresponding zone. y-axis indicates the
average �PD� in millimeters. Inset, Percentage of successful trials over the course of training. Shaded colors represent SE. B, Linear dependency between the overall number of successful trials and
the improvement in accuracy following training. C, The overall distribution of �m, the absolute difference in PD between trial n and n � 1 when the current trial n is unsuccessful (S � 0, red) and
successful (S � 1, orange). Bar plot represents the average �m across subjects. D, The average change in direction as a function of number of consecutive successful (orange) and unsuccessful
movements (red), fitted with a weighted least-squares regression.
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Changes in FC related to training performance
To identify �FC associated with the behavioral manipulation, we
included as the predictor the number of successful trials in the last
two training blocks which had the same target size for all subjects.
Figure 3 shows �FC that are significantly correlated with the
number of successful trials. The seed regions are given in green
and, to the right, are those clusters of voxels for which the corre-
lation with the seed region changed in proportion to the number
of successes. The scatterplots depict the relationship between
the change in FC and individual differences in the behavioral
performance. Additionally, Table 2 provides the list of clusters

that show change in connectivity with the individual seed and the
coordinate of the maximum Z value in the clusters. The cluster p
value is significant when it is �0.05/7 (corrected for multiple seed
selection). FC measure (strength) before and after training is
given by the average Z score of correlation between the ROI time
series and the time series of the corresponding cluster, with a
negative value indicating an anticorrelation.

Changes in FC related to the number of successful trials were
observed with seeds in the left M1 and PMd (Fig. 3). This measure
was associated with increases in FC in a network comprising M1,
PMd, S1, and SMA. The positive correlation indicates that sub-

Figure 3. Left column represents seed regions (ROIs) within the sensorimotor cortices and putamen. Middle column represents cluster maps indicating statistically significant change in
connectivity strength (�FC) with each ROI, which are reliably correlated with the number of successful trials as the behavioral predictor. Graphs on the right column are scatterplots illustrating the
linear relationship between �FC and the behavioral predictor. Red to yellow color bar represents an increase in connectivity. Light to dark blue color bar represents a decrease in connectivity.
Thresholded at Z � 2.40, corrected p � 0.05. r, Pearson’s correlation coefficient.
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jects that achieved more successful trials had higher connectivity
strength following training. A similar trend was observed in the
connectivity between the seed in the left SII and S1. An increase in
connectivity strength between SII and S1 was positively corre-
lated with the number of successful trials.

The number of successful trials also predicted both increased
and decreased connectivity with the putamen (Pu) seed. An in-
crease in FC was found with vmPFC that extends to a portion of
the ventral striatum. On the other hand, we found a reduction in
the functional strength with somatic areas comprising a region
in the parietal operculum (SII) and S1 that extends to the anterior
intraparietal sulcus. We further tested this observation and found
that the increase in connectivity between Pu and vmPFC was
strongly correlated with the decrease in connectivity between Pu
and S1/SII (r � 	0.58, p � 0.01). This suggests that subjects who
were more successful during training, and thus received more
positive feedback, had stronger connectivity involving vmPFC
but reduced connectivity with the somatosensory areas of the
brain.

Changes in FC related to feedback-dependent changes in
movement direction
Figure 4 depicts the results of a second set of analyses, focusing on
functional networks related to trial-to-trial movement direction
changes (�m). We first analyzed �FC associated with �m, re-
gardless of the trial outcome. We then proceeded to segregate
networks involved in the repetition of successful movements and
those presumably involved in exploration when the preceding
movements were unsuccessful. In this case, both factors were
included in a single general linear model, enabling us to identify
brain areas that were associated with each predictor separately
after removing changes in connectivity that were related to the
other variable.

In Figure 4 (top), the seed regions are shown in green and, to the
right, we show the voxels whose correlation with the seed region is
dependent on change in the movement direction regardless of
whether the preceding movement was successful or unsuccessful.
Table 3 summarizes the connectivity measure (strength) between
the individual seed locations and the corresponding clusters before
and after training. It is seen that connectivity between SII and senso-
rimotor areas is strengthened as a result of training, but the connec-
tivity between the SMA seed and two subcortical clusters is reduced.
The clusters were found to be bilateral but with a statistical peak in
the left putamen and left thalamus, respectively (Table 3, top). Sub-
jects with smaller trial-to-trial changes in direction had greater
SMA-putamen connectivity.

Significant changes in connectivity, which were dependent on
whether the preceding trial was successful or unsuccessful, were
restricted to movements following unsuccessful trials (Fig. 4, bot-
tom). It was found that change in movement direction after un-
successful trials predicts the decrease in connectivity between SII
and two areas in the right hemisphere. The first area is BA 9/46 in

the lateral prefrontal cortex just above the inferior frontal sulcus,
and another area is supramarginal gyrus. The correlation is found
to be negative; that is, subjects who explored the space more
widely following unsuccessful trials experienced a greater reduc-
tion in functional strength. We did not observe any reliable cor-
relation with the left prefrontal region.

The connectivity between M1 and posterior intraparietal sul-
cus (pIPS) was also found to increase in proportion to the change
in direction following unsuccessful trials. The cluster with in-
creased connectivity covers the parieto-occipital border and ex-
tends to posterior angular gyrus (Area PGp). A seed placed in
SMA shared a similar pattern of change in connectivity with pIPS
and angular gyrus. The positive correlation observed here implies
that stronger functional interaction between the two regions is
associated with a greater change in movement direction follow-
ing unsuccessful movements. It is noteworthy that there is no
direct anatomical connection between pIPS and M1 in macaques.
However, the observed FC between pIPS and M1 might be sup-
ported through the dorsal premotor area, which is directly con-
nected with both M1 and pIPS (Tanné-Gariépy et al., 2002).

No reliable changes were observed in connectivity that was
uniquely associated with the change in movement direction fol-
lowing successful trials. This might be due to the fact that change
in movement direction is substantially less following successful
movements and differs little between subjects (Fig. 2C). The ab-
sence of significant �FC under these circumstances thus likely
resulted from a lack of variability in the behavioral predictor.

Discussion
The motivation for this study was to identify changes in functional
networks of the brain that are associated with learning sensorimotor
targets in the initial stages of human motor learning. To focus on
somatic target acquisition in the early stages of learning a novel mo-
tor skill, we used movements that were already part of the individu-
al’s motor repertoire in combination with target locations that were
initially unknown. The task was designed to allow trial and error in
search for the correct limb position and to provide positive feedback
as reinforcement during training. The results suggest that the initial
stages of motor learning are to be understood as not entirely mo-
toric. Evidence of plasticity was obtained in somatic networks that
are related to exploration, and also in prefrontal areas, related to
reinforcement.

In behavioral terms, we found that, on average, performance
improved compared with baseline. The extent of the improve-
ment varied in proportion to the number of successful training
trials, with subjects that were more successful during training
having the greatest improvements in movement accuracy.

We used resting-state fMRI to elucidate changes in connectiv-
ity in relation to success during learning. We found that learning
changed the FC both in cortical sensory and motor areas of the
brain. Participants that had a greater number of successful trials
showed larger increases in FC in a network comprising the left

Table 2. �FC associated with the number of successful trialsa

Seed Cluster label p cluster Total voxels Peak Z x y z FC (PRE) FC (POST)

M1 Postcentral gyrus (S1), left �0.0001 5309 4.70 	40 	24 54 3.21 4.10
PMd Precentral gyrus (M1), left �0.0001 1683 3.75 	30 	28 56 4.38 5.51
SII Precentral gyrus (M1), left 0.0089 222 3.88 	28 	16 68 3.65 4.75
Pu Subcallosal gyrus, vmPFC �0.0001 654 3.90 2 42 	2 	0.19 0.39

Parietal operculum (SII), left �0.0001 788 4.25 	56 	14 22 0.76 0.30
aCluster labels are according to standard atlases. The p cluster is the corrected cluster-level p value related to the predictor of interest. The peak Z value and the coordinates (in millimeters) inside the corresponding cluster are also given
according to the MNI standard template, respectively. The two rightmost columns provide the FC measure before (PRE) and after (POST) training, with a negative value indicating an anticorrelation.
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M1, S1, SMA, and PMd. The finding is consistent with previous
resting-state imaging work involving both sensorimotor adapta-
tion and somatosensory perceptual learning (Albert et al., 2009;
Vahdat et al., 2011, 2014). The participation of these same motor
regions in reward-related tasks has been observed in prior studies
in both humans (Ramnani and Miall, 2003; Kapogiannis et al.,
2008) and monkeys (Roesch and Olson, 2003; Sul et al., 2011).

Areas in the prefrontal cortex not typically associated with
motor learning were likewise involved and showed a contribu-
tion, which varied across subjects in a manner related to their
behavioral performance. Specifically, changes in connectivity
were observed between the putamen and the vmPFC that were
related to the number of successful trials. The vmPFC is a region
in which activity is associated with stimulus–reward value, select-

Figure 4. Changes in connectivity related to changes in movement direction (�m) regardless of whether the previous movement was successful or not (top) and to changes in movement
direction following unsuccessful trial (bottom). As in Figure 3: Left, Seed regions. Middle, Clusters whose connectivity with the seed regions varies with change in direction. Right, Relation between
change in connectivity and movement direction change.

Table 3. �FC associated with the average change in directiona

Seed Cluster label p cluster Total voxels Peak Z x y z FC (PRE) FC (POST)

After both successful and unsuccessful trials
SII Precentral, postcentral gyrus (M1/S1) �0.0001 3700 4.25 	10 	40 74 1.10 2.18
SMA Thalamus, left �0.0001 654 4.97 	2 	24 4 1.20 0.48
SMA Putamen, left �0.0001 600 3.91 	26 0 4 1.40 0.66

After unsuccessful trials only
SII Middle frontal gyrus (BA 9/46), right 0.0031 308 4.54 30 38 28 0.75 0.63
M1 Angular gyrus (PGp), left 0.0008 358 3.75 	28 	66 30 0.85 1.36
SMA Angular gyrus (PGp), left 0.0130 326 4.32 	32 	68 34 0.00 0.52

aDetails are similar to Table 2. Top portion represents results predicted by �m as a whole, regardless of the trial outcomes. Bottom portion represents results predicted by �m specifically after unsuccessful trials only (S � 0).
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ing actions that are more rewarding (O’Doherty et al., 2003;
Rushworth et al., 2004; Daw et al., 2006) and encoding the value
of performed decisions (Knutson et al., 2001; Smith et al., 2010).

We observed that, across participants, the increase in connec-
tivity between Pu and vmPFC was accompanied by a reduction in
connectivity with the primary and secondary somatosensory re-
gions. This suggests that there are individual differences in the
participation of putamen in motor learning. In particular, indi-
viduals who are more reliant on reward for learning, as indicated
by a strengthening of connectivity with prefrontal circuits, show a
functional dissociation between the putamen and sensorimotor
areas. This is consistent with the idea of a competition between
the somatic and reward-related neural networks in the basal gan-
glia during early stages of human motor learning (Mink, 1996;
Colder, 2015). More generally, these changes may bear on the
relationship between reinforcement-based learning and error-
guided behavior that has been the focus of previous research. As
the sensorimotor goal takes shape following exploration and re-
inforcement, motor learning and control processes presumably
shift to be more error-based. The finding that, following learning,
individuals who show greater increases in connectivity between
putamen and medial frontal cortex show reduced connectivity
between putamen and sensorimotor cortex may reflect the neu-
roanatomical substrate of this progressive shift.

Prefrontal regions involved in reward-guided decision mak-
ing, such as ventromedial and orbitofrontal cortex, have exten-
sive anatomical connections with the ventral striatum (Haber et
al., 1995), but not with the putamen. The observed changes in
connectivity might be explained by the fact that FC measures are
not only modulated by direct anatomical connections but also by
indirect pathways (Koch et al., 2002). A potential indirect path-
way underlying the observed result entails the projection of
vmPFC to the ventral striatum, and in turn to substantia nigra
pars compacta and then to sensorimotor striatum (Selemon and
Goldman-Rakic, 1985; Haber et al., 2000). As part of the reward
system, vmPFC and ventral striatum potentially guide motor
learning where one is able to learn the appropriate target position
and attempt to repeat successful movements. Such reward-
guided action selection is thought to involve putamen (Samejima
et al., 2005).

Unlike studies in motor adaptation and sequence learning, the
current study did not find a statistically reliable correlation be-
tween behavioral predictors and changes in the corticocerebellar
functional network. Activation of the arm area in the cerebellar
cortex was observed in task-based localizer scans, so the lack of
change in connectivity is not due to an inability to observe activity
in cerebellum. Moreover, reliable �FC between cerebellar cortex
and frontal motor areas have been observed previously in the
context of force-field adaptation (Vahdat et al., 2011). If cerebel-
lum plays a role in the correction for error (Diedrichsen et al.,
2005; Smith and Shadmehr, 2005), the absence of a reliable rela-
tionship in the present data may arise by virtue of the task in-
volved in which the sensory error signal is weak at this stage of
learning.

The current study provides an account of spontaneous explo-
ration dynamics during the early stages of learning a novel motor
skill. We observed a trial-to-trial change in movement direction
that was influenced by the preceding feedback. Change in move-
ment direction was greater following unsuccessful trials. We also
identified a relationship between exploration and feedback, such
that exploration increased proportionally with an accumulation
of unsuccessful trials and decreased proportionately with an
accumulation of successful trials. Moreover, subjects that pro-

duced more accurate movements had smaller change in their
movement direction, even when the preceding movement was
unsuccessful.

We assessed �FC using as predictors the change in movement
direction following only either successful or unsuccessful trials.
Connectivity between SII and a region in the ventrolateral pre-
frontal cortex varied systematically with changes in movement
direction following unsuccessful trials. This area, in monkeys,
which is analogous to BA 9/46v, is somatic and has both inputs
and outputs to other somatic regions of the brain, such as ventral
premotor cortex, the parietal operculum (SII) and the inferior
parietal lobule (Petrides and Pandya, 1984). This area of lateral
prefrontal cortex is engaged during somatic memory and dis-
crimination tasks in both nonhuman primates and human stud-
ies (Romo et al., 1999; Stoeckel et al., 2003; Kostopoulos et al.,
2007). Other neuroimaging studies indicate that the right pre-
frontal cortex is involved in tasks involving bimanual motor
sequences (Sun et al., 2007) and spatial working memory
(d’Esposito et al., 1998; Owen et al., 2005), specifically, in relation
to visuomotor adaptation (Anguera et al., 2010). The pattern of
connectivity changes observed here suggests that working mem-
ory may be one of the elements through which reinforcement
results in learning, especially during movement exploration.

It is worthwhile noting that the �FC observed here were ob-
tained from scans that occurred 1 h following the end of the
behavioral training. The persistence of learning observed follow-
ing brief periods of training with a motor task is consistent with a
considerable body of behavioral and neuroimaging data. This has
been shown behaviorally in the context of reinforcement-based
motor learning (Bernardi et al., 2015), as well as in force-field
adaptation and visuomotor rotation (Shadmehr and Brashers-
Krug, 1997; Krakauer et al., 2005). Persistence of learning in these
studies has been observed at intervals up to 1 week. Similarly,
neuroimaging studies have observed that changes in resting-state
networks persist for at least 6 h following brief periods of motor
learning (Sami et al., 2014). The persistence of these changes is
likely supported by cellular mechanisms, such as LTP and LTD.
These mechanisms affect neuronal metabolism and oxygen con-
sumption, which in turn are reflected in the resting-state signal
following learning (Logothetis, 2002).

Overall, it is observed that the acquisition of sensorimotor
targets in the early stages of motor learning is dependent on
both exploration and positive reinforcement. It is found that
reinforcement is associated with an increase in FC in tradi-
tional sensorimotor circuits (M1, S1, PMd, SMA). Areas of
prefrontal cortex are also important, subserving both reward-
guided behavior (medial prefrontal cortex) and exploratory
movement (ventrolateral prefrontal cortex). In future studies,
it would be desirable to directly test the role of ventrolateral
prefrontal cortex in providing somatic working memory dur-
ing exploratory behavior. It would also be meaningful to test
the idea that, as learning progresses, there is progressive shift
from reinforcement-based learning during the formation
of sensorimotor targets to error-based control as learning
progresses.
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