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A B S T R A C T

We regularly make predictions about future events, even in a world where events occur prob-
abilistically rather than deterministically. Our environment may even be non-stationary such that
the probability of an event may change suddenly or from one context to another. 4–6 year olds
and adults viewed 3 boxes and guessed the location of a hidden toy. After 80 trials with one set of
probabilities assigned to the 3 boxes, the spatial distribution of these probabilities was altered.
Adults easily responded to this change, with participants who maximized in the first half (by
choosing the most common location at a higher rate than it was presented) being the fastest at
making this shift. Only the older children successfully switched to the new location, with younger
children either partially switching, perseverating on their original strategy, or failing to learn the
first distribution, suggesting a fundamental development in children’s response to changing
probabilities.

1. Introduction

1.1. Predicting future events

As learners, we are faced with the difficulty of extracting and interpreting information from a highly complicated environment. At
any moment we must choose, from the wealth of possible cues available, the ones that are the most meaningful and reliable. There is
not, however, always a perfect correlation between cues and their consequences, due to inconsistencies in how they are causally
related. This may lead to classic induction problems where, due to limited or conflicting information, the data available to a learner
may support a range of differing hypotheses about how the world works. To add to this confusion, the efficacy of any particular cue as
a learning tool may change across time and context. In order to successfully navigate such an environment, learners must find a way
to respond to these varied forms of unpredictability in their input.

One way to guide our learning is to explore our environment in search of regularities. Rather than dividing our attention across all
of the possible sources of information, efficient learners should direct their attention to the most commonly occurring and potentially
predictive information available. Much evidence from the past few decades has demonstrated that adults (Saffran, Newport, & Aslin,
1996; Fiser & Aslin, 2001, 2002), infants (Saffran, Aslin, & Newport, 1996; Maye, Werker, & Gerken, 2002), and animals (Toro &
Trobalón, 2005) extract information about the distributional properties of stimuli, even in the absence of an explicit task or direct
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feedback about how cues and consequences are linked (see review by Aslin & Newport, 2012). In addition, a wealth of recent
evidence has demonstrated that not only are human infants and children sensitive to this distributional information, but they can
utilize it to make inferences about the likelihood of event outcomes.

For example, young children are highly sensitive to the causal relationships between events (Gopnik et al., 2004). By 8 months of
age infants are able to determine the likelihood of potential outcomes and then use this information to make predictions about what
future events should and should not occur (Téglas, Girotto, Gonzalez, & Bonatti, 2007; Xu & Garcia, 2008). Moreover, children may
use a mature, rational strategy for making inferences about causal events in the absence of feedback (Denison, Bonawitz, Gopnik, &
Griffiths, 2013).

In an ideal world, one would want to predict specific events, but that ability is quite rare because most events are not cued with
perfect reliability. For example, we can be certain that sunrise will follow sunset, but we are much less certain about whether sunrise
will be followed by a sunny or a cloudy sky. We can, however, make general predictions by gathering information about base rates.
For example, over the course of a year, we might observe that the ratio of sunny to cloudy days is 5:1 (San Diego) or 1:5 (Rochester).
This base-rate estimate plays an important role in how one would prepare to greet the day: carry an umbrella in Rochester or apply
sunscreen in San Diego. Thus, knowledge about distributions of events, in a given context, can influence our predictions and lead to
successful outcomes. However, very few outcomes are predicted by a single cue. The presence of clouds is not the only cue to the
likelihood of needing an umbrella, especially when the base rate of clouds is high.

Thus, in many domains, the information available to us when we need to predict future events may be inconsistent or contra-
dictory. But in addition to this unpredictability is the fact that the distributions of events in our environment may change over time.
Our future behavior will be influenced by whether we believe that our probabilistic environment is stationary or non-stationary.
Stationarity assumes that the relevant probabilities stay the same over time, at least in a given context. So although we cannot
perfectly predict upcoming events, the distribution of events will not change. If we expect a non-stationary environment, however,
then we know that the probabilities that we have learned thus far may shift. For example, as winter ends and spring begins, the
likelihood of a sunny day increases and thus we need to update our expectations and behaviors accordingly. One methodology that is
particularly well suited to exploring how learners interpret these types of inconsistencies is probability learning, which requires
participants to predict future events in a probabilistic task.

1.2. Behavioral strategies in probability learning tasks

When faced with the task of predicting future events in a non-deterministic environment, a learner seeking to maximize accuracy
or reward could employ one of two main strategies. One is to make predictions that directly match the exposure probabilities
observed in the environment, a pattern known as probability matching. The other is to nearly always choose the more common
outcome, a pattern known as maximization (c.f., Estes & Straughan, 1954). In several classic experiments, participants were presented
with two light bulbs and on each trial were asked to predict which light would illuminate (e.g., Neimark, 1956; Gardner, 1957, 1958;
Weir, 1972). After participants made a choice, one of the bulbs would turn on. For example, one bulb turned on 70% of the time and
the other bulb 30% of the time. In this situation, maximizing on the more probable alternative is the better strategy because it leads to
higher overall accuracy. If the participants were probability matching (i.e., picking the 70% light on 70% of the trials and picking the
30% light on 30% of the trials), then their overall accuracy would average 58% correct (49%+9% respectively). If, on the other
hand, learners chose the 70% light on every trial, their overall accuracy would be 70% correct (70%+0%). For this reason, max-
imization is the best behavioral pattern if (1) the environment is truly probabilistic (i.e., there is no deterministic pattern to the order
of the lights), (2) the goal is to correctly choose the location of the light as often as possible and (3) the environment is stationary,
meaning that there is never any change in the presented probabilities. It is not obvious, however, what the best approach would be in
a non-stationary environment if our goal is not only to maximize reward in the short term but also to recognize a global shift in
probabilities so that the learner can adjust their response pattern to optimally match the updated probabilities.

Studies of probability learning have demonstrated that highlighting the majority location, either by increasing its cue-salience
(Gardner, 1957) or by increasing the number of minority alternatives (Gardner, 1957; Weir, 1964, 1972), promotes the selection of
the majority location above the level of probability matching. This same phenomenon has been found in auditory language learning
experiments (Hudson Kam & Newport, 2009). This tendency to over-predict the majority choice may partially result from the fact that
as the number of choices increases, the likelihood of each of the minority choices being correct decreases. This maximizing tendency
is a rational response by adults to the memory demands of keeping track of multiple alternatives, especially when choices are based
on a sparse sampling of the input.

Although maximizing in a stationary environment leads to an overall higher level of accuracy, adults tend to probability match
rather than maximize in most simple choice-tasks (Gardner, 1957; Weir, 1964, 1972) and in language learning experiments (Austin &
Newport, 2012; Hudson Kam & Newport, 2005, 2009). Children, however, are more likely than adults to show maximization or
boosting behavior that enhances the choice of the majority location (Stevenson & Weir, 1959: Weir, 1964). When given access to the
same input, why might children act differently than adults? It seems unlikely that they are better strategizers than adults. Rather this
behavior could be based on their greater cognitive limitations, such as poorer memory for the outcomes of past choices when there
are multiple locations to keep track of. This same reliance on memory for past outcomes could form the basis for the influence of
complexity on maximizing behavior in adults when they are faced with 3 or more choices (Gardner, 1957; Weir, 1964, 1972). It could
also be based on the fact that children require more data than adults to be confident that further exploration is not necessary to
maximize performance on the task (as in Denison et al., 2013).

Evidence in support of these explanations for developmental differences in probability learning tasks comes from a study using a
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partial reinforcement design, in which one correct option is reinforced at a specific rate, while the other options never lead to reward.
Weir (1964) tested participants from ages 3–18 on a three-choice test where the majority location was reinforced at 33% (33–0–0) or
66% (66–0–0). Across the final 20 trials, both the youngest and the oldest participants maximized more often than children aged
7–15, but they reached this behavior by different strategies. The 3–5 year old children reached asymptotic behavior very early,
focusing on the one option that produced a reward. The danger of a short exploration period is that the explorer cannot immediately
tell whether only one location is ever rewarded, as in this task, or whether they have just been unlucky in their first few guesses. The
18 year olds, on the other hand, came to this behavior slowly after exploring all of their options, possibly through a desire to find the
best reward rate and discovering over time that the other two locations were unlikely to produce a reward. Additionally, school aged
children are the most likely of any age group to pick a successive choice pattern, such as Left-Middle-Right or Right-Middle-Left and
stick with it (Craig & Myers, 1963; Derks & Paclisanu, 1967; Weir, 1964). This suggests that young children will quickly settle on
whichever location led to a reward, middle-aged children make use of repetitive patterns to explore the space but are unable to move
past these attempts, and the oldest children are able to test multiple hypotheses until coming to the best solution.

1.3. Responding to shifts in the environment

The learning situation changes, however, when the assumption of stationarity is relaxed and a learner is exposed to a shift in
probabilities. Consider a foraging task in which an animal has previously visited three food sources. Early in the season it may be that
bush A is much more likely than bush B or bush C to have the good tasting berries (70–15–15). But as the year goes on, it is possible
that this might change such that bush B is now the better bet (15–70–15). In order to make a rational choice about where to go for
food, the animal must notice and respond to this change in the environment. If the animal is sampling according to the original
70–15–15 distribution, then once the majority location has lost its good-tasting berries, their choices must yield significantly inferior
outcomes compared to past choices, and the decision to abandon the majority location must be followed by sampling either (or both)
of the minority locations. This shift in sampling from the three locations is subject to considerable uncertainty, yet failing to shift runs
the risk of grossly undershooting the optimal sampling strategy. If the input distribution undergoes shifts only rarely, then staying
with the initial sampling strategy has relatively little cost – the change will be discovered eventually as more data are gathered.
However, if the input distribution shifts repeatedly after short periods of stability, then maximizing is a suboptimal strategy – it
prevents the learner from sampling the current minority location(s) that could quickly become the majority location. Thus, learners
should strike a balance between sampling and exploiting the alternatives (Kamil & Roitblat, 1985). If they sample the input ex-
tensively so that they have high confidence in the underlying contingencies, they will delay achieving the maximum set of rewards. If,
on the other hand, they quickly settle on one choice and do not sample enough to explore other choices, they might miss out on the
best choice in the future (Keasar, Rashkovich, Cohen, & Shmida, 2002).

Given the differences seen in adult and child responses on probabilistic tasks, we can ask how adults and children will behave in a
non-stationary environment. Data from the reversal-shift literature indicates that adults and children respond differently when given
evidence that the relative importance of cues has changed. In a reversal-shift task a participant is given a discrimination task with a
pair of stimuli that differ on a single dimension. For example objects may differ in both color and height. In the first part of the task
color may be the discriminative cue with white leading to reward. In the second part of the task, a change is made in the rules such
that the new rule to follow is either the opposite of the previous rule (reversal-shift) or is now based on a new feature of the task
(nonreversal-shift). In a reversal-shift change, color might still be the discriminating factor, but now black, rather than white, leads to
reward. In a nonreversal-shift, some other dimension becomes relevant such as the height of the object. Although young children
(Jeffrey, 1965; Kendler, Kendler, & Wells, 1960) and rats (Kelleher, 1956) find nonreversal-shifts easier to learn than reversal shifts,
the opposite is found for adults and older children (Kendler & Mayzner, 1956; Kendler, Kendler, & Learnard, 1962). Sanders (1971)
demonstrated that second graders were much more willing than preschoolers to abandon a previously reinforced response. But if this
reversal shift were verbally acknowledged with instructions explaining that a shift had occurred, even preschoolers could follow the
reversal. Our ability to respond to changes in the importance of an environmental cue therefore depends not only on developmental
factors but also on the type of change that occurs and the salience of the cue. This suggests that pre-school aged children should have
a more difficult time responding to an unannounced shift in contingencies during a probability-learning task than would older
children and adults.

Our innate curiosity about how the world works may be enough to discourage any behavioral strategy that does not allow for
exploration. One explanation for the high rate of matching behavior in human adults is that probability matching is not a strategy per
se but that it is a consequence of our search for patterns in the world (Wolford, Newman, Miller, & Wig, 2004). That is, in order to
fully maximize on one choice, a learner must be willing to give up the chance to explore other options. Given that we live in an
environment that is often patterned, probability matching is an adaptive response that encourages the learner to constantly search for
a potentially predictive pattern (Gaissmaier & Schooler, 2008). The adaptive benefit of such a selective pattern search hypothesis has
found support in studies demonstrating that individuals who probability match are more likely to successfully exploit a pattern when
they encounter it than those who maximize (Gaissmaier & Schooler, 2008). It is possible, therefore, that a matching strategy (as is
commonly seen in adults) may be beneficial for recognizing an unannounced change in the large-scale statistics of a probability-
learning task. Alternatively, probability matching may be an efficient implicit strategy for sampling the alternatives without running
the risk of failing to detect new structures, such as a shift in the underlying probability distribution of the majority alternative.

The claim that matching may serve us best in a changing environment does, however, assume that there is not perfect access to
information about the environment. The type and availability of feedback may also influence choice behavior. In probability learning
tasks, either a response-feedback or a choice-feedback design can be used, and this determines how much information is given on
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each trial. In a response-feedback probability learning design the participant is only informed about whether they were correct or
incorrect, but when they guess incorrectly they are not told what would have been the correct choice. When there are three or more
options available, if you are incorrect you don’t know which of the other possible choices was the correct answer. In a choice-
feedback design, however, no matter which choice is made, the participant is always informed of what the correct answer had been.
Both children and adults choose the majority location at a significantly higher rate in choice-feedback than in response-feedback
designs (Weir, 1972; Witting & Weir, 1971). The main explanation offered for this difference is that in the response-feedback task,
because incorrect guesses cant signify which was the correct choice, it takes longer to build up the information necessary to form a
representation of the statistics of the task.

Foraging situations are similar to response-feedback designs in that after making a bad choice (i.e., pick a flower that is not
producing well) the forager is not informed which flower they should have visited. Additionally, if the previously poor-performing
flower suddenly perks up, they have no way of knowing unless they have been sampling from it (thus making the compromise of
cutting back on access to the best food source). In contrast, in a choice-feedback situation they aren’t forced to sample from the
minority location(s) in order to quickly become aware that the statistics of the environment have changed. Because they are always
informed of the correct choice on each trial, a learner can safely maximize because they only need to pay attention to the feedback on
each trial to see when a previously unrewarded choice is now reinforced. For that reason, probability matching, particularly if it is the
result of pattern searching, might be counter productive in a choice-feedback, or ideal learning environment. A learner who is busy
searching for a pattern might be slow to recognize that the entire distribution of rewards has shifted, and such a pattern search is not
needed in a choice-feedback design.

1.4. Goals of the present study

The goal of the present study was to examine how the behavioral strategies used by adults and children relate to their ability to
recognize and respond to changes in the probabilities of a task structure. Adults and children (aged 4–6) were exposed to a 3-
Alternative Forced Choice learning task in which they had to guess the location of a hidden object. The object location on each trial
was probabilistically determined such that one of the three locations contained the hidden object on 70% of the trials, with the other
two locations hiding the object on the remaining 30% of trials (i.e., 15%, 15%). After 80 trials the distribution changed without
warning such that a new location became the most common (at 70%). We refer to this as the majority location. By examining the
choice behavior of participants before and after this change, any age related differences in the ability to recognize and respond to
changes in a probabilistic structure were explored. Based on age related differences seen in the reversal shift literature (Jeffrey, 1965;
Kendler & Mayzner, 1956; Kendler et al., 1960, 1962) we predicted that our adult participants and oldest children would be the most
successful at detecting the change in the distribution and responding accordingly and they should show a preference for choosing the
new majority location after the change in distribution. It was predicted, however, that the younger children might not be able to
make this shift and instead perseverate on the rule learned in the first distribution.

Unlike many classic studies that rely on a response-feedback design in which participants are only informed of the accuracy of
their guess on each trial and not the “correct” choice, we used a choice-feedback design in the present study. By informing the
participant about the location of the hidden object on each trial, regardless of their choice, we hoped to speed up the learning process.
This also means that a participant is able to maximize on the most common location while still learning about the relative occurrence
of each of the less common choices. Thus it was predicted that maximization, in addition to probability matching, would be a
successful strategy for recognizing the change, unlike in traditional foraging situations where maximization is a suboptimal strategy.
To further explore this, the relationship between speed of response to the switch and the behavioral strategy before the switch was
examined. It was predicted that participants who maximized in the first half of the experiment would be faster at recognizing the
change in the distribution of events than participants who chose the first majority location at a lower rate. Additionally a three-choice
task was used because the large difference in reward level between the majority and the two minority locations before and after the
switch should also help to highlight the change in the spatial distribution of the probabilities. These design features should allow for a
shorter task in which young participants are able to build a representation of the first distribution and have experience with the
second distribution before becoming too tired or bored.

2. Method

2.1. Participants

Children were recruited through a (a) database of former infant participants, (b) at two local daycares, and (c) from a summer
daycare and activity program. Adults were paid $5 for their participation. After completion of the study children tested in the lab
were offered $10 or a small prize (such as a t-shirt or tote bag), and children tested at a daycare or summer program were given a
small bag of toys (such as bouncy balls and bubbles). Informed consent was obtained from the adults immediately before partici-
pation in the study. Consent was obtained for the children either immediately before the study (if completed in the lab) or previously
(if tested in a daycare or summer program).

The final sample consisted of 35 children (21 female) with a mean age of 59.1 months (range 48.2–81.8 months) and 16 adults (9
female, age range 18–29). All adults either had completed their undergraduate degree or were currently enrolled in college. An
additional 12 children were removed from analyses because of loss of interest (9), computer malfunction (1), extreme inattentiveness
to the task (1), or because they had participated in a previous version of the experiment (1).
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2.2. Testing equipment

Adults were tested on one of two Dell Touchscreen-enabled computers in the laboratory. Children were tested either in a child-
friendly testing room in the laboratory or in a quiet room at a local daycare or summer program. In the laboratory, the experiments
were run on a Dell Touchscreen, and at the daycare or summer program the experiments were run on a Lenovo ThinkPad
Touchscreen Tablet Laptop.

2.3. Stimuli

To provide children with an interesting task that would maintain their attention for dozens of trials, we used a total of 160 color
images of children’s toys (see examples in Fig. 1).

The toys were virtually hidden inside of square boxes colored red, yellow or blue. A “game show ding” sound was also used to
indicate when the participant correctly guessed the toy’s location.

2.4. Procedure

Participants were seated in front of the touchscreen computer and were told that they would be playing a guessing game. To start
the game, participants were instructed to press the white “Go!” button on the touchscreen. This immediately started the first trial and
brought up three colored boxes (red, yellow and blue) as shown in the left panel of Fig. 2. The participants were informed that these
were toy boxes and that on each trial a toy would be hidden inside one of the boxes. Their task on each trial was to guess where they
believed a toy was hiding. Upon pressing a box, a toy emerged out of the correct box on that trial, by slowly rising vertically, and then
stopped above the box as shown in the right panel of Fig. 2.

If the choice by the participant was the correct box (i.e., where the toy actually was on that trial), it was additionally indicated by
an auditory “ding” sound. If the incorrect location was chosen, the toy still rose out of the correct box, but no sound was played. The
participant then had to click on the toy to make it disappear, and the “Go!” button immediately reappeared to start the next trial.
There was no time limit and participants could take as long as they wanted to make their choice on each trial.

An experimenter was present for the entire time that the child participants performed the task. For the first few blocks or until the
child clearly understood the procedure, the experimenter prompted the child to “guess where a toy is hiding”. To further ensure that
the child understood that the toys were actually coming out of one of the boxes on the screen, the experimenter also commented on
the outcome of the first few trials such as “Look, the blocks were in the red box” or “You found the car in the yellow box”.

Participants completed a total of 8 blocks of 20 trials. The correct location for each trial within each block was pre-set and pseudo-
randomized across blocks. Every block represented the overall statistics of the experiment (70%–15%–15), but the order of toy
location was constrained such that there were no strings of five or more trials in a row for which the same box was the toy location.
Participants completed four blocks (80 trials) with a fixed majority box location (i.e., 70% at Red), followed by four blocks with a
different majority box location (i.e., 70% at Blue). The boxes themselves did not move or change color or position across all 160 trials.
Thus, only the statistics of the task changed after the first 80 trials, such that although the same 70%–15%–15% percentages were
used, one of the 15% boxes was now at 70% and the former majority box dropped to 15%. All six possible combinations of first and
second location for the majority box were used across participants.

In order to help maintain children’s focus and interest, there was a short break between each block during which the participants
were given a sticker. Children were given a background picture (such as a backyard scene with a doghouse or a picture of a fishbowl)
and an appropriate set of stickers (such as dogs or fish) to attach to the background. They were told that every time a purple star
appeared on the touchscreen (the signal that a block had ended) they could put a sticker on their background picture. Adults were
also provided with sticker rewards at the end of each block, but in addition were given information about what percentage of the
experiment they had completed (e.g., 12.5%, 25%, etc.).

3. Results

3.1. Behavioral strategies after learning each probability distribution

To explore the behavioral strategies used by adults and children at the end of the 80 trials where the majority box location was
invariant, each participant was classified according to their choice behavior on blocks 3–4, the final 40 trials of the first probability
distribution, and blocks 7–8, the final 40 trials of the second probability distribution. We focused on these final 2 blocks so as to give
participants time to reach their final behavior. Their percent choice of the majority location was used to categorize them as:
Maximizers (> 85%), Probability Matchers (55%–85%), or Low Choice (< 55%).1 A 2× 3 Fisher’s exact test found that the

1 A range of behaviors that is called matching is not well defined in the literature, and thus the lower bound of our matching range was chosen
based on the following reasoning. A participant who chose the majority location on 55% of trials and split their remaining choices equally between
the two minority locations would end up with a 55%–22.5%–22.5% split. This would mean that the majority location would not only be selected on
the majority of trials but it would also be chosen with at least a 2-to-1 ratio over either minority location. Thus, selecting the majority location less
than 55% was labeled Low Choice.
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categorization of behavioral types in the final two blocks of the first distribution across age groups was not significantly different
(p=0.13) (see Fig. 3). This suggests that overall choice of the majority box across participants in blocks 3–4 was similar (68.2% of
trials for children and 75.8% for adults). While 15/16 (93.8%) adults matched or over-predicted the majority location, 27/35
(77.1%) of children did so, with the other 8 children (22.9%) choosing the majority location less often than it occurred. A similar
analysis of the last 40 trials from the second probability distribution yielded an age related difference in behavior. A 2×3 Fisher’s
exact test found that the categorization of behavioral types across age groups for blocks 7–8 was significantly different (p=0.04).
While 12/16 (75%) adults matched or over-predicted the majority location, only 14/35 (40%) of children did so.

Using data from the last two blocks of the two probability distributions, a two-way repeated measures analysis of variance with
age group and distribution (pre or post-switch) as factors was also run. There was a main effect of age, with adults choosing the
relevant majority location more often than children (F(1,49)= 6.38, p=0.01, η2= 0.12), and a main effect of distribution, with
participants choosing the relevant majority location more often before the switch than after (F(1,49)= 23.25, p < 0.0001,
η2= 0.32). An age x pre/post switch interaction did not reach significance (F(1,49)= 3.25, p=0.08, η2= 0.06), but it may suggest
that children were more likely than adults to have their pre-switch choices interfere with their ability to move on to the post-switch
distribution. This possibility is addressed in further analyses.

To further examine this trending interference effect, terminal performance in both halves of the task was compared to indicate
how well individual participants were able to fully recover after the change in the probability distributions. Average choice of the
majority location in the last two blocks of each distribution (blocks 3–4 and 7–8) was calculated for each participant and the
correlation between these values was determined. On average adults showed a slightly higher level of choice of the majority location

Fig. 1. Examples of toys used in the experiment. (For interpretation of the references to colour in the text, the reader is referred to the web version of
this article.)

Fig. 2. Screenshot of experiment before (image on left) and after (image on right) a choice is made. This is identical regardless of the accuracy of the
choice. (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.)

Fig. 3. Proportion of adult and child participants who fell into each of the three behavioral categories in the final 40 trials of the first and second
distributions.
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in the last two blocks before the switch than in the final two blocks after the switch (75.8% and 67.2% respectively). A correlation
revealed that the extent of choice of the majority location before and after the switch was significantly related, r=0.547, N=16,
p= 0.029, two tailed. However, inspection of the data revealed that one individual (who happened to be categorized as “Low
Choice” in both halves) drove this correlation. When this participant is removed, the correlation was no longer significant, r=0.481,
N=15, p= 0.069, two tailed.

Overall children showed a much higher level of choice of the majority location in the final two blocks of the first distribution than
in the second distribution (68.2% vs. 44.4%). A two-tailed t-test found this difference in choice level to be significant, t(18)= 3.09,
p < 0.01, d=0.86. However, unlike adults, the correlation between choice of the majority location in the final 40 trials before and
after the switch was significant, r=0.35, N=35, p=0.04, two tailed. While level of choice for the end of the first block was not
predictive of level of choice for the second distribution for adults, it was so for children. Thus the level of success obtained by children
in the first distribution predicted their subsequent success in the second distribution.

3.2. Strategies in response to the change in probability distribution

Given that the change in majority location from the pre- to post-switch probability distributions was not explicitly marked, either
by instruction or by altering the visual display, there was an inevitable disruption in participants’ responses immediately after the
switch. Individual children displayed a range of behaviors from pre- to post-switch blocks: some children appeared to recognize and
respond accordingly to the change in the probability distribution (for example see Fig. 4), while others did not appear to change their
strategy after the switch (for example see Fig. 5).

Fig. 4. Sample child participant (aged 62.7 months) who switched from majority choice of the 1st distribution majority location to the 2nd
distribution majority location.

Fig. 5. Sample child participant (aged 57.1 months) who stayed with majority choice of the 1st distribution majority location for the entire study
even after the switch in majority box location.
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To explore the range of pre- vs. post-shift behaviors shown by adults and children, each participant was identified as exhibiting
one of four behavior patterns based on their average choice of the majority location in blocks 4 and 8 (the last block in each of the two
probability distributions). First, we excluded participants who did not choose the majority location in Block 4 (Maj-1) on at least 50%
of the trials because this implies they did not understand the task or were otherwise performing unreliably. Additionally, we excluded
one participant who inexplicably chose the third box, which was never the majority location, on half of the trials after the switch. We
refer to both of these types of participants as falling in the “other” category. Second, given Maj-1 was greater than 50%, three
additional categories were defined based on how participants responded during Block 8 to the new majority location (called Maj-2).
In particular we asked whether or not the participant fully or partially shifted their focus to the new majority location or whether they
remained with the original majority location:

• Switch: Maj-2 was greater than either of the other two locations (as Maj-1 was in the first half).

• Reduced: Maj-1 remained higher than the other two locations, including Maj-2, but Maj-1 dropped by at least 15% from its pre-
switch level.

• Stay: Maj-1 remained higher than the other two locations and did not drop more than 10% from its pre-switch level.

Using this categorization system, the children and adults exhibited the frequency distribution shown in Fig. 6. For children:
Switch (19), Reduced (5), Stay (5) and Other (6); and for adults: Switch (14) and Reduced (2). A 2×4 Fisher’s exact test found that
the categorization distribution across age groups was trending (p=0.07).

We then asked whether age was a predictor of switching. Overall, the children who showed the Switch pattern were the oldest,

Fig. 6. Categorization of adult and child behavior in response to the change in distribution. This is based on a comparison of their level of choice of
the current majority location in the final block of 20 trials both before and after the change in distribution.

Fig. 7. Average age of child participants by response to the change in distribution.
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followed by those who showed the Reduced pattern, the Stay pattern, and finally the Other pattern (see Fig. 7 below).
A one-way analysis of variance revealed a significant main effect of child age for these four categorization patterns, F

(3,31)= 4.43, p=0.01, η2= 0.30. Post hoc comparisons using the Tukey HSD test indicated that the average age for the Switch
group (M=62.4, SD=1.8) was significantly greater than the average age for the Other group (M=52.1, SD=2.1) (p=0.01). No
other direct comparisons reached significance.

3.3. Effect of first half behavioral strategy and speed of recovery

Another metric of the disrupting effect of the switch in probability distributions is how quickly participants respond to the switch
in the majority location. For example, a participant who spent the first half of the experiment maximizing on the majority location
might be particularly quick to notice when that location suddenly became unproductive. To further explore this possibility, speed of
recovery was examined by computing how rapidly participants’ responses shifted to Maj-2. We used a 5-trial moving window (i.e., a
smoothing algorithm) to deal with the discrete nature of responses on our task (i.e., the fact that only 1 of 3 choices was possible on
each trial). By smoothing over a small set of trials we are able to see how behavior is changing within and across groups of parti-
cipants while accounting for the high variability we would expect to find across participants and trial-to-trial. The first window is the
average choice behavior for trials 1–5 after the switch, the second window for trials 2–6, and so on. For each participant, this created
10 data points over the first 14 trials. This 5-trial time window was chosen because it reduced trial-to-trial variability for time
windows with fewer trials and yet provided a measure of each participant’s learning curve. The first 14 trials were the focus of this
learning curve because visual inspection of the data showed that participants tended to reach asymptotic performance by the 15th
trial. We then averaged these smoothed functions across participants and plotted them separately for the 12 adults who were
Probability Matchers in the final two blocks of the first half of the experiment and the 3 adults who were Maximizers. Because only
one adult participant fell in the Low Choice category, that category was removed from further analyses so as to focus on those
participants who clearly mastered the first probability distribution.

Fig. 8 shows average proportion choice in the 10 temporal windows for the two behavioral pattern types (Probability Matchers
and Maximizers). We fit a linear mixed model to the data using percent choice of the new majority location as the dependent variable,
with both behavioral category in the first half (Match and Max) and log of the window number as independent variables, and
category by log of window as the interaction term. The model demonstrated that Match participants started after the switch with a
predicted accuracy intercept of 0.25. The Max participants started with a significantly higher predicted accuracy of choice of the new
majority location with an intercept of 0.47, F(1, 146)= 80.7, p < 0.001. Both groups showed a positive increase in choice prob-
ability. The Match group had a positive slope of β=0.07 and the Max group had a slope of β=0.23. These slopes are significantly
different, F(1, 146)= 4.65, p < 0.05. These analyses support the hypothesis that Maximizers more readily switch their choice
behavior after a change in the probability distribution than do Matchers.

The same analysis was conducted on the child data, again only with those participants who demonstrated successful learning of
the first probability distribution. The 8 children with Low Choice patterns were removed and this left 26 children: 15 Probability
Matchers and 12 Maximizers (see Fig. 9). The model demonstrated that Match participants started after the switch with a predicted
accuracy intercept of 0.27. The Max participants started with a significantly higher predicted accuracy of choice of the new majority
location with an intercept of 0.40, F(1, 266)= 4.58, p < 0.05. The Match group had a slight but not significantly negative slope of
β=−0.02. The Max group had a slope of β=−0.07 which is not significantly different from the Match group, F(1, 266)= 1.47,
p=0.23. These analyses suggest that both adult and child maximizers respond to the switch in distribution more quickly than do
matchers. However, the child maximiers, in contrast to adults, do not show a significantly higher slope than matchers. This suggests
that this initial benefit does not appear to hold true for the children after the first few trials.

Fig. 8. 5-trial moving window analysis showing average choice of the new majority location choice for adults at the start of the second distribution.
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4. Discussion

The classic probability learning literature provides a method for examining how individuals make predictions about upcoming
events in a probabilistic environment. In a stationary probabilistic learning environment adults tend to probability match by directly
matching the exposure probabilities observed in the environment or slightly over predicting the most common event, whereas
children are more likely to maximize by focusing on the most likely option observed across trials (i.e. Gardner, 1957; Stevenson &
Weir, 1959). However, the probabilities that we experience in everyday life are rarely stationary. Thus, it is possible that the
developmental differences observed in probability learning tasks are at least partially reflective of how adults and children deal with
non-stationarity, and not entirely about fundamental differences in probability learning per se.

4.1. Developmental differences in performance

In the current study preschool aged children and adults were exposed to such a non-stationary task. We found that tracking and
responding to the change in the probabilities was not difficult for the adults, as would be expected given previous evidence that adults
can track local changes in statistics (Edwards, 1961; Qian, Jaeger & Aslin, under review). Their average choice of the majority
location at the end of each half of the experiment was relatively high (only 1 participant failed to either probability match or
maximize responding to the majority location), and correlations between their average choice across the two halves of the experiment
were trending.

In comparison to adults, children showed much more variable performance. Slightly more than half of our child participants
appeared to truly respond to the change in spatial distribution of the probabilities by “Switching” strategies and now attending to the
new majority location. This could be due to a difference in their underlying expectations about the world. If children expect a
stationary environment, then they may be disinclined to believe that global rules may shift. Perhaps young children have a higher
threshold than do adults for variability in their environment before they accept that the distribution has changed. It may take
additional maturity or experience for them to discover that the variability in a task is due to global changes rather than local ones.
Alternatively, it is possible that our younger participants didn’t have enough data to convince them to throw out their initial hy-
pothesis about the learning task. With additional time and exposure, they may have gained the input needed to be certain that a
change in the underlying probability distributions had occurred.

Either of these explanations is consistent with our finding that the children who demonstrated a switching behavior by changing
their choice behavior in response to the change in the probability distributions were the oldest on average (mean age of 62.4 months).
This is mirrored in the behavior we observed in adults. Those children who chose a strategy that was unrelated to the input by
focusing entirely on a minority location were the youngest on average (mean age of 51.5 months). This significant age effect is
evidence of an ongoing developmental change in strategy or general ability to track changes in statistics that begins to emerge during
the preschool years. Although it did not quite reach statistical significance, those children who made the shift were also older on
average than those who “stayed” (mean age of 55.1 months) by perseverating in choosing the box that was most rewarded in the first
half of the study. This is in accord with findings from the reversal-shift literature showing that school aged children are more likely
than preschoolers to give up on a previously learned rule (Sanders, 1971). In the present experiment, only the oldest children were
able to both learn the first rule (e.g., blue box is most common) and then later accept a new rule (e.g., red box is now the most
common). As Sanders (1971) demonstrated, preschool aged children are also much more willing to abandon a previous rule when
they are specifically told that a change has occurred. It is possible that these younger children, who “stayed” or merely “reduced”

Fig. 9. 5-trial moving window analysis showing average choice of the new majority location choice for children at the start of the second dis-
tribution.
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their responding to the previously relevant majority location (Maj-1), might have responded to the change in the majority location
(Maj-2) if there had been some external cue signaling the change in the environment.

Of course they may also be a range of underlying cognitive changes that play a role in the age-based changes we see in this task
but these are unlikely to be the sole explanation of what we find. For example, some of the differences we see between the adult and
child participants, and within our child group may be driven by differing motivational factors. The only rewards that participants
receive for a correct choice were a simple auditory feedback and the knowledge that they were learning. This is quite minimal when
compared to a food reward for a foraging animal. Future work may explore whether differences in motivation are partially re-
sponsible for developmental changes in probability matching. Our goal here, however, is not to provide a mechanistic account of the
behavior, but to demonstrate the changes that occur across development. Future detailed studies will be needed to sort out the
relative role of attention and working memory, among other skills, on the behavior of children and adults in probability learning
tasks.

4.2. Value of maximization behavior

One hypothesis about why learners might probability match, when this is clearly a sub-optimal strategy, is that probability
matching allows for continual exploration of non-majority locations. If learners quickly maximized, they would never be open to the
possibility that the majority location has undergone a switch. Although previous findings have demonstrated that probability
matchers are more likely than maximizers to recognize a pattern when it occurs (Gaissmaier & Schooler, 2008), in the present study it
was the adult maximizers who were fastest at recognizing the shift in the probability distribution (from Maj-1 to Maj-2). For the
matching participants there was a slow and steady increase in choice of the new majority box over the first 14 trials after the switch.
For the maximizers, however, there was an immediate change in response behavior as seen in an increase in choice followed by a
plateau (see Fig. 8).

The basis for this rapid switching response in maximizers is not entirely clear. One explanation for the fast recovery of the
maximizers focuses on the high level of accuracy maximizers would have experienced at the end of the first half of the task. As
Goodnow (1955) explains, in order for a participant to show maximization behavior, they must come into the task with a specific set
of expectations or beliefs. Although maximization will lead to a higher rate of accuracy than probability matching, it can never result
in perfect accuracy. Thus, in order to maximize, a participant must make a strong commitment to one option and accept a level of
accuracy less than 100%. We can consider two “ideal learners” – the perfect maximizer and the perfect probability matcher. In this
example, a perfect maximizer will choose the 70% location on 100% of trials. They give up on the possibility of correctly guessing on
3 out of every 10 trials in order to get that relatively high level of accuracy. By choosing all three locations at the rate they were
presented, a perfect probability matcher, on the other hand, will only be accurate on 53.5% of trials. By hoping for perfection,
probability matchers actually have lower overall accuracy. Now if the switch occurs and they do not respond in any way, the perfect
maximizer will drop from 70% accuracy to only 15% accuracy (because they are only selecting a minority location). A perfect
probability matcher who makes no change, on the other hand, will drop from 53.5% to 23% accuracy. This occurs because they now
select one of the 15% locations on 70% of trials (10.5% accuracy), and select the 70% and the other 15% location each 15% of the
time (10.5% and 2.3% accuracy respectively). This is a relatively small change when compared to that experienced by the max-
imizers. For this reason, it is possible that a maximizer would be faster to recognize this dramatic change, as can be seen in their
almost immediate high rate of choice of the new majority location. Additionally, a probability matcher who reaches this behavioral
style through pattern searching may be too focused on the goal of finding the “perfect solution” to take full advantage of the available
feedback.

This response to the drop in level of reward may also interact with the type of design that is used. In the choice-feedback design
used in the present study, the learner is given information about the correct location of the hidden object on each trial regardless of
their actual choice. This means that the participant does not need to actually sample from the minority locations in order to discover
how often they are rewarded. When a response-feedback design is used rather than this ideal learning situation, how will maximizers
fare? In both types of designs when the switch happens the maximizer will experience a larger drop in reward than the matcher, but
in a response-feedback design they will not have been told which location they should now favor. Future work employing a response-
feedback design may find that the willingness of the probability matcher to sample from the minority locations works to their benefit
when detecting a shift in the probabilities.

Although we find evidence for faster recovery after the switch for adult maximizers than for adult probability matchers (a
maximization benefit), this was a more mixed result in the children. Although the children who maximized did have a higher rate of
choice of the new majority location in the first 5 trial window, they did not have a higher slope than the matchers. Unlike the adults
where the choice behavior for the two groups clearly diverged, for children this initial benefit quickly disappeared (see Fig. 9) One
possible explanation for this developmental difference is that to take full advantage of being a maximizer, even when feedback is
available on each trial when that guess is wrong, is something that preschoolers find very difficult. Denison et al. (2013) propose the
“Sampling Hypothesis” to account for this difficulty. They argue that the inconsistency demonstrated in child behavior on tasks
similar to those used here may result from the fact that children are sampling from a large set of possible hypotheses about the world.
Application of those hypotheses will depend on the likelihood of each. By this view, when children probability match (as 26% did in
our task) it could be due to them using a complex, rational approach to generating hypotheses (i.e., implicitly juggling many
competing hypotheses). It is possible that the higher rate of maximization seen in children (42% of our child participants) is based on
a developmental stage in which only a single hypothesis is implicitly available in a given task context. If this single hypothesis is more
entrenched in children than in adults, it may not have allowed them to have the maximization benefit seen in adults who remain open
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to competing hypotheses despite having a firm grasp of the fact that there is a stable majority location.

5. Conclusion

In summary, the present study demonstrated that adults and older preschool aged children are capable of responding to an
unannounced shift in outcome probabilities. For adults, this happened fastest when they were already employing a maximizing
strategy. In our daily lives, however, we may be faced with multiple such shifts. Current work is exploring whether adults and
children can track multiple changes. In particular, we might ask both whether adults and those older children who were able to
switch would be able to retain that first distribution and swiftly return to it at a later time and whether the evidence of such shifts
alters their behavioral strategies.
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