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There has been significant recent interest in clarifying how learners use distributional information during
language acquisition. Many researchers have suggested that distributional learning mechanisms play a
major role during grammatical category acquisition, since linguistic form-classes (like noun and verb)

and subclasses (like masculine and feminine grammatical gender) are primarily defined by the ways lex-
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ical items are distributed in syntactic contexts. Though recent experimental work has affirmed the impor-
tance of distributional information for category acquisition, there has been little evidence that learners
can acquire linguistic subclasses based only on distributional cues. Across two artificial grammar-
learning experiments, we demonstrate that subclasses can be acquired from distributional cues alone.
These results add to a body of work demonstrating rational use of distributional information to acquire
complex linguistic structures.

© 2017 Elsevier Inc. All rights reserved.

Introduction

Natural languages are highly structured systems, governed by
particular organizational rules and representations. Language
learners are tasked with acquiring these rules and representations
in a primarily unsupervised environment, without initial access to
the full set of sounds, word combinations, or structures that are
necessary to produce and comprehend the infinite set of possible
sentences in their language. One of the main linguistic structures
that support a language’s generativity are its syntactic categories.
These form-class categories are primarily defined based on how
groups of words are distributed with certain syntactic arguments.
For example, certain words can occur as the subject of a verb or
the object of a preposition. Words that have these syntactic proper-
ties (among others) are grouped together as nouns. Having the cat-
egory noun allows a language user to use new nouns in syntactic
contexts where they have previously heard other nouns occur; that
is, the distributional properties of the category noun can be gener-
alized across words in the category.

Languages not only have major form-class categories like noun
and verb; some of these categories may be further divided into sub-
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categories. Like major form-class categories, language subcate-
gories are partly defined and differentiated based on the different
types of linguistic contexts in which words in the subcategory
may occur (e.g., Bloomfield, 1933; Chomsky, 1965; Harris, 1954).
One well-studied example of noun subcategories is grammatical
gender. In many languages, nouns differ in the form of the deter-
miner that goes with them (e.g., in French, masculine nouns take
the definite determiner le, whereas feminine nouns take the definite
determiner la) or in the endings that must occur on the noun or on
co-occurring adjectives. Importantly, linguistic gender is arbitrarily
defined: grammatical gender does not clearly relate to natural bio-
logical/social gender, linguistic gender assignments are inconsis-
tent across languages, and the number of grammatical genders in
a language varies cross-linguistically. Though not all languages
have grammatical gender, nouns in many languages contain other
types of subcategories, such as the distinction between count nouns
and mass nouns. In English, determiners serve as one type of distri-
butional cue to these subcategories: whereas mass nouns may
occur with the determiners much and some, count nouns occur with
determiners such as many or one. Verbs can be subdivided based on
whether or not the verb takes an object, forming transitive and
intransitive subcategories, or in many languages are subdivided
into conjugations, differing in the endings the verb takes for person
and number. While the distinction between transitive and intransi-
tive subcategories is related to verb semantics and argument struc-
ture, verb conjugations are distributionally defined.
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Because linguistic categories and subcategories are crucial
components of natural language structure, there has been sus-
tained interest in studying the mechanisms underlying their
acquisition. However, the exact process underlying their acquisi-
tion has been particularly difficult to define. Categories and
subcategories lack consistent perceptual or semantic cues to
their organization, and distributional cues are often ambiguous
and overlapping (e.g., Braine, 1987). Despite the complexity of
this system, however, even young children demonstrate early
knowledge of the form-class organization of their native lan-
guage (e.g., Maratsos & Chalkley, 1980). This knowledge allows
them to use syntactic categories and subcategories to learn the
meanings of new words (e.g., Scott & Fisher, 2009; Yuan &
Fisher, 2009) and to produce grammatical utterances based on
form-class category knowledge (e.g., Berko, 1958). Even though
children may not have perfect subcategory representations by
the time they demonstrate productive use of form-class cate-
gories, there is evidence that they at least have basic knowledge
of relevant subcategories at a very early age. For example, chil-
dren acquiring the Russian gender paradigm do not consistently
mark the correct gender at an early age, but they do have the
correct number of gender subcategories despite occasionally
using them in the wrong contexts (e.g., Gvozdev, 1961;
Polinsky, 2008). Thus, although there may be imperfect produc-
tion of subcategory knowledge (perhaps due to performance
limitations), grammatical subcategories are clearly being formed
early in language development (e.g., Valian, 1986).

Given the potential complexity of category acquisition, a large
body of work has explored the types of information that learners
could in principle - and do in practice - exploit for discovering
the categories and subcategories in their language. Though natural
language categories are associated with many possible sources of
cues, distributional information has proven to be a reliable cue to
major form class category structure (e.g., Cartwright & Brent,
1997; Mintz, 2003; Mintz, Newport, & Bever, 2002; Redington,
Chater, & Finch, 1998). Additionally, human learners have been
shown to use the distributional cues that define categories - some-
times along with other types of cues - in order to acquire them
(e.g., Braine et al., 1990; Brooks, Braine, Catalano, Brody, &
Sudhalter, 1993; Mintz, 2002; Mintz, Wang, & Li, 2014; Reeder,
Newport, & Aslin, 2013; Schuler, Reeder, Newport, & Aslin, in
press; Scott & Fisher, 2009; St. Clair, Monaghan, & Christiansen,
2010).

A first step in studying the role of distributional information for
categorization was provided by Smith (1966), who showed that
learners were quite capable of learning a simple language consist-
ing of two categories:

Pair - o+
o—-D,V,H R X
B—-MFGKL

where there are two categories of letters (o and ) and one rule
that requires o words to be followed by B words. Participants saw
some of the possible strings of the language and were then asked to
recall as many strings as possible. The results showed that learners
recalled both the presented strings and “intrusions” (legal strings
according to the pairing rule of the language that were not pre-
sented during exposure). The recall of grammatical intrusions is
evidence of category-level generalizations, where the categories
are defined by positional information (the co-occurrence statistics
between the two categories were distributionally uninformative in
this study).

However, in a similar paradigm by Smith (1969), participants
had to learn dependencies between words within a pair of contin-
gent categories:

Pair -» o+ B
o—-M,P
B—-N,Q

M — my, my, M3
Nﬂnhﬂz, ns
P — p1, P2, P3
Q- a1, Q2 g3

Importantly, strings of the language followed the basic pat-
tern of MN or PQ; no MQ or PN strings were presented. M,
N, P, and Q were categories of 3 items (letters) each. Exposure
consisted of seeing 2/3rds of the possible MN pairings and
2/3rds of the PQ pairings. However, while participants learned
that M- and P-words occurred first and that N- and Q-words
occurred last in the 2-word strings of the language, they did
not learn the co-occurrence dependencies that M-words were
only followed by N-words and P-words were only followed by
Q-words. They produced MQ strings as well as PQ strings,
and showed no differentiation between the two. This “MN/PQ
problem” (Braine, 1987) is a classic case, widely cited in the lit-
erature, of failure to acquire categories from distributional
information alone.

Other problems have also plagued learning theories that pri-
marily rely on distributional analyses for category formation. As
Pinker (1984, 1987) noted, it is not always obvious which contexts
a learner should learn from in any particular utterance, and overly
simplistic distributional analyses could lead a learner astray. Like-
wise, Braine (1987) recognized how easily and quickly learners
acquired positional cues to categories in the MN/PQ problem, such
as “M-words come first” and “N-words come last.” Though posi-
tional cues are a type of distributional information, they do not
reveal the full set of rules governing the MN/PQ language. Unfortu-
nately for proponents of distributional analyses, it seemed as if
learners were only capable of acquiring these serial dependencies
in Smith (1969), since they were unable to learn the rule “M words
are obligatorily followed by N-words.” Braine (1987) concluded
that learners required an additional salient cue (called a “similarity
relation”) to overcome this positional information and highlight
the distributional structure of the categories in the MN/PQ problem
- for example, associating the M subclass with males and the P
subclass with females, thus building in a semantic similarity rela-
tion. With the addition of partially correlated semantic cues, sub-
jects were able to restrict generalization in the MN/PQ
experiment: they made fewer ungrammatical overgeneralizations
when a semantic similarity relation cued them into the co-
occurrence structure of the MN/PQ subclasses.

A number of investigators have followed up on this hypothesis,
exploring the role of shared cues to category structure (e.g., Braine,
1966; semantic cues: Braine et al.,, 1990; morphological cues:
Brooks et al., 1993; phonological cues: Frigo & McDonald, 1998;
Gerken, Gomez, & Nurmsoo, 1999; Gerken, Wilson, & Lewis,
2005; Monaghan, Chater, & Christiansen, 2005; Morgan, Shi, &
Allopenna, 1996; Shi, Morgan, & Allopenna, 1998; Wilson, 2002;
shared features: Gomez & Lakusta, 2004). The results from many
of these artificial language studies suggest that the formation of
linguistic classes crucially depends on overlapping perceptual
properties that link the items together. These correlated perceptual
cues might arise from identity or repetition of elements in gram-
matical sequences, or from a phonological or semantic cue identi-
fying words across different sentences as similar to one another
(for example, words ending in -a are feminine). On this view, cor-
related cues are necessary and sufficient to discover the categorical
structure in artificial languages, and in the acquisition of natural
grammatical classes (Gomez & Gerken, 2000).

However, most categories (and most subcategories) are
arbitrary: though they may have partially correlated semantic,
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phonological, or morphological cues, none of these sources of
information perfectly define natural language categories (cf.
Maratsos & Chalkley, 1980). Given this complexity, how can a child
acquire such structures without presupposing that the foundations
of these structures are innate (e.g., Chomsky, 1965; McNeill,
1966)?

There is some evidence that languages exhibit interactions
between different types of correlated cues (e.g., phonological,
semantic, distributional). In some situations, the redundancy of
correlated cues might help young language learners hone in on
the relevant linguistic components for bootstrapping other aspects
of grammar. In other cases, some cues may be more reliable mark-
ers of linguistic structures when other cues are unreliable.
Monaghan et al. (2005) and Monaghan, Christiansen, and Chater
(2007) showed that some languages exhibit a trade-off between
phonological information and distributional information, such that
phonological cues are better predictors of linguistic structures
when distributional cues are weak. It is likely that young language
learners utilize these correlated patterns to refine their linguistic
representations; however, it is difficult to ascertain how a language
learning mechanism would use these patterns for the initial stages
of category learning, since that would require some a priori knowl-
edge of the category structure or basic knowledge of how the dis-
tributional and perceptual cues are correlated.

It is also clear that some types of correlated distributional cues
can be useful during grammatical category learning. For example,
Mintz et al. (2002) demonstrated that there are sets of linguistic
contexts (words before and/or after a particular target category)
that co-occur with words belonging to the same grammatical cat-
egory. Mintz (2002) demonstrated that adult learners can use these
co-occurring dependencies to induce categories in artificial gram-
mars. Mintz (2003) further suggested that a particular subset of
these - the pairs of non-adjacent contexts that occur together,
before and after target items, called ‘frequent frames’ - provide
particularly useful information, and that in some categorization
tasks adult learners rely on frequent frames more heavily than
uncorrelated lexical bigrams (Mintz et al., 2014). Mintz (2003) also
showed that frequent frames are present in corpora of child-
directed speech, supporting the idea that these non-adjacent con-
text words might provide sufficient information for a young distri-
butional learner to induce categories. However, while research has
shown that infants as young as 7 months can learn a simple repet-
itive “a-B-a” non-adjacency (Gervain & Werker, 2013), it appears
that infants younger than 12 months cannot learn non-repetitive
non-adjacent dependencies, such as the frequent frames that are
most useful during natural language categorization (Gomez &
Maye, 2005).

Since many previous studies have failed to find successful cate-
gorization when learners are relying solely on distributional cues,
it is worthwhile to re-examine the types of distributional informa-
tion available to the learner in those studies. Though one might
suggest that learners in Smith (1969) failed to acquire categories
and their dependencies, another interpretation is that the MN/PQ
problem is a special case of subcategory learning. M and P are sub-
categories of the o category, and N and Q are subcategories of the B
category.! Subcategory learning has an important difference from
single-category learning: the subcategorization task inherently
involves conflicting cues. For subcategories in natural languages,

! The representations that learners have acquired in the experiments we describe
here and in the previous literature are compatible with two interpretations:
acquisition of subcategories, or acquisition of multiple form-class categories. Given
the distributional information framework we lay out in this paper, we argue that
subcategories are the cognitive representation that is most compatible with our
paradigm and previous work. However, our conclusions and framework would
remain the same if the outcome of learning is interpreted to be multiple form-class
categories.

some of the distributional information (e.g., word order) signals that
there is one category, whereas other distributional cues (e.g., contex-
tual function words and grammatical morphemes) signal that there
are distinct subcategories within the larger category. In the subcate-
gorization case, then, the learner must figure out that there is a
major form class category that encompasses all the words in terms
of their word order and argument structure, and also that there
are subsets of items in this category that each have their own speci-
fic linguistic contexts. The latter problem is complicated by the fact
that some contextual gaps are systematic omissions that arise from
the subcategory structure, while others may be accidental gaps of
legal contexts that did not occur in a particular linguistic sample.
Given the incomplete and noisy input that any language learner
receives, the main question facing the learner is whether particular
word combinations are absent from the input accidentally (because
the learner just has not heard that context yet), or are absent from
the input because that context is ungrammatical. To successfully
acquire the MN/PQ grammar, learners must simultaneously restrict
generalization (i.e.,, M’s shouldn’t be seen with Q’s because “MQ” is
ungrammatical), while also generalizing appropriately (i.e., even if
[ haven't heard this particular M with this particular N, it is still an
acceptable string because “MN” is a legal structure). The “gaps” in
the input created by the missing MQ and PN strings occur because
those combinations are ungrammatical; the “gaps” created by miss-
ing MN and PQ strings, in contrast, are accidental. Unfortunately,
Smith’s (1969) participants were unable to make this distinction
and overgeneralized. Apparently the participants failed to acquire
the boundary separating the M and P subcategories; instead, learners
only acquired o and B as major form-class categories, generalizing to
contexts MQ and PN. The goal of the experiments presented here is
to explore the distributional variables that can lead learners to
appropriately limit generalizations and reject MQ- and PN-like
strings.

Recent behavioral work on form-class category learning has
highlighted a number of distributional cues that lead to successful
category learning from distributional cues alone (e.g., Mintz, 2002;
Mintz et al., 2002, 2014; Reeder et al., 2013). In particular, Reeder
et al. (2013) investigated whether learners of an artificial language
could learn that a set of nonsense words formed a linguistic cate-
gory based solely on distributional information: that is, could
learners generalize from hearing some of the distributional con-
texts for individual words to the full range of contexts for all the
words in the category. In order to examine distributional learning,
all other potential cues to the category were removed; only the dis-
tributional contexts for words were available as cues to categoriza-
tion. The results showed that, given specifiable distributional
information, word co-occurrence statistics were enough to cause
learners to induce a representation of a category - rather than stor-
ing each word individually in terms of its specific experienced con-
texts — and to generalize or withhold generalization to new
contexts and new words based on distributional cues.

Our goal in the present paper is to examine how this distribu-
tional learning mechanism might operate during subcategory
acquisition, and to explore why many previous experiments like
Smith (1969) have failed to see successful subcategory learning
from distributional cues alone. Across two artificial grammar-
learning experiments, we systematically manipulate the distribu-
tional information that signals subcategory structure and a subcat-
egory boundary. Given that word categories and subcategories are
defined based on how they are distributed with respect to other
lexical items in a sentence, the main distributional variable of
interest is the amount of contextual overlap among words. Com-
plete contextual overlap means that words within a category share
all of their possible linguistic contexts with each other. In the ide-
alized case of a perfect subcategory boundary, learners should
expect complete overlap of contexts across words within a
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subcategory, but no overlap for words across a subcategory bound-
ary. This circumstance is investigated in Experiment 1. In Experi-
ment 2 we investigate what happens to learning when there is
imperfect overlap and imperfect distinctiveness of contexts. In
order to demonstrate subcategory acquisition, learners in our
experiments will need to achieve two outcomes: strong generaliza-
tion from words in their experienced contexts to the larger range of
contexts allowable for other words in the same subcategory, but
restricted (or no) generalization to the contexts of words in a dif-
ferent subcategory.

Experiment 1

In Experiment 1, we adapt the artificial grammar from Reeder
et al. (2013) in order to test whether (contrary to much of the lit-
erature, particularly Smith (1969) and Braine (1987)) subcate-
gories are learnable from distributional information alone.
Building upon Reeder et al.’s findings on major category learning,
we hypothesize that learners can acquire subcategories if they
are given adequate overlap in distributional cues for the items
inside each subcategory and adequate non-overlap in distribu-
tional cues for the items in different subcategories. As a first step
towards exploring subcategorization using distributional cues,
adult learners in this experiment receive very strong distributional
cues to the subcategory structure in our artificial grammar. These
cues involve a dense sampling of the subcategory-obeying strings
generated by the grammar, with complete overlap of the presented
contexts across the words within each subcategory. Importantly,
there is no overlap of immediate distributional contexts for the
words in different subcategories. By using adult participants, we
can extend Reeder et al’s (2013) findings and set a baseline for
what to expect from a mature distributional learner. This will set
the stage for future experiments with children and infants.

Our basic artificial grammar paradigm is similar to that of Smith
(1969): learners receive no evidence that words from different
subcategories share contexts, just as Smith’s participants received
no MQ or PN strings. However, in contrast to Smith (1969), our
grammar provides additional distributional richness: it is larger
and more complex, and it removes absolute position as a possible
distributional cue (“M words come first; Q words come last”), since
the absolute position of words (e.g., first, second, last in the string)
is rarely useful in defining linguistic categories in natural lan-
guages. The question of interest is whether learners can acquire
the subcategories embedded in our language from the cues of rel-
ative word order and immediate linguistic contexts, or whether
they will tend to treat all words as belonging to a single category
(as they did in Smith, 1969), despite the strong distributional infor-
mation for separate subcategories. By asking this question, we can
examine whether the types of distributional cues that are useful
for single category acquisition (Reeder et al., 2013) are also used
to acquire subcategories.

Method

Participants

Twenty-four monolingual native English-speaking students at
the University of Rochester were paid to participate in Experiment
1. Participants were randomly assigned to one of two exposure lan-
guages such that twelve participants were exposed to Language 1
and twelve were exposed to Language 2. All participants were
naive to the materials and goals of this experiment.

Stimulus materials
Experiment 1 exposed learners to strings generated from an
artificial grammar of the form (Q)AXB(R) (adapted from Reeder

et al. (2013)). Each letter corresponds to a category of nonsense
words: X was the target category of interest and contained 4
words; A and B were contexts for X, and each contained 6 words;
Q and R were optional flanker categories, and each contained 2
words. Based on the structure of the language, words were con-
catenated to build strings of the form AXB, QAXB, AXBR, or
QAXBR. The optional presentation of the Q and R categories pre-
vented learners from relying on absolute position as a cue for
categorization.

Because there were 6 A-words, 6 B-words, and 4 X-words, there
could be 144 unique AXB combinations generated by our grammar.
Importantly, in contrast to Reeder et al.’s (2013) experiments, here
we divided the X category into two subcategories by restricting
which A- and -B contexts occurred with each X-word. Subcategory
1 contained words X; and X,, which only occurred with Ay, A, As,
By, By, and B3 as allowable contexts. Subcategory 2 consisted of
words X3 and X4, which had only A4, As, Ag, B4, Bs, and Bg as allow-
able contexts (see Fig. 1).

This subcategory structure reduced the number of legal AXB
combinations that could be presented during exposure to 36 AXB
strings (3 A-words * 2 X-words * 3 B-words * 2 subcategories). Of
these 36 AXB sentence types, 24 were presented during exposure
and 12 were withheld for testing (see Table 1). The exposure
strings were selected such that every X-word was seen with every
subcategory-appropriate A-word and B-word, but with no A-words
or B-words from the other subcategory. In the terminology of
Reeder et al. (2013), this created a dense sampling of the possible
contexts for X, because learners were exposed to 2/3rds of the pos-
sible subcategory-appropriate contexts for each X-word. Addition-
ally, there was complete overlap of contexts across X-words within
each subcategory. This is because each X-word is seen with all of
the same context words as the other X-word in its subcategory.
There was complete non-overlap of contexts between the X-
words from different subcategories. The sparseness and overlap

@Q A X B (R)

A, B,
iy HXLZE B, Rz
A3 B3 ,

A, B,
Q, 22 } X34 E gz Ri2

Fig. 1. Pictorial depiction of subcategorization structure for Experiment 1.

Subcategory 1: Q,

Subcategory 2:

Table 1

Possible legal AXB combinations for Experiment 1. Combinations that appeared in the
exposure for Experiment 1 are bolded. Subcategory 1 consisted of X; and X;, with A,
A, As, By, By, and B3 as legal contexts for X; and X,. Subcategory 2 consisted of X5 and
X4, with A4, As, Ag, Bs, Bs, and Bg as legal contexts for X5 and X4.

Subcategory 1 Subcategory 2

A1X1B, A1X5B, A4X3B4 A4X4B4
A1X1B, A1X32B> A4X3Bs A4X4Bs
A1X1B3 A1X3B3 A4X3Bs A4X4Bs
AX By Az2X;3B, AsX3B4 AsX4B4
Az2X1B, A2X,B; AsX3Bs AsX4B5
AxX1B3 AzX5B3 AsX3Bg AsX4Bg
AsX1B, A3X;B, AsX3B4 AX4B4
A3X1B, AsX;B, AeX3B5 AeX4Bs
As3X;B3 A3X;B3 A6X3Bg AeX4Bg
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Table 2
Assignment of nonsense words to categories for Language 1 and 2.
Language 1
Q A X B R
mib flairb tomber fluggit prog
bliffin daffin zub bleggin dilba
glim lapal mawg
gentif roy frag
spad zemper
klidum nerk
Language 2
Q A X B R
zub fluggit nerk daffin flairb
klidum tomber bleggin roy gentif
mawg zemper spad
glim prog lapal
dilba mib
frag bliffin

of the exposure set were thus comparable to Experiment 1 of
Reeder et al. (2013).

The optional 2 Q- and 2 R-words were added to these 24 AXB
combinations to create AXB, QAXB, AXBR, and QAXBR strings. Each
Q and R flanker word was equally frequent across each subcate-
gory, so their presence was not an informative cue to the identity
of each string’s subcategory structure. Overall, this led to 96 unique
(Q)AXB(R) strings in the input.

The 20 words in the language were recorded in isolation by a
native English-speaking female with a terminal and a non-
terminal list intonation for each. They were adjusted in Praat
(Boersma, 2001) so that the pitch, volume, and duration of sylla-
bles were qualitatively consistent. Words were assigned to each
of the categories in order to achieve a relative balance of phonolog-
ical and syllabic properties across the categories. To insure that our
word-to-category mapping was not biased in any way, we created
two separate languages (Languages 1 and 2) that differed only in
different assignments of words to categories (see Table 2). Strings
were created by concatenating the recordings of individual words,
with 50 ms of silence between each word and using a terminal
intonation token at the end of each string.

Crucially, the only systematic cues to the category and subcat-
egory structure of this language were relative order of the words
and the distribution of A- and -B context words. There were no
semantic or systematic phonological cues to the categories, and
there was no referential world attached to this language.

Procedure

Participants were informed that they would be listening to sen-
tences from a new language that they had never heard before.
Their task was to try and pay attention to the sentences, because
they would be tested on their knowledge of the language later. Par-
ticipants were seated at a Dell desktop PC in a sound-attenuated
booth and passively listened to the sentences via headphones.
The exposure phase consisted of five repetitions of the 96 (Q)AXB
(R) training strings presented in pseudo-random order (a total of
480 strings). There were 1.5 s of silence between each string, lead-
ing to an exposure phase of approximately 30 min.

Once the exposure phase was complete, participants began the
testing phase of the experiment. As in Reeder et al. (2013), each
test trial began by hearing a 3-word sentence and then rating that
sentence on a scale from 1 to 5, based on whether or not the sen-
tence came from the language heard during the exposure phase. 1
meant that the sentence definitely did not come from the lan-
guage; 2 meant the string may not have come from the language;
3 meant that the string may or may not have come from the lan-

guage; 4 meant the string may have come from the language; 5
meant the string definitely came from the language. Participants
were instructed to rate test strings based on their “gut reaction”
to each sentence and whether they thought a native speaker of
the language would have said that particular sentence when fol-
lowing the rules of the language’s grammar. There were four types
of test strings: grammatical familiar (12 of the 24 AXB strings that
were presented during exposure), grammatical novel (the 12 AXB
strings from 36 possible strings that obeyed the grammar’s subcat-
egory restrictions but were withheld from exposure), subcategory
violation (12 of the 72 AXB strings that violated the subcategory
structure of the grammar, but still obeyed the overall AXB word
order of the grammar), and ungrammatical (6 AXA and 6 BXB
strings that violated the word order of the grammar without
repeating word tokens). Subcategory violation strings contained
either the A-word or the B-word from the opposite subcategory
for that X-word, in the correct word order position. In other words,
either the A- or the B-words came from the opposite subcategory
as the X-words, but not both. Importantly, these strings would be
grammatical if learners ignored the subcategory structure of the
language and generalized to form a single X category. A difference
in ratings between grammatical and subcategory violation strings
therefore indicates that participants have learned the subcategory
structure in the language and are not generalizing across the gaps
created by this boundary. Each test string was presented twice dur-
ing the test phase, in pseudo-random order.

Results

Because there were no significant differences between the rat-
ings of learners exposed to language 1 versus language 2, we col-
lapsed these two languages for all subsequent analyses. The
mean rating of grammatical familiar strings was 3.61 (SE = 0.10),
the mean rating of grammatical novel strings was 3.70
(SE=0.11), the mean rating of subcategory violation strings was
3.31 (SE=0.12), and the mean rating of ungrammatical strings
was 2.55 (SE = 0.12) (see Fig. 2). A repeated measures ANOVA with
test item type (grammatical familiar, grammatical novel, subcate-
gory violation, and ungrammatical) as the within-subjects effect
was conducted. Mauchly’s test revealed that the assumption of
sphericity was not met (2 = 20.50, p < 0.05), so the Greenhouse-
Geisser correction was used (& =0.656). There was a significant
main effect of test item type (F(1.97,45.23)=34.238, p<0.001).
Planned comparisons revealed no difference between grammatical
familiar and grammatical novel strings (t(23) = 1.24, p = 0.23), but
subcategory violation strings were rated significantly lower than
familiar grammatical strings (t(23)=3.14, p<0.01) and novel
grammatical strings (£(23)=3.47, p<0.005). Ungrammatical
strings were rated the lowest, significantly lower than subcategory
violation strings (t(23) =4.42, p <0.001).

Because different participants may exhibit biases in how they
use our rating scale, we converted all raw ratings scores into z-
scores and conducted another repeated measures ANOVA. Results
were all qualitatively the same.

Discussion

As in Reeder et al. (2013), learning effects were observed based
solely on the distribution of words and their surrounding contexts.
However, it is important to note that the distributional cues in the
present experiment are balanced quite differently than in Reeder
et al. (2013) and Smith (1969). To instantiate a subcategory struc-
ture, while all of the words in category X occurred in the same rel-
ative word order positions, there were two subsets of X-words that
differed in their immediate distributional contexts. X; and X, had
strong overlap in the particular A- or -B context words with which
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they occurred, but these X-words had no A- or -B contexts in com-
mon with X3 or X4. The complementary situation also applied to X3
and X, Additionally, the optional Q and R flankers removed the
absolute positional cues that were present in Smith’s (1969) MN/
PQ problem, which may have suggested to learners that all
X-words belonged to the same large X category. The important
result is that, under these circumstances, learners succeeded in
acquiring the subcategory structure.

Firstly, Experiment 1 showed that learners generalized within
subcategories when the co-occurrence statistics showed high over-
lap among X-words. Despite not hearing every legal AXB combina-
tion, learners rated grammatical novel AXB strings just as highly as
familiar strings, indicating that they were willing to extend the
appropriate withheld contexts to X-words within the same subcat-
egory. Second, learners restricted generalization to contexts of the
opposite subcategory when the distributional information sug-
gested that these were systematic gaps created by subcategory
boundaries. This was evidenced by significantly lower ratings of
subcategory violation strings than either grammatical familiar or
grammatical novel strings (see Fig. 2), suggesting that learners
were not willing to share distributional properties across the sub-
category boundary. In addition, the results of Experiment 1 demon-
strate that learners are highly sensitive to the type and
systematicity of the missing information in their input. Our subcat-
egory paradigm created a perfect boundary, with no overlap of
contexts across subcategories but perfect overlap of contexts
within subcategories. Learners interpreted the consistent absence
of subcategory-crossing strings from their input as purposeful
(not accidental) omissions, signaling ungrammatical contexts for
certain X-words. On the other hand, the more sparse and less sys-
tematic gaps within subcategories were not interpreted in this
way.

Interestingly, however, subcategory violation strings were rated
significantly higher than ungrammatical strings. As noted above,
subcategories present two types of cues for learners: overall word
order cues indicate that the words in different subcategories fall
into the same major category, while immediate contextual cues
indicate that they are in distinct subcategories. In our artificial
grammar, the presence of stable flanker words (Q and R) and rela-
tive word order across all strings regardless of their subcategory
membership suggests that all X words belong to the same category.

However, the immediate A- and -B context cues suggest that X;
and X, are fundamentally distinct from X5 and X,.?> We interpret
the finding that ratings for subcategory violations are lower than
novel grammatical strings but higher than ungrammatical strings
as further evidence that learners have acquired subcategories in an
appropriate way. Though native adult speakers of a language would
rarely (if ever) intentionally produce a subcategory violation, these
types of errors do sound relatively more acceptable than a word
order violation like those used in our ungrammatical test strings
(e.g. John disappeared the rabbit vs. John rabbitted the disappear.). This
difference is reflected in our ratings results, and we believe this
reflects acquisition of both category-level (X) representations and
subcategory-level (X;, vs X34) representations.

The results of Experiment 1 thus show successful subcategory
acquisition using a distributional learning paradigm with no corre-
lated phonological or semantic cues. Experiment 2 further explores
the process of subcategory acquisition in a more complex learning
environment.

Experiment 2

The miniature language used in Experiment 1 was a highly ide-
alized case of the types of distributional cues one might encounter
in a natural language learning situation. One way in which our
miniature language could be modified in order to further test the
limits of this type of statistical learning would be to make the sub-
category boundaries imperfect in ways that are typical of real lan-
guages. One example in natural language is the case of homophony
or homonomy of words that fall into different categories. For
example, in the question “What'’s black and white and [red/ all over,”
it is unclear whether the word [red/ should be the past tense of the
verb read or the color red. The same phonological form appears in
two separate grammatical categories, as it does in other words like

2 As mentioned in the Introduction, due to the small artificial grammar used here,
an argument could be made that learners acquired multiple form-class categories
rather than two subcategories. Given the distributional cues described here, we
believe the most consistent interpretation of our grammar is that X is a form-class
category with two subcategories. However, regardless of one’s interpretation of the
learner’s abstract representation of the grammar, the demonstration of successful
(sub)category acquisition in Experiment 1 informs us about the useful and usable
distributional evidence for this type of learning problem.
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fish. With words like this, two different sets of distributional con-
texts will appear to belong to a single word. This type of problem
is likely overcome by a statistically oriented distributional analysis,
noting that most words distinguish these two sets of contexts.

This type of ambiguity is found at many different levels of lan-
guage (e.g., at the lexical level, like read/red; at the morphological
level, see Pertsova (2008); syncretism, see Baerman, Brown, &
Corbett, 2005). Such ambiguity also exists in linguistic subcate-
gories. One example is the “crossed” gender system of a language
like Romanian (Corbett, 1991, 1994). As in many other languages,
Romanian divides nouns into masculine and feminine linguistic
gender subcategories that are reflected in distinct sets of agree-
ment markers. However, there is a sizeable set of nouns that take
masculine agreement markers when singular, but feminine agree-
ment markers when plural. This third class of nouns does not
belong with either masculine or feminine nouns, and thus they
are said to form a third gender (neuter). However, Romanian does
not have a separate class of agreement markers that occur with
neuter nouns. In Corbett’s (1994) terminology, Romanian has three
controller gender subcategories (the number of genders of nouns)
but only two target gender subcategories (the number of classes of
agreement markers).

Real languages commonly have category-crossing exceptions
that are similar to the cases of homophony or the Romanian gender
system. These exceptions arise from situations where the syntax
makes one set of distinctions but other systems (morphology,
phonology) do not always make the same distinction. What is
remarkable about arbitrary systems like these is that children are
capable of acquiring them, without explicitly being told that some
contexts for words are highly specific while others are quite gen-
eral. Learners must be capable of using the detailed patterning of
these cues to determine when to generalize and when to encode
something exceptional about the uses for a class, a subclass, or a
token. Experiment 2 explores this process and expands on the
results from Experiment 1 by introducing an “exception”: a single
string that crosses the subcategory boundary. We then compare
the results from Experiments 1 and 2 to see whether subcategory
boundaries entirely break down because of the distributional com-
plications of this one exceptional boundary-crossing context, or
whether learners maintain the subcategory structure and treat
the boundary crossing string as a special exception.

Method

Participants

Eighteen monolingual native English-speaking students at the
University of Rochester were paid to participate in Experiment 2.
None of these individuals had participated in Experiment 1. Three
subjects were removed for failing to complete the experiment
according to the instructions (reporting that they did not pay any
attention during training due to its length, failing to perform above
chance at a 1-back task during training and subsequently rating all
test items the same). Seven participants were assigned to language
1, and eight were assigned to language 2.

Stimulus materials

The stimuli were the same as in Experiment 1 (see Table 1)
except for the addition of one “boundary-crossing” string to the
exposure set. This string paired X; (from Subcategory 1) with the
context A4_B,4 (a context from Subcategory 2) to create an excep-
tion to the subcategory boundary: A4X;B4 (see Fig. 3). As in Exper-
iment 1, the exposure consisted of a dense sampling of A- and -B
contexts, with complete overlap of contexts within each subcate-
gory. Of the 36 legal subcategory-obeying AXB combinations, 24
were presented and 12 were withheld for testing generalization.
After the addition of the boundary-crossing string and optional Q

@Q A X B (R)

A B,
Subcategory 1: Q, " }: X4, E B, Ry,
’ A; ' B, '
Boundary-crossing Q,, A — X— B, Ri2
string: ' '
A, B,
Subcategory 2: Q, A H X34 E Bs R,
“ A ' Bq :

Fig. 3. Pictorial depiction of the subcategory structure for Experiment 2. There is a
clear boundary between the A- and -B contexts for Subcategory 1 (X; and X;) versus
Subcategory 2 (X3 and X4), except for the single boundary-crossing string A4X;Ba.

and R flanker words (as in Experiment 1), the training set consisted
of 100 strings. As in Experiment 1, this set of 100 strings was pre-
sented 5 times during exposure in uniquely randomized orders.

Procedure

As in Experiment 1, participants were instructed to pay atten-
tion as they listened to strings from a new language, as they would
be tested on their knowledge of the language later. Preliminary evi-
dence suggested that the somewhat longer training phase (500 vs.
480 strings) created more difficulty for participants in maintaining
their attention. Thus participants were told that while listening to
the strings, they would have to complete a 1-back task.> The pur-
pose of this secondary task was to keep participants attentive to
the materials. At the beginning of the exposure phase, participants
were instructed to make a hatch mark on a sheet of paper every time
they thought they heard a repeated sentence. They were told that
the number of repeated sentences was randomized for each subject,
so there may be many repeated sentences or none at all.

After exposure, participants entered the test phase of the exper-
iment. The instructions were the same as in Experiment 1. In order
to fully investigate how category representations were affected by
the presence of the single boundary-crossing string, a number of
additional test strings were constructed.* There were 13 familiar
AXB test strings: 12 grammatical familiar, subcategory-obeying AXB
strings that were presented during exposure (same as Experiment
1), plus the 1 familiar boundary-crossing A;X,B4 string. There were
12 grammatical novel, subcategory-obeying AXB strings (same as
Experiment 1), and 4 novel boundary-crossing strings. These novel
boundary-crossing strings combined X; with novel A- and -B con-

3 A pilot experiment replicating Experiment 1 but using this 1-back task showed no
change in performance relative to the original results: planned comparisons on the
results of 6 participants (3 in each of languages 1 and 2) showed no difference
between grammatical familiar and novel strings (p = 0.81), but a significant difference
between grammatical novel and subcategory violation strings (p <0.05) and also
between subcategory violation strings and ungrammatical strings (p < 0.01). As these
results are qualitatively the same as in Experiment 1, we felt justified in using the 1-
back task as a means to increase attention during the exposure phase while allowing
implicit learning of the rules of the language. Note that the 1-back task does not
provide any explicit information about the grammatical structure of the exposure
strings, but it does require attention to the sound sequences. Failure to notice at least
half of the repeated strings was directly related to participants reporting that they
were not paying attention during training (N=3), and these participants were
removed from our final sample.

4 Compared to Reeder et al. (2013) and Experiment 1, this experiment had a
different proportion of clearly grammatical (i.e., familiar) test items to clearly
ungrammatical test items. However, pilot results from a replication of Reeder et al.
(2013) Experiment 1 showed that a test with half ungrammatical strings and half
familiar plus novel grammatical strings did not lead to qualitatively different results.
Participants did not appear to be biased towards rating approximately half of the
items as ungrammatical.
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texts from Subcategory 2 (such as AsX;Bg). Importantly, all of the A-
and -B contexts in these test types appeared (with other items) dur-
ing the exposure phase, so a low rating of these strings with X;
would confirm that learners are not simply responding on the basis
of the A- and -B contexts themselves. Together these boundary-
crossing test items assess whether X; is represented as allowing
all contexts from both subcategories or only allowing the specific
boundary-crossing context in which it was presented during expo-
sure. There were 12 subcategory violation “type 1” strings, in which
either the A- or the B-word came from the opposite subcategory as
X (same as the subcategory violation strings in Experiment 1). There
were also 4 subcategory violation “type 2" strings in which both the A-
and the B-word came from the opposite subcategory as X (two Xy
strings, one X3 string, and one X, string). Lastly, there were 12
ungrammatical word-order violation strings of the form AXA, BXB,
AAB or ABB. Therefore, the full test contained 82 strings presented
in pseudorandom order: 26 familiar AXB test strings (12 strings
heard during exposure, repeated twice; 1 familiar boundary-
crossing string, repeated twice), 44 novel AXB test strings (12
subcategory-obeying novel strings repeated twice, as in Experiment
1; 4 novel boundary-crossing strings, with X; in novel A_B contexts
from subcategory 2; 12 subcategory “type 1” violation strings; 4 sub-
category “type 2” violation strings), and 12 ungrammatical (word
order violation) test strings.

Just as in Experiment 1, the subcategory violation strings would
be judged as grammatical if learners did not acquire a subcategory
boundary or if this distinction was weakened by exposure to the
boundary-crossing string. The remaining types of novel strings dis-
tinguish between whether learners treat all novel AXB’s as excep-
tions, whether they generalize all Subcategory 2 contexts to Xj,
whether they generalize Subcategory 2 contexts to all Subcategory
1 members, and whether the existence of the boundary-crossing
string leads to the loss of a subcategory boundary.

Results

Due to the length of the test, split-half reliability item analyses
were conducted to see if order effects were present between the
first and second half of the test. Cronbach’s alpha (Cronbach,
1951) was computed for the ratings of each type of test string

(familiar, familiar boundary crossing, grammatical novel, novel
boundary-crossing, subcategory violation 1, subcategory violation
2, ungrammatical), and all Cronbach’s alpha values were “accept-
able” values for internal test reliability (lowest o = 0.691, for sub-
category violation type 1). This indicates that the ratings within a
test type for the second half of the test were consistently correlated
with ratings of that test type from the first half. We conclude that
the longer test length did not significantly affect participants. Fur-
thermore, no difference was found between language 1 and lan-
guage 2, so the two languages have been collapsed for all
remaining analyses.

The first comparisons of interest are those used in Experiment 1
to explore the relationships among words within a subcategory
and across the subcategory boundary. Looking at only test strings
that did not involve a category-boundary crossing, a repeated mea-
sures ANOVA was conducted with four test types (familiar, gram-
matical novel, subcategory violation type 1, ungrammatical) as
the within-subjects factor, collapsing across languages 1 and 2.
Mauchly’s test indicated that the assumption of sphericity had
been violated (%% = 25.71, p < 0.01), so Greenhouse-Geisser correc-
tion was applied (g£=0.478). The ANOVA revealed a significant
main effect of test type (F(1.435,20.087)=16.92, p<0.001).
Planned comparisons showed that grammatical novel strings
(mean = 3.61, SE = 0.10) were rated just as high as familiar strings
(mean=3.64, SE=0.09), t(14)=0.634, p=0.54. Subcategory
violation type 1 strings (mean = 3.42, SE = 0.105) were rated signif-
icantly lower than grammatical familiar strings (t(14)=3.57,
p < 0.005). These results indicate that participants generalized fully
from familiar strings to novel strings within the subcategory
boundaries, but they did not fully extend this generalization to
strings where either A or B was from the opposite subcategory as
X (the subcategory violation type 1 strings). The mean rating of
ungrammatical items was 2.81 (SE = 0.18), which was significantly
lower than subcategory violation strings (t(14)=3.90, p < 0.005)
(see Fig. 4). The same repeated measures ANOVA was conducted
on z-scores, and the same qualitative pattern of results was
obtained.

The next comparison of interest is among the boundary-
crossing test strings: the familiar boundary-crossing A4X;B, string,
the novel boundary-crossing strings in which X; was presented
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with other A_B contexts from Subcategory 2 (e.g., A4X;Bg), and the
subcategory violation type 2 strings where X,, X3 and X, were pre-
sented with A and B contexts from the opposite subcategory as X
(e.g., AsX;Bs). The mean rating of familiar boundary-crossing
strings was 3.87 (SE=0.16), the mean rating of novel boundary
crossing strings for X; was 3.30 (SE =0.16), and the mean rating
of subcategory violation type 2 strings was 3.18 (SE =0.16) (see
Fig. 5).

A repeated measures ANOVA was conducted with test type as
the within-subjects factor. Mauchly’s test revealed a violation of
the assumption of sphericity (%% = 6.54, p < 0.05), so Greenhouse-
Geisser corrections were used (£=0.717). The results of the
ANOVA revealed a significant main effect of test type (F
(1.433,20.068) = 5.34, p < 0.05). Planned comparisons showed that
familiar boundary crossing strings were rated significantly higher
than novel boundary crossing strings (t(14)=2.17, p <0.05) and
subcategory violation type 2 strings (t(14)=2.71, p <0.05), but
novel boundary crossing strings were rated the same as subcate-
gory violation type 2 strings (t(14) = 0.89, p = 0.39). This indicates
that learners treated A4X;B,4 (the familiar boundary crossing string)
as an exception, and they did not generalize across the subcategory
boundary to other possible A_B contexts for that X-word or for
other X-words.

Finally, the subcategory violation type 2 test strings can be
divided into two groups: X, strings (belonging to Subcategory 1)
and X3 and X, strings (belonging to Subcategory 2). It was possible
that learners would interpret hearing the A;_B,4 context with X; to
mean that all the X-words in Subcategory 1 should have this exten-
sion. It was also possible that, due to this boundary-crossing con-
text, learners would be more flexible overall in generalizing all of
the contexts for Subcategory 1 members. However, a planned com-
parison of the X, subcategory violation type 2 test strings versus
the X3 and X, strings showed no difference between them
(p > 0.5). Furthermore, comparing the X, subcategory violation
type 2 test strings to the novel boundary crossing strings (X;
strings with novel A_B contexts from Subcategory 2) showed no
difference (p > 0.1). These results indicate that learners treated
the unique A4X;B4 string as an exception; they did not extend
the A4_B,4 context to the other member of Subcategory 1, nor did
they generalize the members of Subcategory 1 more broadly to
encompass other contexts of Subcategory 2).

Discussion

As in Experiment 1, we found that a dense sampling of a lan-
guage with complete overlap among contexts within subcategories
- and almost no overlap across subcategories - leads to generaliza-
tion within but not across subcategories. Learners generalized to
novel combinations within subcategories, but rejected novel com-
binations that crossed the subcategory boundary, either with one
inappropriate context element (subcategory violation type 1
strings) or two inappropriate context elements (subcategory
violation type 2 strings). The results also show that learners did
not extend the single A, B, context that appeared with X; to the
other member of X;'s subcategory (i.e., X;). The low ratings of
novel boundary crossing test strings demonstrate that participants
did not treat X; as belonging to both subcategories. By rejecting
both types of subcategory violations strings, learners demon-
strated that they did not become more flexible with their subcate-
gory boundaries from being exposed to the single boundary-
crossing string. In essence, learners behaved the same as they did
in Experiment 1, but maintaining a specific exception to the sub-
category boundary (the unique A4X;B4 boundary crossing string).
These data show that learners can acquire subcategories even in
the face of some input strings in which subcategory boundaries
are violated, and also that they can learn an exception, such as
X; being legal in a context typically restricted to Subcategory 2.
The absence of information licensing other subcategory boundary
crossings apparently is adequate for learners to determine that
A4X B4 is a special case and that boundary crossing is not allowed
for other X-words.

Experiment 2 answers the question of how learners use distri-
butional information to categorize their input if their exposure to
the language contains imperfect distributional cues in the form
of specific exceptions to subcategory boundaries. The boundary-
crossing strings they heard could have been viewed as evidence
of a single major X-category, with no subcategory structure. How-
ever, the results from Experiment 2 show that learners considered
the boundary-crossing string to be an exception; they showed the
same overall effects as in Experiment 1, encoding the subcategory
boundary consistent with the majority of the distributional infor-
mation. These experiments strengthen the idea - suggested in
Reeder et al. (2013) - that the absence of a cue in the input can
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be just as informative as the presence of a cue. It is clear that learn-
ers were highly sensitive to the lack of information licensing novel
boundary crossing strings or supporting the formation of a single
category without subcategory boundaries.

General discussion

The present experiments provide robust evidence that learners
can use distributional information in a sophisticated way in order
to form linguistic subcategories. We showed that learners are
highly rational in their interpretation of particular distributional
cues, especially the amount and type of overlap across lexical
contexts. Learners used this information to determine whether
to restrict generalization across gaps in their input, generalize
across gaps, or maintain a particular context as an exception to
the overall rules of the grammar. Our results support the idea
that language learners take advantage of several different co-
occurrence statistics in parallel in order to learn word order, form
categories, and discover the subcategories of their language. As
described in Reeder et al. (2013), these cues include the overlap
of contexts across words and the density of sampling of a partic-
ular category.

Given the results of earlier studies arguing that subcategories
are not learnable without multiple correlated cues (e.g., Braine,
1987, which suggests that perceptual or semantic cues are
required for successful subcategory learning), it is important to
consider why we found evidence of subcategory acquisition here
when others have not. Successful distributional learning depends
on the types of distributional cues and their patterning in the
input, especially (a) whether this information is readily available
and provides reliable cues to the learnable structures in the envi-
ronment (i.e., is it useful), and (b) whether the learner is able to
access this information and perform the necessary computations
over it (i.e., is it usable). One important distinction between our
results and previous studies is our framework for defining subcat-
egorization. As described in the introduction, linguistic subcatego-
rization crucially involves a conflict of distributional cues. When a
major category contains multiple subcategories, a learner must
recognize that the overall word order information signals a major
X-category, but their co-occurrence with some context elements
and the absence of their co-occurrence with other context ele-
ments - that is, contextual gaps formed by the subcategory bound-
ary - signal multiple sub-categories inside X.

First, in contrast to these characteristics, consider the MN/PQ
problem - the classic case of failure to acquire subcategories given
distributional information alone. Participants in Smith’s (1969)
task learned which words could occur first in a string (M, P) and
last in a string (N, Q), but not the dependency that N-words could
only follow M-words and Q-words could only follow P-words. Par-
ticipants produced both legal PQ strings and illegal MQ overgener-
alizations during test, indicating that they were equally
grammatical to participants. Using our terminology, the distribu-
tional information available during exposure for Smith (1969) did
consist of a dense sampling of the language, with complete overlap
of contexts within subcategories and complete non-overlap across
subcategories. This is equivalent to the sampling density and con-
textual overlap available during the present Experiment 1, where
we saw generalization within (but not across) subcategories. How-
ever, there are a number of differences between our task and pre-
vious artificial language investigations of subcategorization that
can explain the dissimilarity in results.

One difference is that we used a rating scale, whereas other
investigators have used recall, 2-alternative forced choice, binary
choice (yes/no) responses, or other production measures to obtain
information about the learner’s category knowledge. The greater

sensitivity of a rating scale may have allowed us to demonstrate
distinctions between category representations that are not
reflected in other measures.

On the other hand, the sensitivity of our rating scale may make
it susceptible to revealing low-level surface differences in our stim-
uli rather than true subcategory representations. For example, in
the current design, our test of subcategory knowledge is the differ-
ence in ratings between familiar strings and strings that contain
one novel bigram (the AX or XB bigram that violates the subcate-
gory structure) and a novel non-adjacency (such as Asypcategory1 —
Bsubcategoryz).s Learners may rate subcategory violation strings lower
because of these differences in surface statistics, which are not pre-
sent in familiar versus novel grammatical strings. However, for a
number of reasons we think it is unlikely that learners are relying
solely on bigram statistics to guide their ratings. Reeder et al.
(2013, Experiment 5A) demonstrated that bigram statistics do not
provide a good account of category learning and generalization:
learners in that study generalized to completely novel bigrams when
there was strong distributional evidence that those word combina-
tions should be licensed based on the category structure of the lan-
guage. Additionally, in the present Experiment 2 we saw that
adjacent and non-adjacent bigram familiarity did not boost ratings
of certain types of ungrammatical, subcategory-violating test strings.
Grammatical novel strings (where either the AX or XB bigram and
the A_B frame were familiar) were rated higher than subcategory
violation “type 1” strings (where either the AX or XB bigram was
familiar, but the A_B frame was unfamiliar). Learners also rated
novel boundary-crossing strings and subcategory violation “type 2”
strings (where the AX and XB bigrams were both unfamiliar but
the A_B frame was familiar) lower than either grammatical novel
or subcategory violation “type 1” strings. These results suggest that
participant ratings are not driven by adjacent bigram familiarity or
non-adjacent bigram frame familiarity (though clearly bigram statis-
tics must play a role in the initial stages of category and subcategory
formation). Other studies of category learning have also found that
learners generalize to novel bigrams if the category structure of
the language licenses it. In a serial reaction time task, Hunt and
Aslin (2010) found that learners were just as fast to produce novel
transitions that were legal category extensions as they were to pro-
duce item transitions that they had practiced during training; but
they were significantly slower to produce novel transitions that vio-
lated the category structure of the grammar. Lastly, work by Schuler
et al. (in press) demonstrates that even when there is large variation
in bigram and lexical frequencies, learners rely on the patterns of
number, density, and overlap of linguistic contexts across words to
determine category representations. Schuler et al. introduced Zipfian
frequency differences in the X-words of the (Q)AXB(R) languages
from Reeder et al. (2013). The words within the X category thus dif-
fered in lexical frequency by as much as a 7:1 ratio; this likewise cre-
ated drastic differences in the bigram frequencies of familiar and
novel grammatical test strings. Despite such bigram frequency dif-
ferences, however, learners relied on the same category-level statis-
tics as in Reeder et al. (2013) to determine whether to form a single
X category and generalize to unseen legal combinations. Taken
together, these results suggest that bigram frequency variations
did not control how learners interpreted the distributional cues to
categories in these previous studies. We therefore believe it is unli-
kely that learners in the present experiments relied on surface-level
cues like bigram frequencies when rating grammatical novel test
items. However, future work should incorporate lexical frequency
variations into subcategory-learning paradigms such as ours to

5 We thank Michael C. Frank and an anonymous reviewer for suggesting this
possibility.
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determine how a distributional learning mechanism handles these
cues.

In related work, Mintz et al. (2014) have also shown that distri-
butional information can be used as the sole cue for category
acquisition. However, they argue that frequent frames (nonadja-
cent dependencies in the form of fixed A_B frames) are necessary
in order to acquire categories and subcategories, and that a high
degree of overlap of contexts across category members is not suf-
ficient for category learning (as we show here). The language in
Mintz et al.’s artificial grammar learning experiments is signifi-
cantly larger than the artificial language used here, making it more
naturalistic but also leading to proportionally larger gaps in the
learner’s input. From this perspective our results are consistent
with theirs: in a sparse sampling of a large language without fre-
quent frames (Mintz et al. (2014), Experiment 2), a learner is
exposed to highly inconsistent overlap of contexts across words.
Our results suggest that learners will not readily group these words
into categories based on such weak evidence from the distribu-
tional information and will restrict generalization based on their
input. This conclusion is supported by the results from Mintz
et al.’s Experiment 2. However, if a language does contain frequent
frames, as in Mintz et al.’s Experiment 1, learners are exposed to
words with a significant degree of overlap across contexts, which
licenses them to collapse the words into a category. Our present
results extend those discussed in Mintz et al. (2014) by showing
that learners can form category and subcategory representations
if exposed to a sufficiently dense sampling of a language with con-
sistent overlap of contexts across words, even when frequent
frames are not present. In our view, this overlap can come in terms
of immediate contexts (A_ or _B), or in surrounding nonadjacent
dependencies (i.e., A_B or frequent frames). We have also demon-
strated elsewhere that nonadjacent dependency learning cannot
fully explain our results. In Reeder et al. (2013), learners encoun-
tered all possible A_B frames during exposure. The results showed
that category learning could not be predicted by amount of expo-
sure to A_B frames. Instead, it was predicted by the amount of con-
textual overlap with each X-word, sampling density, and the
overall size of the exposure set (how often learners encountered
“gaps” in their input).

Returning to the MN/PQ problem, Smith (1969) and similar arti-
ficial grammar learning tasks offer particular types of distribu-
tional cues that are so salient and quickly learned - sometimes
misleading ones, such as absolute word position - that other more
relevant distributional cues might be ignored. Indeed, much of the
early work on category learning showed that positional informa-
tion is just such a cue (e.g., Braine, 1965): if subjects attend to
the salient absolute positions of words (which words occur first
and last) and not the relationships between words or their co-
occurrences, they will overgeneralize in the way that Smith and
others have found. Positional information is so salient in the very
short and length-invariant strings of the MN/PQ problem that a
rational subject might never acquire the dependencies among the
words forming the grammatical subcategories. (Indeed, partici-
pants in that experiment eventually memorized the specific letter
pairs in the exposure before they acquired any dependencies for
generalization.) However, absolute position information is not use-
ful in natural language acquisition: natural linguistic categories are
not defined by their absolute position in a sentence. Rather, the
distributional information that defines natural language categories
and subcategories are their linguistic contexts — the surrounding
words and morphemes with which particular words occur. Indeed,
syntactic categories and subcategories are defined via the use of
distributions: two words with similar distributions (similar
surrounding contexts) belong to the same grammatical category
if they are syntactically interchangeable (Radford, 1988).

It is important to note that Braine’s (1987) correlated cues ver-
sion of the MN/PQ experiment, which added semantic cues, did not
remove the salient positional cue to categories (being first or last in
the two-word sentences). The purpose of the semantic cue was to
signal the subcategories and hence overcome the positional cues to
the main categories. In our own experiments, the optional Q and R
category flankers meant that relative but not absolute positional
information was available to learners: since Q and R could option-
ally begin and end a sentence, the A, X, and B words have relative
but not fixed positions of occurrence. This is more like natural lan-
guages, which do not generally have fixed positions for words or
word categories. Despite using a larger and more complex lan-
guage, then, Experiment 1 demonstrated successful subcategory
acquisition while using similar levels of sampling and context
overlap as in the MN/PQ experiment.

We do not dispute that subcategorization is quicker and easier
when there are multiple cues to the subcategory structure. Indeed,
some subcategories in natural languages have partially correlated
cues to subcategory structure (e.g., Monaghan et al., 2005), and
as described earlier, many investigators have found successful sub-
categorization learning when distributional cues are correlated
with phonological, semantic, or morphological cues (e.g., Gerken
et al., 1999, 2005; Gomez & Lakusta, 2004). Some have also sug-
gested that artificial grammar learning in a semantically-empty
world significantly impairs syntax learning (e.g., Moeser &
Bregman, 1972; though see Arnon & Ramscar, 2012, for evidence
that distributional analyses may be impaired if the learner relies
on some types of semantic cues). All of this evidence clearly shows
that correlated perceptual cues are relevant for categorization
when they are present and that learners can utilize correlated cues
to induce categories in experimental settings.

Our goal is not to suggest that correlated cues have no value
during linguistic categorization, or that only distributional infor-
mation is useful for learning. Rather, our results add to a body of
work that systematically explores how distributional information
can be used in higher-order language acquisition (e.g., Reeder
et al., 2013; Schuler et al., in press). By removing all other cues
in our artificial grammar, we were able to investigate whether dis-
tributional information alone can allow a learner to acquire the
category and subcategory structure of a language. This may explain
how learners acquire arbitrary subclass systems in natural lan-
guages, where non-distributional information is not available, is
very sparse, or is inconsistent with syntactic distribution. Gerken,
Wilson, Gomez, and Nurmsoo (2009) have also suggested that
early failures to find subcategory learning in artificial language
studies may be due to the presence of a referential field that was
irrelevant to category formation. Much like our arguments above
regarding the saliency of positional cues, Gerken and colleagues
have suggested that learners might be overly engaged in learning
the associations between the semantic cues and lexical items
rather than learning the structure of the language. Our experi-
ments utilized an artificial grammar that was free of semantic
and phonological cues in order to show that learners can, in fact,
learn categorical structures without the need for perceptual cues.
Several other examinations of subcategory acquisition involve
morphological paradigm-completion methods for acquiring gram-
matical gender systems (e.g., Cyr & Shi, 2013; Gerken et al., 2005).
While these experiments have the nice feature of utilizing natural
language input, they do so by exposing the learner to isolated
words (stems or their inflected forms), without giving the learner
access to the full linguistic system that surrounds the paradigm.
Our results indicate that the full contexts involved in expressing
such gender systems (both linguistic and extra-linguistic) may pro-
vide enough distributional evidence to create initial subcategories,
even without additional phonological or semantic cues. Future
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work must clarify how different cues work together with a distri-
butional learning mechanism to result in mature category
representations.

Much of the grammatical categorization literature has focused
on identifying the cues that learners rely on, rather than identify-
ing precisely how these cues shape a learner’s underlying category
representation. We believe that the results described here and
elsewhere (e.g., Reeder et al., 2013; Schuler et al., in press) suggest
that learners can and do engage in a rational distributional analysis
of their input in order to arrive at a reasonable representation of
the underlying grammar. This conclusion is supported by modeling
work described in Qian, Reeder, Aslin, Tenenbaum, and Newport
(2012) and Qian (2014). Models that rely primarily on surface
statistics (lexical bigrams) succeed in some types of categorization
and subcategorization problems, particularly when the input has
carefully balanced lexical frequencies and includes a dense sam-
pling of the language (see also St. Clair & Monaghan, 2005; St.
Clair et al., 2010). In Experiment 1, this type of model arrives at
the same grammatical structure as our human participants in
Experiment 1: when given a dense sampling of a language with
complete context overlap within subcategories and no overlap
across subcategories, lexical bigrams provide a significant amount
of information about the subcategory structure, since the AX and
XB bigrams of different X-subcategories never overlap. However,
when given a very sparse sampling of a language (e.g., Reeder
et al., 2013, Experiment 4), when a word only minimally overlaps
with other words in the category (e.g., Reeder et al., 2013, Experi-
ment 5), or when lexical bigram frequencies are not equated (e.g.,
Schuler et al., in press), the lexical bigram model breaks down.
These versions of our artificial grammar are much more like the
complex input that child language learners face. In these circum-
stances, models that hypothesize categories based on category-
level bigrams (category-to-category transitions) better mirror the
sophistication that human learners bring to their distributional
analyses. By adding the ability to represent higher-order category
structures, these models can adjust the granularity of their cate-
gory and subcategory representations in a rational way based on
the evidence (or lack thereof) that generalization is warranted,
much the same way that adult learners behave across the Reeder
et al. (2013) and present experiments. Though in the present paper
we are not proposing a full model of category and subcategory
acquisition, we believe that our results add to the body of literature
suggesting that humans have a rational distributional learning
mechanism which operates over multiple levels of analysis
(surface-level and category-level) and can use the gaps in the input
(or lack thereof) to determine when to generalize and when to
restrict generalization.

Overall, our results add to a body of work highlighting the rel-
evant distributional cues for forming initial categories and subcat-
egories. However, there remain many unanswered questions about
the details of the relevant distributional learning mechanism. First,
our experiments do not clarify whether learners start with a
“coarse grain” of representation and refine their category represen-
tations as they gain more evidence from the input, or whether they
start with narrow category representations and eventually collapse
words into broader categories once the evidence warrants. It is
possible that a series of between-subjects experiments, each test-
ing learners’ representations after a particular amount of exposure,
could address this question. Another approach would be to use a
paradigm (as in Hunt & Aslin, 2010), which allows an online mea-
sure of the timecourse of learning, like serial reaction time, mouse-
tracking, or anticipatory eye-tracking.

Additionally, the present experiments were conducted with
adult participants; it is important to ask how young learners utilize
distributional information, given their more limited cognitive
resources. Schuler, Reeder, Lukens, Aslin, and Newport (in

preparation) found that 5-7 year old children behave much the
same as adults when acquiring the major categories of the
Reeder et al. (2013) (Q)AXB(R) grammar. However, experiments
using the more complex category and subcategory representations
of the present paradigm, or experiments using highly unbalanced
lexical frequencies as in Schuler et al. (in press), have not been
done with children. Behavioral research with infants does suggest
that these very young learners can utilize distributional informa-
tion to create higher-order linguistic representations (e.g., Zhang,
Shi, & Li, 2014). Future work is needed to determine whether
young learners utilize the full array of distributional cues that we
have explored in the present research.
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