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Abstract
For synesthetes, sensory or cognitive stimuli induce the perception of an additional sensory or cog-
nitive stimulus. Grapheme–color synesthetes, for instance, consciously and consistently experience
particular colors (e.g., fluorescent pink) when perceiving letters (e.g., u). As a phenomenon involving
multiple stimuli within or across modalities, researchers have posited that synesthetes may inte-
grate sensory cues differently than non-synesthetes. However, findings to date present mixed results
concerning this hypothesis, with researchers reporting enhanced, depressed, or normal sensory inte-
gration for synesthetes. In this study we quantitatively evaluated the multisensory integration process
of synesthetes and non-synesthetes using Bayesian principles, rather than employing multisensory
illusions, to make inferences about the sensory integration process. In two studies we investigated
synesthetes’ sensory integration by comparing human behavior to that of an ideal observer. We found
that synesthetes integrated cues for both continuous and categorical dimensions in a statistically op-
timal manner, matching the sensory integration behavior of controls. These findings suggest that
synesthetes and controls utilize similar cue integration mechanisms, despite differences in how they
perceive unimodal stimuli.
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1. Introduction

For synesthetes, one sensory or cognitive stimulus causes the perception of an-
other sensory or cognitive stimulus that is not physically present. For instance,
a grapheme–color synesthete may automatically and consistently see the color
lilac when viewing the number 4. This phenomenon occurs in approximately
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4% of the population and manifests itself in up to 61 different varieties (Day
2005, 2009). Although synesthesia has been documented for over a century
(e.g., Calkins, 1893; Claparede, 1903; Jewanski et al., 2009), its underlying
cause remains largely unknown. Neurological theories hypothesize that synes-
thesia arises due to additional or disinhibited neural connections (e.g., Bargary
and Mitchell, 2008; Grossenbacher and Lovelace, 2001; Hubbard et al., 2011;
Ramachandran and Hubbard, 2001), but the specificity and nature of these
connections is debated. That is, some researchers believe that the neural con-
nections giving rise to synesthesia are qualitatively different from cross-modal
mechanisms present in the general population. An alternative view is that
synesthesia is an exaggerated form of normal cross-modal processing, with
synesthetic associations being one manifestation of more widespread differ-
ences in brain connectivity and function. In the current study, we quantitatively
examine synesthetes’ audio-visual integration abilities to determine if synes-
thetes have a general exaggeration of multisensory processing abilities.

Across various neuroimaging and behavioral studies, there is some evidence
that synesthetes have widespread multisensory processing differences unre-
lated to their particular form of synesthesia. In the neuroimaging literature,
multiple studies have demonstrated that structural and functional connectivity
differs between synesthetes and non-synesthetes. Interestingly, these differ-
ences emerge not only in regions of the brain directly related to synesthetic
experiences (e.g., V4 for induced color associations) but also extend to pari-
etal regions of the brain generally associated with multisensory processing or
binding (e.g., Hänggi et al., 2011; Jäncke et al., 2009; O’Hanlon et al., 2013;
Rouw and Scholte, 2007, 2010; Tomson et al., 2013; Weiss and Fink, 2009;
see Hupé and Dojat, 2015 or Rouw et al., 2011 for a review). These neu-
roimaging results suggest that synesthetes’ hallmark associations may be the
behavioral manifestation of widespread neural differences, including gener-
ally altered multisensory processing.

Behavioral studies that have investigated synesthetes’ multisensory inte-
gration have produced conflicting findings. The majority of these behavioral
studies have examined synesthetes’ susceptibility to multisensory illusions in
order to draw conclusions regarding the mechanism underlying multisensory
integration. The most commonly studied is the Double Flash Illusion (Shams
et al., 2000). This illusion occurs when a single visual flash paired with two
auditory beeps gives rise to the perception of two visual flashes. Parameters of
multisensory integration are inferred by examining susceptibility to the illu-
sion across various temporal delays between the two auditory beeps. Several
studies have tested synesthetes on this illusion and have found inconsistent
results. Grapheme–color synesthetes have been reported to have greater sus-
ceptibility (Brang et al., 2012), reduced susceptibility (Neufeld et al., 2012),
or no difference in susceptibility to this illusion (Whittingham et al., 2014)
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compared to non-synesthetes. Unfortunately, these studies differ along mul-
tiple dimensions (e.g., mean age of synesthetes, alignment of first beep and
visual flash, additional types of synesthesia experienced) making it difficult to
determine the reason for the conflicting findings.

The McGurk illusion has also been used to investigate multisensory inte-
gration in synesthetes. This illusion arises when the visual cue (e.g., video of
a mouth producing /ga/) and auditory cue (e.g., audio of /ba/) to a phoneme
utterance conflict with one another and give rise to an intermediate percept
(e.g., /da/). Sinke et al. (2012) found that synesthetes were less susceptible to
this illusion, providing evidence against the hypothesis that synesthetes have
increased sensory integration in general. The authors additionally tested par-
ticipants’ ability to identify auditory words in noise with or without the added
visual cue of matching articulatory movements. They found that synesthetes
benefited less than non-synesthetes from this additional visual cue, and inter-
preted this as evidence that synesthetes have decreased rather than increased
multisensory integration. However, since this study did not evaluate perfor-
mance on this task with a visual only condition, their conclusion is subject
to an alternative explanation. The observed multisensory benefit of controls
could reflect a similar integration process for each group if synesthetes per-
form worse on a visual-only version of this task. That is, the larger difference
between the audiovisual and audio-only conditions for controls could be due to
superior performance with visual information alone compared to synesthetes.
If synesthetes did perform worse than controls in a visual-only condition, the
difference between audiovisual and audio-only conditions would be smaller
than for controls if both groups used the same integration mechanism. There-
fore, any conclusions drawn regarding cue integration without data from a
visual-only condition are premature. Overall, the results from the existing lit-
erature on synesthetes’ susceptibility to multisensory illusions do not provide
convincing evidence for a generally heightened multisensory ability.

Examining multisensory integration with the previously described illusions
allows one to evaluate the outcome of integration. That is, the dependent
measure assesses whether or not integration occurred (e.g., Körding et al.,
2007). Taking a slightly different approach and examining the benefit of in-
tegration, Brang and colleagues (2012) tested grapheme–color synesthetes’
and non-synesthetes’ reaction time for detecting audio, visual, and audio-
visual stimuli. In this paradigm, true multisensory integration predicts that
reaction times (RTs) to audiovisual stimuli will be faster than RTs to either
unimodal stimulus alone and will exceed the statistical prediction of summing
the two targets (i.e., the Race Model; e.g., Hershenson, 1962; Miller, 1982;
Laurienti et al., 2006). Results demonstrated that both synesthetes and con-
trols had faster reaction times than predicted by the Race Model, reflecting
sensory integration. This difference between the Race Model predictions and
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participants’ observed audiovisual RTs was only marginally greater for synes-
thetes than non-synesthetes, suggesting that synesthetes may have benefitted
more from the multisensory stimulus than non-synesthetes. The results of this
study, which quantitatively investigated the outcome of multisensory integra-
tion in a ‘natural’ environment (as opposed to within an illusion), lend weak
support for the hypothesis that synesthetes’ general multisensory capabilities
may be different from those of non-synesthetes. Taken as a whole, the litera-
ture examining multisensory integration in synesthesia provides inconsistent
evidence regarding the outcome of integration.

Here, rather than making inferences about the multisensory mechanism
from the outcome of such integration, we sought to examine the process of
integration itself. In two studies, we evaluate how synesthetes integrate multi-
ple cues. Specifically, we investigate synesthetes’ audiovisual integration from
the perspective of Bayesian cue integration to determine whether or not synes-
thetes combine cues in a statistically efficient manner, as has been observed
previously with non-synesthetes. In Experiment 1, we assess audiovisual in-
tegration with a spatial localization task, which relies on the continuous di-
mension of azimuth. Experiment 2 examines newly learned categories that
are defined by two continuous dimensions (auditory frequency and visual nu-
merosity). Evidence from both studies demonstrates that like non-synesthetes,
synesthetes integrate audiovisual cues in a manner indistinguishable from
the behavior of an ideal observer, suggesting that both synesthetes and non-
synesthetes integrate cues in a statistically-optimal manner.

2. Experiment 1: Audiovisual Localization

In Experiment 1, we use a spatial localization task (which relies on the contin-
uous dimension of azimuth) to investigate synesthetes’ audiovisual integration
from the perspective of Bayesian cue integration. Studies evaluating cue com-
bination across such continuous dimensions have demonstrated that humans
(presumably about 96% non-synesthetes) integrate multiple sources of infor-
mation efficiently, following the statistically optimal strategy of weighting
sensory cues based on their variability (e.g., Ernst and Banks, 2002; Hillis
et al., 2002; Jacobs and Fiune, 1999; Knill and Saunders, 2003; Körding and
Wolpert, 2004; Körding et al., 2007; Michel and Jacobs, 2008; Van Beers et
al., 1999). When locating a chirping bird, for example, this statistically effi-
cient approach predicts that humans should weight visual cues to the location
of the bird more heavily than auditory cues because the human visual system
more reliably encodes spatial location in comparison to the auditory system.
Moreover, if this task is performed at night when visual information is de-
graded, we should expect a greater reliance on auditory cues.
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Formally, we can represent the information provided by an individual sen-
sory signal A about a stimulus S in the world as a likelihood function, p(A|S).
The value of S that maximizes this likelihood function can be thought of as
the estimate of S suggested by A, ŜA. Given two sensory stimuli A and B that
are conditionally independent (e.g., the sensory uncertainty associated with
each modality is independent), the information provided by the combination
of both the cues can be written as p(A,B|S) = p(A|S)p(B|S). With the as-
sumption that the individual cue likelihood functions are Gaussian, the peak of
the combined likelihood function can be written as a weighted average of the
peaks of the individual likelihood functions. Formally, the combined estimate
of the stimulus is a weighted linear combination of the estimates suggested by
the two sensory signals:

Ŝ = wAŜA + wBŜB (1)

where
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1
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These equations [(1)–(3)] describe the behavior of an ideal observer when
combining two cues lying along continuous dimensions for a given sensory
stimulus, such as spatial location or size, because this approach minimizes the
variance of the resulting estimate (Ernst and Banks, 2002). In Experiment 1,
we ask whether synesthetes’ integration behavior conforms to these Bayesian
ideal-observer principles using a spatial localization task.

2.1. Methods

2.1.1. Participants
Eleven linguistic–color synesthetes experiencing colors for letters, numbers,
days of the week, and/or months of the year were recruited from our exist-
ing database of Rochester area synesthetes. Additionally, ten non-synesthetes
were recruited from the Rochester area. All participants had normal or
corrected-to-normal vision, no known hearing problems, were fluent in En-
glish, and were compensated $10/h for their participation. One synesthete was
excluded from analyses because she failed to maintain focus on the fixation
cross (self-reported that she could not perform the task with the stimuli in
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her periphery, so she did not try). In addition, one synesthete and one non-
synesthete were excluded from analyses due to poor performance on the de-
tection task (see Procedure). Nine synesthetes (mean age = 24.3, SD = 8.6,
two males) and nine non-synesthetes (mean age = 22.2, SD = 4.7, four males)
were included in our analyses. Ethical approval was obtained from the Univer-
sity of Rochester Research Subjects Review Board.

All recruited synesthetes’ self-reported experiences were previously con-
firmed with an objective test of genuineness — consistency over time —
presented via the diagnostic website synesthete.org (see Eagleman et al., 2007
for methods). This test identifies synesthetes based on replicated findings
that synesthetes are significantly more consistent when repeatedly choosing
synesthetic colors for the stimuli eliciting them (e.g., letters) compared to
non-synesthetes. Our synesthetes experienced colors in response to graphemes
(n = 7), days of the week (n = 2), and/or months of the year (n = 1) as con-
firmed by mean standardized scores of 0.55 (SD = 0.19), 0.65 (SD = 0.49),
and 0.38 (SD = 0), respectively, where a score below 1.0 confirms synesthesia
(see Eagleman et al., 2007 for details). Seven synesthetes experienced col-
ors for graphemes only; one had synesthetic colors for days of the week and
months of the year; and one experienced colors for only days of the week.
Non-synesthetes completed a synesthesia questionnaire (see synesthete.org)
on paper, indicated no synesthetic experiences, and were further verbally ques-
tioned to ensure a complete lack of such experiences.

2.1.2. Stimuli
The visual stimulus was a 20° × 4° rectangle with a Gaussian luminance pro-
file along the x-axis as seen in Fig. 1(b). We created two additional ‘noise’
levels of this visual stimulus by decreasing the brightness to 50% and 20% of
the maximum luminance, thereby reducing the peak-trough difference (con-
trast) in the Gaussian luminance profile. The auditory stimulus was a 400 ms
long recording of popcorn kernels being shaken at 5 Hz in a pill bottle. This
auditory stimulus is ideal for localization as it represents a wide range of fre-
quencies and has several onsets and offsets (Muir et al., 1989). To mimic the
temporal dynamics of the auditory stimulus and encourage integration, we
added flicker to the presentation of the visual stimulus. The visual stimulus
appeared for two frames (approximately 32 ms), then disappeared for two
frames, and repeated this pattern for the duration of the auditory stimulus.

2.1.3. Procedure
Participants were tested individually in a dark, quiet room over a span of two
sessions on consecutive days, with each session lasting approximately 75 min.
After adapting to the dark for approximately six minutes, participants were
instructed that they were serving as a nighttime boat lookout in a world where
giant insects and sharks were the main dangers. Participants’ main task was

http://synesthete.org
http://synesthete.org
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Figure 1. Experiment setup. (a) Schematic depiction of apparatus. Viewing the setup from
above, the black curved line represents the screen onto which visual stimuli were projected.
The gray semi-circle indicates the custom-built table upon which seven speakers sat (see text
for details). The smiley face indicates a participant sitting at the center of the setup and facing
±45°. (b) Visual stimuli, showing the three noise levels used in the experiment. (c) Example of
a visual only trial. Note that the visual stimuli flickered, which is not depicted in this figure.

to indicate the direction that the giant insects (audio, visual, or audiovisual
stimuli) were moving. Additionally, participants had a filler task of detecting
‘sharks’ (denoted with the caret symbol: ˆ). Participants completed ten practice
trials with feedback and with the experimenter present in the room to ensure
that the task was understood before beginning the experimental trials.

Participants sat seven feet in front of a 180° curved projection screen as
depicted in Fig. 1(a). Seven speakers located at 0°, ±4°, ±8°, and ±12°
were placed on a custom-built curved, foam-lined table directly in front of
the projection screen. This entire table was cloaked in black fabric to prevent
participants from seeing the location of the speakers. Participants faced and
focused on a fixation cross located at ±45° (the front of the boat), counterbal-
anced between participants. Accordingly, all auditory and visual stimuli for
localization (i.e., the giant insects) occurred in the periphery.

On each trial participants were presented with two sequential stimuli
(Fig. 1(c)). The task was to indicate whether the stimulus was moving to the
left or to the right using the left and right shoulder buttons of a gaming con-
troller, respectively. Auditory only, visual only, and audiovisual (aligned or
misaligned) trials were randomly intermixed and presented in blocks of 100
with mandatory one-minute breaks in between blocks. Trials presented a ‘stan-
dard’ stimulus at 0° and a ‘probe’ stimulus at 0°, ±4°, ±8°, or ±12°, yielding
seven different positions for the unimodal trial conditions. Unimodal trials
were presented to ascertain the reliability of individual participants’ auditory
and visual performance. Audiovisual trials were presented to determine how
participants integrated audio and visual cues to azimuthal location. Crucially,
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Figure 2. Audiovisual trials. Axes indicate the location of the probe with respect to the standard
audiovisual stimulus (which was always aligned and presented at 0°). Dark grey = aligned, light
grey = misaligned. Twenty-five repetitions of each stimulus were presented.

a subset of the audiovisual trials slightly misaligned the audio and visual cues.
Introducing such discrepancies (i.e., cue conflicts) is crucial for quantitatively
measuring cue weights during the integration process. Figure 2 displays the 17
audiovisual trial positions, which were either aligned (audio and visual stimuli
presented at the same location, dark grey grid locations) or misaligned (audio
and visual stimuli for the probe separated by ±8°, light grey grid locations).
Presentation order of the standard and probe was counterbalanced across trials
within participants. For audiovisual and visual only trials, the noise level (1–3)
that varied the reliability of the visual cue was also randomized. Each individ-
ual trial type was presented 25 times, yielding a total of 1975 trials across two
sessions. In addition to the localization task, participants completed an em-
bedded detection task at the fixation location. On approximately 5% of trials,
the fixation cross briefly changed to a caret (ˆ) and participants pressed a but-
ton with their right thumb to indicate this occurrence. We used performance
on this task as a measure of attention and motivation (excluding participants
whose detection rates were below 85%).

2.2. Results

In Experiment 1, synesthetes performed a spatial localization task when pre-
sented audio only, visual only, and audiovisual stimuli. Crucially, a subset of
the audiovisual stimuli presented slightly conflicting cues regarding the lo-
cation of the stimulus, which allowed us to estimate the auditory and visual
weights used during the cue combination process (i.e., the extent to which
they relied on auditory and visual information, respectively). We also manip-
ulated the signal to noise ratio in the visual signal in order to test whether
decreasing visual signal reliability leads synesthetes to decrease their visual
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weights, as predicted by the statistically optimal use of the two sources of
sensory information.

Before comparing synesthetes’ and non-synesthetes’ cue integration behav-
ior to a statistically optimal model, we fit psychometric functions to charac-
terize their behavior in our task (see Appendix for fitting procedure details).
First, we estimated unimodal sensory variances (audio and visual) for each
participant by fitting psychometric curves to their localization performance in
each of the four unimodal conditions (three noise levels of visual only and
one noise level of auditory only). Calculating sensory variance for multiple
noise levels of visual only stimuli while keeping the auditory only noise level
constant allows us to test the prediction that participants should weight visual
sensory information as a function of visual sensory variance relative to audi-
tory sensory variance, when combining the two sources of information. Fitting
participants’ unimodal labeling data with cumulative Gaussian distributions
(Fig. 3) yielded the point of subject equality (PSE) and variance (slope) as-
sociated with the participants’ representation of each unimodal cue condition.
Next, we fit synesthetes’ localization data during each of the three audiovisual
conditions (noise 1–3) with psychometric curves and simultaneously ascer-
tained the weights that participants actually assigned to each modality (Fig. 4).

After calculating participants’ visual weights during our cue combination
task, we examined the extent to which their behavior conformed to an ideal
observer using all sensory information available (predictions generated by
equations (1)–(3); see Fig. 4). If synesthetes used both auditory and visual
information efficiently, their visual weights should align with the predictions
of the ideal observer. To determine whether synesthetes utilized sensory in-
formation efficiently in our audiovisual localization task, we conducted a
mixed-effects linear regression predicting visual weight from weight type (ob-
served, predicted), noise level (1–3), and full random effects (i.e., intercepts
and slopes by participant). In line with the predictions of the ideal observer,
synesthetes’ visual weights decreased as visual noise increased; β = −0.09,
SE = 0.01, p < 0.001. Moreover, the rate at which synesthetes’ weights
changed as a function of noise was indistinguishable from that predicted by
the ideal observer; β = 0.02, SE = 0.03, ns. These results suggest that synes-
thetes integrate audio and visual cues to azimuthal location efficiently — that
is, consistent with statistically optimal behavior. To our knowledge, these find-
ings are the first quantitative investigation of cue weighting in synesthetes and
demonstrate synesthetes’ statistically efficient use of auditory and visual in-
formation during azimuthal localization.

Lastly, we evaluated controls’ cue integration behavior and compared it to
that of synesthetes. To determine whether controls (as has been shown pre-
viously in the literature) also utilized sensory information efficiently in our
audiovisual localization task, we conducted a mixed-effects linear regression
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Figure 3. Cumulative Gaussian fits of unimodal trials for a representative synesthete. The top
left panel plots all four unimodal cumulative Gaussian fits with the PSE equalized for descriptive
purposes, to allow for easier slope comparison. The remaining panels plot cumulative Gaussian
fits along with data for each unimodal condition separately. The standard is always presented
at 0°.

predicting visual weight from weight type (observed, predicted), noise level
(1–3), and full random effects (i.e., intercepts and slopes by participant).
Matching the findings for synesthetes, this analysis revealed that controls’
visual weights decreased as visual noise increased; β = −0.15, SE = 0.03,
p < 0.001. Additionally, the rate at which controls’ weights changed as a
function of noise was indistinguishable from that predicted by the statistically
optimal ideal observer; β = 0.07, SE = 0.04, ns. These findings further sup-
port the extensive literature demonstrating that a random sample of humans



K. R. Bankieris et al. / Multisensory Research 30 (2017) 207–234 217

Figure 4. Observed and predicted visual weights for audiovisual trials. Note that neither synes-
thetes’ nor controls’ observed visual weights differ from the predicted visual weights. Error bars
are standard error.

(presumably 96% non-synesthetes) combine cues in proportion to their relia-
bility.

Finally, we conducted a mixed-effects linear regression including both
synesthetes’ and controls’ observed weights to investigate group differences.
This analysis revealed a significant group by noise interaction, with synes-
thetes’ visual weights decreasing more slowly than controls’ weights as a
function of noise; β = 0.06, SE = 0.03, p < 0.05. It is important to note
that this interaction does not bear on each group’s performance with regard
to statistically optimal performance, given their own actual visual and audi-
tory weights. However, this interaction does imply that synesthetes are less
affected by visual noise than controls. Our speculation about this finding is
that synesthetes may more effectively build an internal model of the noise in
the stimuli, thereby overcoming to a greater extent than controls the influence
of this noise on the estimate of the signal (i.e., the actual location of the com-
bined auditory-visual location).

2.3. Discussion

With an audiovisual localization task, we quantitatively investigated synes-
thetes’ cue integration behavior. We used individual participants’ unimodal
performance during our task to generate predictions from a model that effi-
ciently uses all sensory information available. Comparing synesthetes’ actual
cue weights to those predicted by the ideal observer, we found that synesthetes
weighted cues in a manner consistent with statistically optimal integration.
Specifically, synesthetes’ visual weights decreased as a function of increasing
visual noise at a rate that was indistinguishable from the model’s predictions.
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In line with the large body of existing research examining cue integration in
the general population, we found that our non-synesthetes predictably inte-
grated audiovisual cues in the same manner. Therefore, our results suggest
that synesthetes rely on computational strategies for cue integration that are
similar to those of non-synesthetes.

Additionally, this experiment highlights the importance of considering uni-
modal performance when investigating bimodal integration. That is, compar-
ing synesthetes’ and controls’ bimodal performance in this experiment alone
may lead one to conclude that synesthetes and controls integrate cues in differ-
ent manners given the group differences in visual weight across noise levels.
However, comparing each group’s bimodal performance to a model that in-
corporates their unimodal data reveals that both groups integrate audiovisual
cues in our task in accordance with the predictions of a statistically optimal
observer. Accordingly, our results demonstrate that it is necessary to consider
synesthetes’ and controls’ sensitivity to individual cues when investigating po-
tential group differences during cue combination.

3. Experiment 2: Audiovisual Categorization

Experiment 1 investigated synesthetes’ integration of audio and visual sensory
cues to a continuous variable — spatial location. However, much of our world
is hierarchically structured from sensory input into categorical representa-
tions, and ultimately to abstract semantic dimensions (Ahissar and Hochstein,
2004). Thus, sensory cues are not the only source of information relevant for
cue combination. Deciding whether a beverage is coffee or tea, for example,
may require integrating color, smell, and taste values of the beverage along
with knowledge of the categories ‘coffee’ and ‘tea’. Changing the relation-
ship between these categories (e.g., discriminating apple juice and coffee) or
the variance of each category (e.g., discriminating English breakfast tea from
Starbucks’ dark roast) should influence the weights assigned to each sensory
cue.

Previous studies have theorized about, and investigated, how humans in-
tegrate information in this more complex scenario, arguing that the precise
distributional properties of task-relevant categories should be utilized during
cue combination (e.g., Bejjanki et al., 2011; Feldman et al., 2009). That is,
the mean and variance (assuming Gaussian distributions) of the task-relevant
categories, in addition to sensory information, should influence how cues are
combined. This complex cue integration problem across categorical dimen-
sions could, in principle, be solved by extension of the continuous linear cue
integration model used in Experiment 1.

Formally, when categorizing a multisensory stimulus, an ideal learner con-
structs a discriminant vector linearly connecting the means of each category,
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Figure 5. Cue combination involving categorization. A depiction of the categorization problem
where each category is defined by two cues. The x and y axes represent the strength of each
sensory cue. The circles labeled A and B represent the mean and covariance of each cue for cat-
egories A and B for a given participant. The grey diagonal line represents the linear discriminant
vector D that an optimal categorizer projects the received bi-cue signal onto (see text).

and projects the stimulus onto this vector (Bejjanki et al., 2011; see Fig. 5).
This projection of the stimulus onto the discriminant vector is the decision
variable D, which determines the categorization of the stimulus based on some
criterion:

D = wAŜA + wBŜB (4)

where the estimates generated from the two cues are represented by ŜA and
ŜB. The weights for each cue are then given by:

wA =
�μA

σ 2
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A,cat
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σ 2
A,sense+σ 2
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and

wB =
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(5)

where σ 2
A,sense and σ 2

B,sense are sensory uncertainty variances for the two sig-

nals and σ 2
A,cat and σ 2

B,cat represent the variability in the distribution of the
sensory signals occurring in the categories. Lastly, �μA and �μB represent
the difference between category means along each cue dimension. The formal-
ization of cue combination in categorization thus posits that an ideal observer
should incorporate not only sensory information, but also the precise distribu-
tional properties of the task relevant categories when combining the cues.

Previous research has investigated the extent to which human performance
is qualitatively consistent with the predictions of this ideal model, using real
world categories such as phonemes (e.g., Bejjanki et al., 2011; Clayards et al.,
2008; Feldman et al., 2009) and we recently developed a paradigm for quanti-
tatively investigating humans’ ability to optimally integrate cues and category
information by teaching participants novel audiovisual categories (Bankieris
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et al., subm.). Our findings demonstrated that non-synesthetes’ behavior is
quantitatively indistinguishable from a statistically optimal model that inte-
grates both sensory and categorical information. In the present experiment,
we use the same paradigm to test whether synesthetes’ cue integration also
adheres to these statistically optimal principles.

3.1. Methods

3.1.1. Participants
Eight linguistic–color synesthetes served as participants (six of whom partic-
ipated in Experiment 1). They had no known hearing problems and normal
or corrected-to-normal vision, were recruited from our existing database of
Rochester area synesthetes, and were compensated $10/h for their participa-
tion. To compare synesthetes’ performance to that of non-synesthetes, we also
report data from 15 non-synesthetes who previously participated in this ex-
periment (Bankieris et al., subm.). One additional non-synesthete participated
and was excluded from group analyses because his performance for unimodal
auditory trials at noise level 4 was indistinguishable from chance across all
auditory steps and thus could not be fit with a psychometric function. Ethical
approval was obtained from the University of Rochester Research Subjects
Review Board.

We confirmed our synesthetes’ self-reported experiences using the same
on-line test as that used in Experiment 1 (synesthete.org; see Eagleman et al.,
2007 for methods). Our linguistic–color synesthetes experienced colors in re-
sponse to letters and/or numbers (n = 5), days of the week (n = 4), and/or
months of the year (n = 3) as confirmed by mean standardized scores of 0.56
(SD = 0.23), 0.57 (SD = 0.20), and 0.45 (SD = 0.11), respectively, where a
score below one confirms synesthesia (see Eagleman et al., 2007 for details).
Four synesthetes experienced color for graphemes only, one synesthete expe-
rienced colors for days of the week only, one experienced colors for days of
the week only, and three experienced colors for graphemes, days of the week,
and months of the year.

3.1.2. Stimuli
We created novel categories defined by two cues: number of dots and audi-
tory pitch (see Fig. 6; Bankieris et al., subm.). The number of dots spanned
from 11 to 47 in 15 perceptually linear steps. These steps fall along a math-
ematically logarithmic scale which creates linear steps in perceptual space
because number is perceived according to Weber’s law. As seen in Fig. 7,
black dots were positioned pseudorandomly within a predefined square area
to create a specific level of numerosity with no dot overlap. Pitch stimuli
were pure tones with frequencies ranging from 264 to 502 Hz in 15 per-
ceptually linear steps. We created three additional noise levels of auditory

http://synesthete.org
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Figure 6. Training and test stimuli. Black circles represent the occurrence of exemplars of the
two-cue stimuli during training. The elliptical clusters of black circles represent the Gaussian
distributions of the two task-relevant categories. The size of each circle represents the number
of exemplars of each stimulus that were presented during one learning block. Grey squares
represent testing stimuli (bimodal in center, unimodal along the x- and y-axes). Twenty-five
repetitions of each testing stimulus were presented. Category labels (taygoo and dohkah) and
locations (as above or rotated 90°) were counterbalanced across participants.

stimuli by adding pink noise (a signal in which power is inversely propor-
tional to the frequency of the signal: 1/f ) to the pure tones. Noise level 1
stimuli were 100% pure tones with 0% pink noise added; noise levels 2–
4 were composed of pure tones with 83.3%, 93.8%, and 96.8% pink noise
added, respectively, and normalized for overall acoustic energy (available at
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
2VGOOY). Novel categories were defined as two-dimensional Gaussian dis-
tributions in the auditory-visual space of the two cues (with the frequency of
occurrence of each stimulus rounded to integers). Importantly, these categories
cannot be separated using only one of the cues. That is, no horizontal or ver-
tical line drawn in Fig. 6 will perfectly separate these two categories, which
necessitates the use of both cues for successful categorization. Half of the
participants learned the categories depicted in Fig. 6 (small number and low
pitch, large number and high pitch) and the other half learned these categories
rotated 90° (small number and high pitch, large number and low pitch).

3.1.3. Procedure
Participants were tested individually in a quiet room over a span of four ses-
sions on consecutive days, with each session lasting approximately one hour.
On the first day, participants were told that scientists had just discovered two
new species and their task was twofold: (1) to become an expert at classifying

https://dataverse.harvard.edu/dataset.xhtml%3FpersistentId%3Ddoi:10.7910/DVN/2VGOOY
https://dataverse.harvard.edu/dataset.xhtml%3FpersistentId%3Ddoi:10.7910/DVN/2VGOOY
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Figure 7. Trial structure. Training: example of audiovisual training trials with feedback. Testing:
example of visual only, audio only, and audiovisual testing trials without feedback.

exemplars and (2) to help the scientists categorize unclassified exemplars. We
informed participants that the two species, labeled with the nonsense words
taygoo and dohkah, could be discriminated using both the pitch of their calls
(i.e., pitch frequency) and the number of droppings they produce (i.e., number
of dots).

3.1.4. Training
Each of the four sessions began with a training phase composed of a variable
number of blocks, depending on each participant’s learning rate. Each train-
ing block presented the full distribution of audiovisual category stimuli (103
of taygoo and 103 of dohkah) to ensure that all participants experienced the
same category statistics. Participants completed as many blocks as necessary
to reach 90% classification accuracy, with a limit set at four training blocks.
As seen in Fig. 7, each trial within a training phase block presented an audiovi-
sual stimulus for 500 ms drawn without replacement from the two-dimensional
Gaussian category distributions (see Fig. 6). Two buttons labeled ‘taygoo’ and
‘dohkah’ then appeared on the touch screen and participants touched a but-
ton to submit their classification response. Feedback indicating whether their
choice was correct or incorrect was displayed on the screen for 1000 ms before
the next trial began. Category and button labels were counterbalanced across
participants.
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3.1.5. Testing
After 90% classification accuracy was reached, participants progressed to the
test phase, where audio only, visual only, and audiovisual trials were presented
(Fig. 7). Eight blocks of approximately 130 testing trials were completed dur-
ing each session — six blocks presenting audiovisual stimuli and two blocks
presenting audio only and visual only trials intermixed. The order of these
blocks (unimodal or bimodal first) was counterbalanced within participant
across day. Each test trial displayed a visual stimulus (or a speaker icon in
the case of audio only trials) for 500 ms while an auditory stimulus of equal
length was played for audiovisual and audio only trials. As in the practice
trials, participants then selected their answer by touching one of two buttons
but did not receive feedback. A blank screen was presented for 500 ms before
the next trial began. We concentrated our unimodal auditory test items on the
seven steps in the middle of the auditory frequency range (steps 5–11), from
the mean of one category to the mean of the other category. Since the purpose
of these unimodal trials was to ascertain a full psychometric function for each
cue individually and the difference between category means on the numerosity
cue is only two steps, we included all 15 numerosity steps in the visual only
trials. The audiovisual trials consisted of 31 unique combinations of audio
and visual cues (central gray squares in Fig. 6), designed to introduce slight
discrepancies between individual cues. For most audiovisual stimuli, there-
fore, the likelihood that the visual component was a ‘taygoo’ was not equal to
the likelihood that the auditory component was a ‘taygoo.’ Introducing such
discrepancies (i.e., cue conflicts) is crucial for quantitatively measuring cue
weights during the integration process. Auditory stimuli in audiovisual trials
and audio only trials were presented in four different noise levels randomly
interleaved throughout the test phase. We presented 25 repetitions of each of
these test stimuli, yielding a total of 4175 test trials across four sessions.

3.2. Results

As in Experiment 1, we fit psychometric functions to characterize participant
behavior before comparing synesthetes’ bimodal behavior to the categorical
model. First, we estimated unimodal sensory variances (audio and visual) for
each synesthete by fitting psychometric curves to their categorization perfor-
mance in each of the five unimodal conditions (four noise levels of auditory
only and one noise level of visual only). Fitting participants’ unimodal label-
ing data with cumulative Gaussian distributions yielded the point of subject
equality (PSE) and variance (slope) associated with participants’ represen-
tation of the sensory information available in each unimodal cue condition
(Fig. 8). Next, we fit synesthetes’ labeling data during each of the four audio-
visual conditions (noise 1–4) with psychometric curves and simultaneously
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Figure 8. Cumulative Gaussian fits of unimodal trials for a representative synesthete. The top
left panel plots all five unimodal cumulative Gaussian fits with the PSE equalized for descriptive
purposes, to allow for easier slope comparison. The remaining panels plot cumulative Gaussian
fits along with data for each unimodal condition separately.

ascertained the weights that participants actually assigned to each modality
(Fig. 9).

After calculating synesthetes’ auditory weights during the audiovisual cat-
egorization task, we examined the extent to which their behavior conformed
to an ideal observer using both sensory and category information (see Fig. 9;
predictions generated by equations (4) and (5) and the inclusion of a stan-
dard correction for within category cue correlation; Oruç et al., 2003). As a
comparison, we also generated predictions from the continuous model (with
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Figure 9. Observed auditory weights for audiovisual trials alongside predictions from the cat-
egorical model and the continuous model. Note that synesthetes’ and controls’ actual auditory
weights differ from the continuous model’s predictions but are indiscriminable from the cat-
egorical model’s predictions. Error bars are standard error. Lines are linear fits generated for
visualization purposes only.

the correlation correction included) which considers only sensory information
(equations (1)–(3)). If synesthetes are using only sensory information, audi-
tory weights should decrease as sensory uncertainty is added to the auditory
cue (as we found in Experiment 1). However, if synesthetes are using category
information in addition to sensory information during their judgments, then
we should see two patterns in their data:

(1) Auditory weights should be higher than those predicted by the continu-
ous model.

(2) The amount by which auditory weights decrease as a function of audi-
tory noise should be less than predicted by the continuous model.

3.2.1. Prediction 1: Higher Auditory Weights Compared to Continuous
Model
If synesthetes were appropriately considering category information while per-
forming this cue integration task, their auditory weights should align with the
predictions of the categorical model, which are higher than those of the con-
tinuous model. While the continuous model uses only sensory information to
determine auditory weights, our participants (and the ideal categorical model)
have access to the distributional information of the categories. The fact that
the category means in this task have a greater distance between them along
the auditory frequency dimension makes frequency more informative than
numerosity at the category level. Likewise, there is less frequency variance
within a category compared to numerosity variance within a category, again
making auditory frequency information more reliable at the category level. To
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examine whether participants used this category information, we fit a mixed-
effect linear regression predicting auditory weights from weight type (actual,
category model predictions, continuous model predictions) and noise (1–4)
with a full random effects structure (i.e., random intercepts and weight type
by noise slopes per participant). With participants’ observed weights as the
reference level (i.e., coded as 0), the beta coefficients for the two other levels
of weight type (category model predictions, continuous model predictions) in-
dicate whether or not the participants’ weights differ from each of these model
predictions. Our analysis found that synesthetes’ actual auditory weights were
significantly higher than the continuous model’s predictions (β = −0.19,
SE = 0.08, p < 0.05) but did not differ from the category model’s predic-
tions; β = −0.01, SE = 0.04, ns. These results demonstrate that synesthetes’
auditory weights did not align with the predictions of a model using only sen-
sory information, and were quantitatively indiscriminable from the predictions
of a model that incorporates both category and sensory information during cue
combination. This finding supports the hypothesis that synesthetes are sensi-
tive to the distributions of categories during cue combination.

3.2.2. Prediction 2: Smaller Effect of Noise on Auditory Weights
The second prediction made by the category model of cue combination is that
auditory weights will decrease as a function of auditory noise, but by a smaller
amount than predicted by the continuous model. That is, the effect of noise on
auditory weights should be smaller if participants are using category infor-
mation in addition to sensory information. This prediction arises because in
addition to sensory information, the category model is utilizing information
regarding the category distributions, which does not change as a function of
noise. If synesthetes used category information in an ideal manner during our
task, their auditory weights should align with the predictions of the category
model and not the continuous model. Using the mixed-effects linear regression
described above, we investigated the amount by which synesthetes’ auditory
weights decreased as a function of noise. With synesthetes’ observed weights
as the reference level (i.e., coded as 0), the beta coefficients for the interac-
tion of noise (1–4) and the two other levels of weight type (category model
predictions, continuous model predictions) indicate whether or not the noise
effect for synesthetes’ weights differs from each of these models’ predictions.
This analysis revealed that synesthetes’ auditory weights decreased as a func-
tion of noise by a significantly smaller amount than the continuous model’s
predictions (β = −0.04, SE = 0.02, p < 0.05) but were indistinguishable
from the category model’s predictions; β = 0.00, SE = 0.01, ns. These results
demonstrate that the amount by which synesthetes down-weighted auditory in-
formation across noise levels (i.e., as reliability decreases) occurs exactly in
the manner predicted by the category model rather than the continuous model.
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Synesthetes did not use sensory variance as the sole factor influencing their
cue weights, but additionally integrated the information provided by category
structure into their cue weights. Taken together, our findings represent the
first set of evidence demonstrating that synesthetes qualitatively and quantita-
tively integrate both sensory and category information during cue combination
across categorical dimensions in a manner consistent with a statistically opti-
mal model.

3.2.3. Group Differences
Comparing the synesthetes to a set of 15 non-synesthetes who previously
participated in this same task (Bankieris et al., subm.), we found that both
synesthetes and non-synesthetes integrated sensory and category information
in a manner that is indistinguishable from a statistically optimal observer. To
quantitatively compare group behavior we conducted a mixed effects linear
regression, modelling observed weights from group (synesthete, control) and
noise level (1–4). Results from this analysis found no significant group dif-
ferences, suggesting that synesthetes and controls quantitatively combine cues
along a categorical dimension using the same computational principles. Sup-
porting our findings from Experiment 1, this cue combination task involving
categories demonstrates that synesthetes — like non-synesthetes — integrate
cues according to Bayesian principles.

3.3. Discussion

In Experiment 2, we examined the computational principles underlying synes-
thetes’ cue combination when categorical dimensions are involved. To do so,
we introduced novel multisensory categories to synesthetes and, after these
categories were learned, we quantitatively analyzed their cue integration be-
havior during a categorization task in which cue conflicts were present. Crit-
ically, an ideal observer model performing such a cue combination task over
categorical dimensions predicts that environmental variability of the categories
themselves (specifically separation of categories along each cue dimension
and category variance along each cue dimension) in addition to sensory vari-
ability should influence cue weighting. While it is very difficult to have knowl-
edge of a given participant’s category distributions for natural categories (i.e.,
speech phonemes), creating novel audiovisual categories allowed us to have
strict control over synesthetes’ exposure to these categories. Thus, we were
able to quantitatively compare synesthetes’ behavior to that of a statistically
optimal observer who utilizes both category and sensory information. Our
results demonstrate that synesthetes’ behavior, like that of non-synesthetes,
quantitatively matched a statistically optimal observer who ideally integrates
cues based on both sensory and category information.
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4. General Discussion

Using ideas from the cue integration literature, we sought to examine the com-
putational mechanisms underlying cue combination in synesthetes. Specifi-
cally, we investigated synesthetes’ audiovisual integration from the perspec-
tive of Bayesian cue integration to determine whether synesthetes rely on
the same computational principles as non-synesthetes for cue integration. In
Experiment 1, we assessed audiovisual integration with a spatial localization
task. Results indicated that synesthetes, like non-synesthetes, integrated audio
and visual sensory cues to location in a statistically optimal manner. Exper-
iment 2 added the additional layer of category to the integration problem,
examining audiovisual integration in the context of newly learned artificial
categories. Again, results demonstrated that synesthetes’ cue integration be-
havior mimicked that of non-synesthetes’, as it was indistinguishable from
an ideal observer model incorporating both sensory and category informa-
tion. To our knowledge, these findings represent the first quantitative evidence
demonstrating that synesthetes integrate audiovisual cues in a manner indis-
tinguishable from an ideal observer, thereby suggesting that synesthetes and
non-synesthetes use similar computational principles for cue integration. Our
findings also help to clarify the rather confusing literature on sensory integra-
tion in synesthetes, which has provided highly variable evidence (from inferior
integration to superior integration: Brang et al., 2012; Neufeld et al. 2012;
Whittingham et al., 2014).

As our studies were designed to reveal the computational principles of in-
tegration itself, our results do not answer questions regarding the conditions
under which integration occurs or the downstream effects of integration (e.g.,
changes in reaction time). However, given our findings that synesthetes inte-
grate cues according to the same computational principles as controls, studies
examining these additional questions can exclude differential cue integration
principles as a confounding factor. Importantly, our findings highlight the
necessity of considering group differences related to unimodal sensory pro-
cessing when comparing synesthetes’ and non-synesthetes’ performance on
cue integration tasks. Behavioral differences in group performance on audiovi-
sual illusions, for instance, might arise due to quantitatively different unimodal
perceptual abilities, which are then combined in an identical manner compared
to controls. That is, group differences in unimodal processing could lead to dif-
ferent patterns of susceptibility to multisensory illusions, but might actually re-
flect use of the same integration principles. By generating bimodal predictions
for each individual participant (based on their unimodal sensitivities), bimodal
performance across groups (e.g., synesthetes and non-synesthetes) can be ap-
propriately compared even if group unimodal differences exist. Accordingly,
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this work empirically demonstrates the importance of evaluating synesthetes’
performance on individual cues when investigating their cue integration.

We have presented evidence from two different experiments demonstrat-
ing statistically optimal audiovisual cue integration by synesthetes, but future
research is needed to confirm that this ideal integration process also holds for
other cues and modalities. As statistically optimal integration has been demon-
strated in a variety of tasks and sensory domains with the general population,
we expect that the same will be true for synesthetes. It might be particu-
larly interesting, however, to examine whether or not synesthetes integrate
their synesthetic experiences according to these same computational princi-
ples. A strength of our two experiments is that we presented auditory and
visual stimuli that did not induce synesthetic experiences (thus eliminating
the possibility that our findings are due to an additional synesthetic percept).
Future experiments could present synesthesia-inducing stimuli to determine
whether the reliability of a synesthetic percept itself influences the cue integra-
tion process. Such a design would examine whether synesthetic percepts are
governed by the same cue integration principles as nonsynesthetic percepts.
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Appendix

A.1. Experiment 1: Data Analysis

To analyze participants’ left/right responses, we fit psychometric curves to
participants’ localization performance for each of the seven stimulus condi-
tions (one noise level of auditory only trials, three noise levels of visual only
trials, and three noise levels of audiovisual trials) in a manner similar to the
approach used by Bejjanki et al. (2011). For each unique stimulus, the raw re-
sponse data were organized into arrays specifying the proportion of trials that
a participant responded ‘right’ (out of 25 repetitions). Realizing that individ-
ual participants’ data did not always span the entire range from 0.0 to 1.0, we
used modified cumulative Gaussian psychometric functions including lapse
rates to model their behavior more accurately (Wichmann and Hill, 2001).
This psychometric function modeled the probability of responding ‘right’ as
a mixture of an underlying Gaussian discrimination process and a random
guessing process. We coded participant responses as yi = 0 for a response of
‘left’ and yi = 1 for a response of ‘right’. We used the following psychometric
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model:

p(yi = 1 | xi) = γ + (1 − γ − λ)�(xi;μ,σ)

p(yi = 0 | xi) = 1 − p(yi = 1 | xi) (A.1)

where yi is the participant’s response when presented with stimulus xi

on trial i. μ and σ are the mean and standard deviation of the cumu-
lative Gaussian, respectively. For the current task, μ represents the Point
of Subjective equality (PSE) where the two presented locations for the
standard and the probe are the same, and σ represents the discrimina-
tion threshold. Lapse rate parameters are represented by γ and λ, where
γ is the base rate of responding ‘right’ when there is no evidence that
the second stimulus was presented to the right of the first, and λ is the
miss rate, i.e., the probability of responding incorrectly regardless of the
amount of information for rightward movement from the first to the sec-
ond stimulus. We constrained the lapse parameters to be between 0.0 and
0.25 and assumed that they were constant across noise levels and con-
ditions (audio only, video only, or audiovisual). We used maximum like-
lihood fits to estimate the parameters of participants’ psychometric func-
tions.

A.2. Estimating Parameters for Unimodal Performance

The audio only stimuli were presented in noise 1 only. Accordingly, the like-
lihood of a subject making a decision Yi on audio only trial i, when presented
with auditory stimulus xi can be written as:

li = [(
γ + (1 − γ − λ)�(xi;μ,σ)

)
Yi

]

+ [(
1 − (

γ + (1 − γ − λ)�(xi;μ,σ)
))

(1 − Yi)
]

(A.2)

The likelihood function for the entire set of audio only data for a given subject
is then:

LAud =
N∏

i=1

li (A.3)

where N is the total number of audio only trials.The visual only trials were
presented in three noise levels. Thus, the likelihood of a subject making a
decision Yi,j on visual only trial i for noise level j , when presented with visual
stimulus xi,j can be written as:

li,j = [(
γ + (1 − γ − λ)�(xi,j ;μj ,σj )

)
Yi,j

]

+ [(
1 − (

γ + (1 − γ − λ)�(xi,j ;μj ,σj )
))

(1 − Yi,j )
]

(A.4)
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The likelihood function for the entire set of visual only trials for a given subject
is then given by

LV is =
3∏

j=1

N∏

i=1

li,j (A.5)

where N is the number of visual only trials for each noise level and there are
three noise levels.

A.3. Estimating Parameters for Audiovisual Performance

During each trial of the audiovisual localization task, stimuli consisted of both
an auditory and a visual cue to location. Crucially, in a subset of the audiovi-
sual stimuli, there were cue conflicts between the two modalities which allows
for the estimation of the weights that participants used when combining the
two cues. Since we are assuming that cue combination in our task is in a lin-
ear regime, we consider the effective stimulus in this task to be a weighted
combination of the two stimuli. Parameters for the psychometric model (μ, σ ,
γ , and λ) and the weights assigned to each modality (wa and wv) for bimodal
performance were computed from maximum likelihood fits to the raw bimodal
performance data for each participant. Specifically, the audiovisual condition
of trials had three noise levels, so the likelihood of a subject making a decision
Yi,j on audiovisual trial i for noise level j , where the presented stimulus was
xai,j

in the auditory domain and xvi,j
in the visual domain, can be written as:

li,j = [(
γ + (1 − γ − λ)�

((
(1 − wv)xai,j

+ wvxvi,j

);μj ,σj

))
Yi,j

]

+ [
(1 − (

γ + (1 − γ − λ)�
((

(1 − wv)xai,j
+ wvxvi,j

);μj ,σj

))

× (1 − Yi,j )
]

(A.6)

Since wa and wv sum to one, the above expression replaces wa with 1 − wv.
The likelihood function for the entire set of audiovisual trials for a given sub-
ject is then given by:

LAV =
3∏

j=1

N∏

i=1

li,j (A.7)

where N is the number of audiovisual trials in each noise level and there are
three noise levels.

A.4. Avoiding Local Maxima When Fitting Psychometric Functions

To avoid converging on local maxima, rather than on the desired global max-
imum likelihood, we repeated each maximum likelihood fit starting from five
randomly chosen initial values for the parameters. We then selected the param-
eters that corresponded to the fit with the best maximal likelihood value, across
the five fitting runs, as the best-fit parameters for the psychometric model.
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A.5. Experiment 2: Data Analysis

To analyze categorization behavior, we fit psychometric curves to participants’
labeling performance for each of the nine stimulus conditions (one noise level
of visual only trials, four noise levels of auditory only trials, and four noise
levels of audiovisual trials). For each unique stimulus, the raw response data
were organized into arrays specifying the proportion of trials that a participant
responded ‘taygoo’ (out of 25 repetitions). As with Experiment 1, realizing
that individual participants’ data did not always span the entire range from 0.0
to 1.0, we used modified cumulative Gaussian psychometric functions includ-
ing lapse rates to model their behavior more accurately (Wichmann and Hill,
2001). This psychometric function modeled the probability of selecting the
category ‘taygoo’ as a mixture of an underlying Gaussian discrimination pro-
cess and a random guessing process. We coded participant responses as yi = 0
for a response of ‘dohkah’ and yi = 1 for a response of ‘taygoo’. We used the
following psychometric model:

p(yi = 1 | xi) = γ + (1 − γ − λ)�(xi;μ,σ)

p(yi = 0 | xi) = 1 − p(yi = 1 | xi) (A.8)

where yi is the participant’s categorization of stimulus xi on trial i. μ and σ are
the mean and standard deviation of the cumulative Gaussian, respectively. For
the current task, μ represents the Point of Subjective equality (PSE) between
the two categories, and σ represents the discrimination threshold. Lapse rate
parameters are represented by γ and λ, where γ is the base rate of responding
‘taygoo’ when there is no evidence for category ‘taygoo’, and λ is the miss
rate, i.e., the probability of responding incorrectly regardless of the amount of
information for category ‘taygoo’. We constrained the lapse parameters to be
between 0.0 and 0.25, held them constant across noise levels within a condi-
tion (audio only, video only, or audiovisual), but allowed them to vary across
conditions. We used maximum likelihood functions to estimate the parameters
of participants’ psychometric functions.

A.6. Estimating Parameters for Unimodal and Bimodal Performance

The visual only stimuli were presented in noise level 1 only (i.e., maximum
reliability) and the auditory stimuli were presented in four noise levels (for
auditory only and audiovisual trials). Parameters for unimodal and bimodal
performance were estimated using a similar approach to that used in Experi-
ment 1.




