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ABSTRACT
Studies investigating individual differences in reading ability often involve data
sets containing a large number of collinear predictors and a small number of
observations. In this article, we discuss the method of Random Forests and
demonstrate its suitability for addressing the statistical concerns raised by such
data sets. The method is contrasted with other methods of estimating relative
variable importance, especially Dominance Analysis andMultimodel Inference.
All methods were applied to a data set that gauged eye-movements during
reading and offline comprehension in the context of multiple ability measures
with high collinearity due to their shared verbal core. We demonstrate that the
Random Forests method surpasses other methods in its ability to handle
model overfitting and accounts for a comparable or larger amount of variance
in reading measures relative to other methods.

Multivariate data sets are the chief currency of reading research. Such data sets are characterized by a
large number of predictors p (usually over 10) and a relatively small number of observations n
(frequently below 100), where each observation is an aggregate measure of an individual’s behavior
(e.g., mean response time or a cumulative test score). This “small n large p” problem overshadows
analytical strategies for the entire field of research, because if left untreated it causes overfitting and the
concomitant loss of generalizability in statistical models. One common attempt to address this problem
is to reduce p through removing variables, merging of variables into composite scores, or the use of
components or factor analyses. Although valuable, this type of data reduction can preclude interpreta-
tion of results in terms of the relative contributions of original predictors and often requires exclusion
of hard-won data. Moreover, it minimizes the usefulness of compiling comprehensive test batteries
aimed at assessing the contribution of multiple reading-related abilities and of making theoretical
advances that rely on the knowledge of which specific abilities and skills underlie reading performance
for the given population.

The core of this article is an overview of exploratory statistical techniques geared toward estimating
the relative importance of variables in studies of reading performance.1 This goal follows the tenets of
exploratory statistics in that it uses a bottom-up data-driven approach that can guide hypothesis building
and hypothesis testing in a formal confirmatory procedure. This goal has both theoretical and practical
advantages. On a practical level, this enables a more efficient choice of skill assessments in both research
and clinical settings (Blalock, 1961). This is crucial when studies have resource limitations that preclude
the use of multiple assessments for a single construct. Moreover, a theory-blind method can be
particularly important when utilizing assessments of complex skills (e.g., Reading Comprehension,
Oral Language ability, Executive Function), as any particular assessment may emphasize specific
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component dimensions of the skill over others (cf. Francis, Fletcher, Catts, & Tomblin, 2005; Keenan,
Betjemann, & Olson, 2008; Nation & Snowling, 1997). At a theoretical level, information about the
relative import of predictors provides a foundation for developingmore thoroughly articulatedmodels of
reading behaviour. For example, although the construct of working memory plays a strong role in most
theories of reading comprehension, there is now growing evidence that its supposed import has come
about because of shared variance between typical assessments of the construct and other measures
(Hamilton, Freed, & Long, 2013; Traxler et al., 2012; cf. Van Dyke, Johns, & Kukona, 2014, for detailed
discussion.)

Examination of the relative importance of variables is not new to the field of reading research and
is commonly implemented through hierarchical or simultaneous regression techniques (e.g., Catts,
Fey, Zhang, & Tomblin, 1999; Jenkins, Fuchs, Van Den Broek, Espin, & Deno, 2003). In what
follows, we contrast the Random Forests method with the family of (generalized) linear regression
methods that subsume the former techniques, namely, (a) Dominance Analysis (also known as
Shapley value regression or hierarchical partitioning; Budescu, 1993; Chevan & Sutherland, 1991;
Lipovetsky & Conklin, 2001; Shapley, 1953; Stufken, 1992) and (b) Multimodel Inference (Burnham
& Anderson, 2002). Random Forests is a nonparametric classification and regression method
(Breiman, 2001; Strobl, Malley, & Tutz, 2009) that has so far not gained much attention in the
reading field, although it has been utilized in psycholinguistic research (cf. Tagliamonte & Baayen,
2012). Although the discussion of methods for obtaining a meaningful and accurate index of relative
importance has been ongoing for decades (e.g., Darlington, 1968), the current consensus is that there
is no single “best” solution available (Grömping, 2009; Johnson, 2000). Nevertheless, we find that
these methods differ drastically in their ability to address two issues critical for the validity of
statistical analyses, namely, model overfitting and collinearity (a more detailed discussion than the
current space allows is available in Supplemental Materials S1). We conclude that the Random
Forests method outperforms the others in its ability to overcome statistical issues typical of reading
studies.

To contrast these methods we use a data set that includes a skills battery comprising 15 subtests,
which we aggregate in two ways to manipulate the number of predictors in the analyses. Similarly,
our behavioural measure consists of eye-movements collected while reading text passages. These are
also aggregated differently for our two analyses. In so doing, we vary the parameters that influence
the severity of model overfitting. In both cases, however, the issue of collinearity of predictors
persists, as it must in all reading research because of the common verbal or cognitive core among
reading-related skills. Thus, the extent to which the contrasted methods address the collinearity issue
becomes especially important when weighing their usefulness for reading research.

Dominance analysis and multimodel inference

These methods represent two examples of alternative approaches for estimating variable importance
(see Supplemental Materials S2 for a more detailed presentation). In Dominance Analysis, model
variance (R2) is decomposed via a method that averages across all possible ways that the contribution
of each predictor can be calculated (see Tighe & Schatschneider, 2014, for a review). In other words,
Dominance Analysis subsumes methods based on both hierarchical regression and simultaneous
regression. Multimodel Inference is similar in that it uses all combinations of p predictors to
construct a power set of 2p linear models fitted to a dependent variable (Burnham & Anderson,
2002). Whereas Dominance Analysis gives an equal weight to each model, Multimodel Inference
weighs each based on its goodness-of-fit (commonly, the Akaike Information Criterion corrected for
the finite sample size). For each predictor, summing all the weights of the models in which predictor
appears defines how important the predictor is. By examining the set of all possible models, both
these methods work around the issue of collinearity; however, the Dominance Analysis method does
not address the problem of overfitting. If the ratio of model parameters to observations is too high,
all models will have poor ability to generalize (i.e., predict unseen data) and their fit will be affected
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too strongly by random noise in the specific data set. The Multimodel Inference method does offer
some protection against overfitting (Burnham & Anderson, 2002) because it takes into consideration
the amount of evidence that a given model is the best-performing model in the set; however, this
may be insufficient to control overfitting when the majority of models have many more parameters
than can be reliably estimated (see the following for the case of p = 19, n = 51). Thus, although the
method represents an improvement over Dominance Analysis, it is still vulnerable to overfitting in
“small n large p” situations.

Random Forests

The method of Random Forests is a generalization of the decision tree method, in which the data
space is recursively partitioned (usually a binary split) according to the value of one of the predictor
variables, such that the observations within a partition become more and more homogeneous.
Figure 1 provides an illustration of a decision tree based on Analysis 1 discussed next. Random
Forests builds multiple decision trees using a random sample of observations for each tree and
(at each split point) random samples of predictors. The resulting forest of those trees provides fitted
values, which are more accurate than those of any single tree (Breiman, 2001). Moreover, the
Random Forests method comes with a built-in protection against overfitting by using part of the
data that each tree in the forest has not seen to calculate its goodness-of-fit. Variable importance is
assessed by randomly permuting the values of one predictor across all trees and estimating the loss in
prediction accuracy of the forest: Little loss implies low importance. For a detailed description of the
decision tree and Random Forests method, see Supplemental Materials S3.

Whereas the relative importance metrics obtained from Dominance Analysis or from Multimodel
Inference are independently interpretable (e.g., amount of explained variance), the metric of variable
importance obtained from the Random Forests model is contingent on the scale of the dependent
variables and other parameters. Thus, Random Forests’s estimates of variable importance can only be
interpreted comparative to each other, rather than as absolute values (Strobl et al., 2009).
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Figure 1. A decision tree fit to a random bootstrap sample of the eye-movement data (see Analysis 1). Note. Nodes 1 and 2
represent split points that are optimal for this random sample (score of 57 in the Sight Word Efficiency test and 10 in the Author
Recognition Test (ART). Terminal nodes (3–5) report the number of data points in each partition. The tree in Panel A corresponds
to the partitions shown in Panel B. The box plots at the terminal nodes of the tree in Panel A display the distribution of mean total
reading time of the data points that fall into the corresponding partition in panel B. The values under the node labels in Panel B
represent the fitted values. The decision rule for Node 3 (the leftmost branches) corresponds to “If SightWordEfficiency ≤ 57, and if
ARTScore ≤ 10, then mean total reading time = 380 ms.”
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Worked examples

In what follows we demonstrate that Dominance Analysis, Multimodel Inference, and Random
Forests vary in their treatment of overfitting when applied to a typical multivariate data set collected
to study individual variability in reading behavior. We report the performance of the methods in the
data set in two ways. In Analysis 1 we averaged eye-movements by participant, introducing potential
overfitting due to the low number of observations and a high number of predictors. In Analysis 2,
word (or passage) served as the unit of analysis and no aggregation was applied, which allowed for a
direct comparison of methods unencumbered by overfitting.

Methods

The study uses data from 51 undergraduate students (40 female; ages ranging from 17 to 27), who read
texts from the Gray Oral Reading Test 4 (GORT; Wiederholt & Bryant, 2001) for comprehension while
their eye-movements are monitored. Participants also completed a battery of cognitive and verbal skills
that assessed word-level reading, phonological processing, processing speed, reading experience, and
IQ. These are enumerated explicitly in Table 1; see Methods in Supplemental Materials S4 for full
details. As these tests are commonly assessed in reading research, we expected that the collinearity
index among them would typify that found in many reading studies.

Dependent variables

Eye-movements provide a rich, multidimensional record of online reading behaviour (Rayner, 1998).
For our current analyses, we consider only two of the many eye-movement measures as dependent
variables, both based on the word as the unit of analysis: total reading time, which is the most
general measure of word-level reading time (comprising the summed duration of all fixations on the
word) and skipping. This choice was guided by our desire to include a continuous variable (total
reading time) and a binary variable (skipping) so we could illustrate the use of two different
generalized linear regression modeling types, that is, multiple regressions with a Gaussian and a
binomial underlying distribution. As a third dependent variable, we consider comprehension scores,
calculated as the sum of the participant’s correct responses to five questions following one of five
GORT passages presented for reading (maximum 5 data points per participant per passage, with a
value range [0:5] of each data point). Because some passages were not completed by individual

Table 1. Labels and corresponding skills assessed.

Label Construct
VocabScore Vocabulary Size
SightWordEfficiency Sight Word Efficiency (TOWRE-2)
WordDecoding Phonemic Decoding Efficiency (TOWRE-2)
ReadEfficiency Reading Efficiency composite score (TOWRE-2)
RANLetterNameTime, RANNumberNameTime Rapid Automatized Naming
RANNameTime Rapid Automatized Naming (composite of RANLetterNameTime and

RANNumberNameTime)
MRTScore, ARTScore Print Exposure
PrintExposure Print Exposure composite of MRTScore and ARTScore
TimeSpentReading Subjective measure of Reading Habits
ReadingSpeed
ComplexityMaterial
UnderstandingMaterial
ReadingEnjoyment
WasiVerbalIQ IQ (WASI)
WasiReasonIQ
WasiFullIQ
Complex Text Complexity (GORT)

Note. For complete details of instruments used, see Supplemental Materials S4.
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participants, the total number of available scores was 243. As comprehension scores represent count
data, we use them to illustrate the use of the generalized linear regression with a Poisson distribution.
Taken together, comprehension accuracy and eye-movement measures provide a detailed time
course of both online reading behavior and its end result, that is, comprehension of continuous text.

Independent variables

The skill test battery contained widely used standardized assessments (see Supplemental Materials S4
for details). Table 1 presents the labels used to refer to these assessments throughout the paper.

For illustrative purposes, we confine ourselves to considering only these participant-level variables,
although it is recognized that text-level variables, such as word length, frequency, and predictability,
also affect eye-movements. A detailed investigation of the interactions among these variables is beyond
the scope of this article.2

Results

The original data contained 33,455 data points. After trimming, we analyzed the data pool of 16,584
data points for skipping and the data pool of 12,890 data points (not skipped during reading) for
fixation durations (and derivative measures like total reading time). The trimming procedure, as well
as descriptive statistics and the correlation matrix for the scores obtained for the skill test battery, is
available in Supplemental Materials S5.

Analysis 1: model overfitting

The count of 14 predictor variables in the current data set is by no means exceptional for reading
research, yet it poses problems for regression modeling. The number of models to be considered in
Dominance Analysis and Multimodel Inference is 2p—1 and 2p, respectively, where p is the number
of estimable parameters in the model (see Supplemental Materials S2). For p = 19 (i.e., 14 parameters
for individual skills, four for contrast coefficients of complexity, and one for intercept) this translates
into half a million regression models, which is computationally demanding. This is less problematic
for the Random Forests method, because the number of trees to be fitted is controlled by the user
defined parameter ntree.

One notable statistical property of the linear regression model with 19 predictors is rampant
collinearity (see Supplemental Materials S5, Figure S1, for correlations between all pairs of the 14
participant-level predictors). One common way of quantifying collinearity among predictors is
referred to as condition number (Harrell, 2001). A value of 30 is held up as a threshold signalling
“potentially harmful collinearity” (Baayen, 2008, p. 182; Dormann, Elith, Bacher, Buchmann, & Carl,
2012). In our data set, the value of condition number is 102.94, a level that is problematic for the
accuracy of all methods that rely on a single (best) regression model: The problem is alleviated for
Dominance Analysis, Multimodel Inference, and Random Forests (see Supplemental Materials S2).

An additional problem with regression models is that the large number of predictors necessitates a
large number of observations to avoid overfitting. For instance, a multiple regression model with 15
estimated parameters (14 coefficients for continuous predictors and the intercept) would require 225
observations, according to Harrell’s (2001) guideline. Although eye-tracking data analyzed at the word
level easily meets this requirement (more than 12,000 observations), and so do comprehension scores
aggregated per passage (243 observations), the data averaged by participant (51 observations), as we
have done for this example, would not. Yet virtually all indices of individual differences produce a single

2In Matsuki, Kuperman, and Van Dyke (2015) we use the Random Forests technique to establish relative variable importance in the
joint pool of participant variables, which gauge individual differences and text variables at the level of word (length, frequency,
contextual predictability), sentence (word position in a sentence, word’s syntactic role), and passage (text complexity).
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observation per participant: either a score on a test or an average of performance over sets of trials.
Hence, a typical data set with per-participant scores like the one we present here can be used only to
reliably estimate two to three parameters of the regression model, one of which is the model’s intercept.

To illustrate this problem, we fit a linear regression model with 15 estimated parameters to total
reading time aggregated by participant, which yielded 51 data points. With this model, we conducted
the bootstrapping validation procedure in which a linear model with the same structure was fitted 200
times, each time to a different random training sample drawn with replacement from the 51-point data
set. The degree of model overfitting was assessed via the measure called optimism (Harrell, Lee, &
Mark, 1996), which is the difference between the average R2 of the models fitted to the random
training samples and the average R2 of the same models fitted to the testing set (consisting of the entire
sample). Although the average R2 of the training models was 0.53, the average R2 for the testing set was
−0.11. The extremely high value of optimism (i.e., the discrepancy between the training set and the test
set) of 0.64 indicates that linear regression models grossly overfit the data in the “small n large p”
conditions and provide terrible fit to unseen data. Validated estimates of the mean squared error,
intercept, and slope showed a similarly large degree of optimism.

The remainder of this section demonstrates that the Random Forests method is able to provide
meaningful estimates even when applied to the smallest data pool resulting from aggregation over each
participant. We trained the Random Forest model using mtry (the number of predictor variables to be
sampled as candidates at each split point) of 5 and ntree of 1,000 (see Supplemental Materials S3
for further description). We assessed the optimism of the Random Forest model with the same
bootstrapping validation with exactly the same bootstrap samples as just described. The average R2

of the training models was 0.12 and that of the testing set was 0.15. The optimism of –.03 suggests that,
unlike linear regression models, the Random Forests method does not have the problem of overfitting
in the “small n large p” setting, as its fits to testing and training data sets are stable. If anything, the
method slightly underestimated its predictive power for unseen data.

Figure 2 presents the relative importance of variables as applied to the by-participant mean total
reading time, pointing to a word reading measure (Word Decoding) and subjective measures of
reading habits (UnderstandingMaterial and ReadingSpeed) as the most important predictors of
mean total reading time. This result is consistent with research on eye-movement control, which
has implicated word identification as a primary cause of differences between emerging and proficient
readers (Kuperman & Van Dyke, 2011; Reichle et al., 2013).

Analysis 2: adequate predictor-to-observation ratio

To further contrast the methods under consideration, we reduced the number of predictors so that the
Dominance Analysis, Multimodel Inference, and Random Forests methods can be compared directly.
The reduction was done by creating composite scores from the separate subtests of standardized
measures and, in the case of the subjective reading habit measures, selecting a few key predictors based
on a preliminary correlational analysis (not reported). This resulted in eight participant-level variables
(see Table 1 and Supplemental Materials S4 for full details): WasiFullIQ, ReadEfficiency,
PrintExposure, ReadingSpeed, UnderstandingMaterial, ComplexityMaterial, VocabScore, and
RANNameTime. Text complexity (Complex) was included as a ninth independent categorical variable
with five levels. The correlations between predictors in this set were lower overall (see Supplemental
Material Table S1 for the full table), with condition number of 54.18 (compared to 102.94 in Analysis
1). We note that collinearity may still be an issue for single regression models, as this value is still larger
than the common threshold of 30, which signals potentially harmful collinearity.

We avoided the problem of overfitting in this analysis by choosing the word (or passage, for
comprehension) as the unit of analysis for the eye-movement data, such that all eye-movements to a
given word (passage) would be included in the model, rather than an average value by word. Thus,
the resulting data represented both the individual differences and linguistic variability. This yielded
12,890 data points for total reading time, 16,584 for skipping, and 243 for comprehension scores. In
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what follows we compare the relative importance of predictors of these three dependent variables as
estimated by six different metrics; the first three are derived from single regression models. The first
is the absolute value of standardized beta coefficients (|β|).3 The second metric is single-R2, which is
the amount of variance explained by a regression model with only one predictor. The third metric is
unique-R2, which corresponds to the increase in R2 from a model with all but one predictor to a
model with all the predictors. As described earlier, this way of calculating variable importance is
commonly used when the simultaneous regression method is applied. The fourth metric is based on
Dominance Analysis. The fifth presents relative importance as obtained with the Multimodel
Inference. The sixth metric is the estimate of permutation importance yielded by Random Forests
using conditional inference trees.

Models

To model continuous (log total reading time), binary (skipping), and count (comprehension
scores) data, we used generalized linear mixed-effects regression models with Gaussian, binomial,
and Poisson distributions, respectively. Participant-level random intercepts were included to
account for within-participant dependencies in the data: As mentioned previously, we do not
account for word-level variability in fixed or random effects in this article and consider it
elsewhere (Matsuki et al., 2015). Because the Random Forests method is nonparametric, no
specific distribution had to be defined (see Supplemental Materials S3). The Random Forests
with conditional inference trees are not currently equipped to model random effects or to
accommodate clustered data (cf. Hajjem, Bellavance, & Larocque, 2014; Karpievitch, Hill,
Leclerc, Dabney, & Almeida, 2009). However, the type of predictors used in the current study
(i.e., all but Complex are participant-level predictors) automatically makes the trees in the
forests treat observations as nested under participants, such that the observations from the same

ReadingEnjoyment

SightWordEfficiency

TimeSpentReading

WasiReasonIQ

VocabScore

RANLetterNameTime

ComplexityMaterial

WasiVerbalIQ

ARTScore

MRTScore

RANNumberNameTime
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−50 0 50 100 150

Variable Importance

Figure 2. The relative importance of variables obtained from a Random Forests model applied to the by-participant mean total
reading time in Analysis 1.

3Text complexity is not included as a predictor in these models because it requires 4 regression coefficients.
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participant (or at least their subsets with the same level of Complexity) would always end up in the
same terminal node. All the Random Forests models in Analysis 2 were trained using mtry of 3
and ntree of 1,000. Several methods that we use are based on partitioning explained variance
(i.e., Dominance Analysis, single-R2 and unique-R2). Although there are many ways to calculate R2

for mixed-effects models, we used marginal R2 (or the proportion of variance explained by fixed
effects alone) introduced by Nakagawa and Schielzeth (2013), as it is easily and equally applicable
to models of different distributions.

Goodness of fit

We compared the goodness of model fit using three methods of estimating predictors’ relative
importance—Dominance Analysis, Multimodel Inference, and Random Forests. To have compar-
able statistics across methods, we calculated proportion of explained variance as either (a) the
squared coefficient of the correlation between the observed and predicted data from the model of
interest (corresponding to R2) for continuous data, or (b) the squared coefficient of the correlation
between the observed data and predicted probability from the model of interest (corresponding to
pseudo-R2 of Efron, 1978) for binary and count data. For Dominance Analysis and Multimodel
Inference, we calculated the proportion of explained variance from the full regression model (a
linear model in which all the predictors are used simultaneously) as the upper bound for the
methods.

Predictions for unseen data

We further evaluated the ability of models to predict unseen data. Because linear regression based
models do not come with a “built-in” test sample that can be used for an unbiased estimate of the
goodness-of-fit, unlike Random Forests, goodness-of-fit values calculated from linear regression
based methods could be biased (see our use of the optimism value in Analysis 1). To obtain unbiased
estimates of goodness-of-fit for all the models using the identical procedure, we opted for validation
through repeated random subsampling, where data are split into a training subset (70% of the
original) and a test subset (30%); the model is trained on the training subset, and its goodness-of-fit
to the test subset is calculated. The resulting goodness-of-fit is averaged over 100 splits.

Discussion

Figures 3 to 5 display the outcome of the six methods side by side for each dependent measure. In
each figure, the order of predictors on the y-axis follows the values of unique-R2, as this measure is
commonly used to assess variable importance.

Total reading time

As Figure 3 demonstrates, the pairwise agreement among the six metrics has some variability, but is
relatively high overall (in pairwise comparisons of ranked variable orders, mean Spearman’s ρ = .71,
range = .43–.98). The metrics based on unique-R2, Dominance Analysis, and Multimodel Inference
agreed with one another highly in terms of ranking, favoring Text complexity (Complex) as the most
important predictor. The ranking based on Random Forests method is in modest agreement with all
the other methods (M ρ = .65, range = .45–.78).

Goodness-of-fit indices show that the linear mixed-effect regression based methods and Random
Forests explain approximately the same amount of variance (R2 of .075 vs. .080 based on the test
data; see Table 2). Although amounts of explained variance are overall quite low in Analysis 2, it is
worth noting that they are obtained from a very large data set (12,890 observations) of inherently
noisy eye-movement data where each predictor offers one value for all observations associated with a
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given participant (e.g., participant’s IQ; an average of 253 observations per participant) or a given
text (e.g., text complexity; an average of 2,578 per text complexity level). Moreover, strong sources of
text variability have not been modeled (e.g., word length, frequency, predictability). In Analysis 1
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importance measures from Dominance Analysis (DA), Multimodel Inference (MMI), and Random Forests (RF). Numbers inside
panels indicate the predictor’s importance rank within the predictor set.
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Figure 4. Relative importance of predictors of word skipping during text reading, estimated by six statistical methods. Note. Six
metrics compared are the absolute value of standardized beta coefficients (|β|), the amount of variance explained by a regression
model with only one predictor (Single), the increase in R2 from a model with all but one predictor to a model with all the
predictors (Unique), and variable importance measures from Dominance Analysis (DA), Multimodel Inference (MMI), and Random
Forests (RF). Numbers inside panels indicate the predictor’s importance rank within the predictor set.
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where data are aggregated by participant, the predictor to observation ratio is 1:1, so more variance
can be explained.

Skipping

As Figure 4 shows, the sixmetrics are generally in agreement with one another (M ρ = .84, range = .62–1.0).
Across all metrics, vocabulary size, text complexity, self-assessed reading speed and reading efficiency
measures based on TOWRE-2 appear to be particularly important determinants of an individual’s skipping
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Figure 5. Relative importance of predictors of GORT comprehension scores. Note. Six metrics compared are the absolute value of
standardized beta coefficients (|β|), the amount of variance explained by a regression model with only one predictor (Single), the
increase in R2 from a model with all but one predictor to a model with all the predictors (Unique), and variable importance
measures from Dominance Analysis (DA), Multimodel Inference (MMI), and Random Forests (RF). Numbers inside panels indicate
the predictor’s importance rank within the predictor set.

Table 2. Proportion of variance accounted for by the models.

Dependent variable
sample used

Upper-bound for the
regression-based models

Random
forests

Total reading time
All .083 .082
Test .075 .080

Skipping
All .029 .027
Test .022 .026

Comprehension score
All .236 .174
Test .171 .173

Note. The R2 of the full regression model with all predictors is reported as the upper bound
for Dominance Analysis and Multimodel Inference. The R2 values for the All sample are
based on the models trained on the entire data set and are calculated based either on the
models’ fitted values to the entire data set (for full regression model), or on the model’s
prediction to the out-of-bag samples (for Random Forests). The R2 values for the Test
sample are based on the models trained on the 70% random training subsamples and are
calculated using the models’ prediction to the remaining 30% testing subsamples,
averaged over 100 runs.
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rate. Once again, the linear mixed-effect regression and Random Forests show similar fit to the data (R2 of
.022 vs. .026 based on the test data, see Table 2).

Comprehension score

All metrics converged on GORT text complexity as the most important variable in determining
reading comprehension (see Figure 5). Other important predictors included RAN naming time and
the print exposure score. All six metrics were generally in agreement in ranking (M ρ = .90, ranging
from .69 to 1). Once again, the linear mixed-effect regression and Random Forests provided equal
fits to the data (R2 of .171 vs. .173 based on test data).

General discussion

Our findings point to the Random Forests classification method as a reliable method, capable of
addressing the “small n large p” problem. Analysis 1 demonstrated this for a multivariate data set that
combines eye-movement measures and comprehension scores as dependent variables and outcomes of
a large test battery of predictors, i.e. a data set with a very low ratio of predictors (19 estimated model
parameters) to observations (51). The Random Forests method evaluated the relative importance of all
predictors in the dataset without data reduction and without overfitting (i.e. low optimism value): it
also offered protection against the impact of rampant collinearity between predictors. Methods that we
compared against Random Forests were based on linear regression and, as became evident in Analysis
1, were strongly affected by the “small n large p” problem of overfitting and further encumbered by
collinearity.

Analysis 2 compared methods against non-aggregated data analyzed at the word-level and
passage-level, where the large size of the data set removed the threat of overfitting. Different methods
converged on similar estimates of the relative importance of predictors of skipping rate and
comprehension scores (Figures 4 and 5). Despite their inability to incorporate random effects as
implemented in the mixed-effects models, Random Forests treated observations as nested under
participants and consistently explained approximately the same amount of variance than the upper-
bound of the linear regression-based methods (see Dilts, 2013; Hajjem et al., 2014; for similar
observations). The advantage that Random Forests demonstrates in both the ability to handle the
“small n large p” data set (Analysis 1) and its equally strong performance compared to other methods
in a much larger data set (Analysis 2) suggests that this method is an excellent solution for the
specific statistical goal examined here, i.e. to assess variable importance among a battery of highly
collinear assessments in data sets that vary in size, nature of aggregation and the predictor-to-
observation ratio. In sum, we recommend the use of the Random Forests method for establishing the
relative importance of variables in exploratory studies of reading behavior. We further recommend,
where data allow, to avoid data reduction and use raw, non-aggregated data on the single trial level: a
dramatic increase in the sample size (from 51 to over 12,000 observations) is a better solution to the
“small n large p” problem than data reduction methods that diminish interpretability and general-
izability of results.

While the practical utility of Random Forests is demonstrable, it is important to characterize what
theoretical questions Random Forests are and are not designed to address. What can Random
Forests not do? The Random Forests method considers the structure in the set of independent
variables to be flat, that is, the Random Forests model does not assume (nor can it implement) any
causal or correlational dependencies between those variables. In this fundamental premise, the
Random Forests method differs from any method that requires an a priori theory about hierarchy
in the data structure: this includes Structural Equation Modeling with its notion of latent variables,
and hierarchical regression with its theoretically driven ordering of variables. In our data, most
variables are individual tests, and so the outcome is the metric of relative importance of those tests.
However, an approximation of latent structure is possible with the Random Forests method still, if a
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researcher provides composite scores that represent theoretically determined blocks of variables
(e.g. composites of measures of oral comprehension, phonological awareness, RAN, etc.). In this
case, relative contributions of entire components of reading ability to predicting reading behavior
can be evaluated, though not the dependencies between such components.

What can Random Forests do? First, the Random Forests method is an excellent tool for data-driven
identification of variables of importance that are overlooked in the literature. For instance, the present
data identify subjective measures of reading habits as more influential than rapid automatized naming
measures in our cohort of skilled readers, even though the latter measures are discussed in thousands of
papers (cf. meta-analysis by Swanson, Trainin, Necoechea, & Hammill, 2003), while the former are
hardly explored at all (Acheson et al., 2008 and references therein) but are in line with predictions of
existing models of eye movement control in reading (Reichle et al., 2013). Also, Figures 3–5 reveal a
strong role for the TOWRE reading efficiency measures (sight word efficiency and decoding) in
predicting eye-movements in skilled undergraduate readers. This is despite the widespread assumption
that word reading efficiency has reached the ceiling level for those meeting admission criteria for most 4-
year universities. Second, studies of reading often represent hypothesized latent constructs by multiple
redundant individual tests. The Random Forests enables reduction of this redundancy, and the selection
of a subset of tests that predict the data most strongly. This is of crucial importance when testing time is
limited. Finally, the Random Forests method offers the theoretically attractive possibility of an inductive
process whereby latent constructs (i.e., components of reading behavior) are hypothesized by the
researcher on the basis of individual tests that are identified as important predictors of reading behavior
in a theory-free way. This “reverse-engineering” process is conceptually similar to one that researchers
apply when considering the results of a principal components or a factor analysis, where the goal is to
induce a theoretical explanation for why individual tests load on one component/factor and not another.
To give an example from Analysis 1 in the present data, the fact that both decoding (nonword reading)
and sight word efficiency (word reading) come out on top of the variable importance ranking, whereas
vocabulary size is relatively low in the ranking, suggests a strong role of phonological awareness and
decoding skills. If word reading and vocabulary size came out on top, with nonword reading lower in the
list, that would suggest a much stronger role of word knowledge, with a reduced influence of decoding
skills.

To summarize, identification of variable importance affords new insights into the structure of the
data and sheds new light on extant theories of reading. The recently developed statistical method of
Random Forests enables researchers to garner these insights while overcoming the typical limitations
of data sets common in studies of individual variability of reading.
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