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1. Introduction

Nonlinear physics provides us with powerful concepts to ex-
plore the fundamental laws of biological systems. For example,
it has been shown that the dynamics of predator-prey systems
is determined by limit cycle attractors while the competition be-
tween and cooperation among species is governed by the interplay
between stable and unstable fixed point attractors [1]. In view
of the general applicability of nonlinear physics concepts, it does
not come as a surprise that in a variety of studies they have
been applied to perception-action phenomena as well {2-7]. How-
ever, relatively little attention has been devoted to approach the
plasticity of perception-action systems from the nonlinear physics
perspective. Although it has been demonstrated that learning of
perception-action tasks involves the emergence of attractors and
self-organized states {8-13], to the best of our knowledge a non-
linear physics account for the fundamental and clinically relevant
prism adaptation paradigm has not been developed so far.

Prism adaptation is a striking and much-researched example of
a self-organized behavioral and cognitive re-organization process
{14-17] that features clinically relevant bio-markers [18]. As such,
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prism adaptation is a fundamental form of learning that involves
the visuo-motor system. It is believed that such motor learning
processes involve changing synaptic connections «; of neural net-
works [19], where x; may be decomposed into a fixed part «;¢
and a variable part di(t): x;(t) = ki o + d;i(t). Synaptic connections
ki are believed to change due to appropriate excitations. In our
context, feedback signals x on the behavioral level can be regarded
as sources of such excitations. However, changes in «; affect mo-
tor behavior and in doing so change the aforementioned feedback
signals. Consequently, adaptation involves a circular causality loop
that involves both behavioral, environmental, and neural levels.
Motor performance and feedback result in changes of the connec-
tivity matrix of neural networks. The changing connectivity matrix
results in changes of motor performance and feedback.

The fundamental prism adaptation paradigm not only consists
of the adaptation process but typically involves three types of pro-
cesses: the baseline process, the adaptation process when subjects
are wearing prisms and adapt to the perturbed perception-action
system, and the re-adaptation process when subjects have nor-
mal vision again (prisms off) but experience the aftereffect of the
adaptation process, see Fig. 1. Adaptation and re-adaptation pro-
cesses can be monitored on the basis of performance measures.
Wearing prisms perturbs the perception-action system such that
performance errors occur. For example, when participants attempt
to throw a ball to a target, a systematic performance error occurs.
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Fig. 1. (a) llustration of baseline, adaptation and re-adaptation processes studied in the fundamental prism adaptation paradigm. (b) Two kinds of re-adaption processes
oceur when the context is changed across adaptation and re-adaptation phases. Context changes may be realized by attaching and detaching weights on the throwing arm

[21}.!

This performance error vanishes during the adaptation process.
When participants remove the prisms, the perception-action sys-
tem is still adapted to the perturbed conditions which implies a
further systematic performance error. This aftereffect error is in the
direction opposite to the direction of the first encountered perfor-
mance error (see Fig. 1 again).

Using an extended prism adaptation paradigm, it has been
shown that re-adaptation processes are context-dependent [20,21].
When experimental conditions are changed across adaptation and
re-adaptation processes (i.e., when the context under which the re-
adaptation occurs differs from the context under which the adap-
tation occurred), then re-adaptation is only partial, see Fig. 1 panel
(b). During this partial (or primary) re-adaptation process the per-
formance error vanishes. However, when experimental conditions
are reinstated, the performance error occurs again and another
(secondary) re-adaptation process is triggered.

As we will show next it is worthwhile to discuss the secondary
aftereffect in the context of memory phenomena. A number of ex-
perimental results have suggested that a parallel should be drawn
between aftereffects of prism adaptation and memory phenomena
(e.g., [22]). The parallel is most particularly evident in respect to
long-term priming or implicit memory, a kind of priming/memory
observed under conditions in which incidental study is followed
by an indirect test. Study or training is incidental in a memory ex-
periment when conditions (typically instructions) orient attention
to an information-processing goal different from that of remem-
bering the presented materials. A memory test is indirect in an
experiment when conditions orient attention to a current activity
involving (surreptitiously) the material at study without drawing
attention to the prior incidence of study. In prism adaptation, the
learning in training (the adaptation) is incidental to trying to per-
form an act successfully. The test (for the adaptation) is indirect
in that it simply has the person attempt to perform, again, the
specified act successfully. One major view of long-term priming
or implicit memory is that its magnitude depends on the kinds
of processes and conditions shared between the original experi-
encing of an event (call it ‘study’) and the subsequent testing of
the memory for that event (e.g., [23-26]). The central thesis is
that whether a given condition of study/training leads to good or
poor memory performance depends on the type of test. Experi-
ments suggest that memory performance is maximal when study
and test are fully symmetric, that is, when for a given event or
fact study and test engage the same mental operations in the same
circumstances. Conversely, memory performance is less than maxi-

! In the study by Fernindez-Ruiz et al. [21} the influences of the prism and at-
tached weight on throwing can be considered to be orthogonal, e.g., whereas prism
deflects throws leftward or rightward, the attached weight does not deflects throws
in left-right directions (it might deflect throws inward, closer to the thrower). The
dynamics described are for the leftward-rightward changes in throwing.

mal when there is an asymmetry between study and test. A simple
change in format from incidental study to indirect test suffices to
reduce memory performance, for example, in the case of words,
from upper to lower case [24], from typed to handwritten [23],
from normally transcribed to transcribed backwards [27]. For the
most general case, memory performance declines to the degree
that the interaction (I) between one’s intention and the stimu-
lus situation at study (e.g., the task one has to do with items of
a particular type presented in a particular way) differs from the
interaction between one’s intention and the stimulus situation at
test [25]. If the interactions are the same, that is, Al =0, memory
is intact; if the interactions are not the same, that is, AI % 0, mem-
ory is impaired. In a phrase, forgetting occurs when the study-test
symmetry is broken.

A prism adaptation experiment of Kitazawa et al. [20] pro-
vides a relevant parallel to the implicit memory results. At study
or training, adaptation to prisms was established for a reaching-
to-target task that was conducted at one of four speeds. At test,
the reaching-to-target task was performed at the training speed
or at one of the other speeds. Transfer as indexed by the afteref-
fect was maximal when training and test speeds were the same
(Aspeed = 0), and decreased systematically with the size of the
difference between them. Whether the training led to large (‘good’)
or small (‘poor’) adaptation (‘memory’), depended on the similarity
of test to training. An overview of the prism adaptation literature
suggests that cases of complete, incomplete or zero generalization
of adaptation from training to test are analogous to the cases in
the implicit memory literature. No single mechanism can be iden-
tified. Differences in limbs, movement directions, and movement
parameters all matter, singly or in combination. For adaptation, as
for long-term priming (implicit memory), the governing dynamics
seem to require a § term that respects the training-test symmetry.

In Sections 2.1 and 2.2, we will discuss the fundamental and the
extended prism paradigm from the nonlinear physics perspective.
In doing so, we will identify dynamic attractors that putatively de-
termine adaptation and re-adaptation processes. In Section 2.3, we
briefly comment on implications of our model for prism adaptation
experiments involving non-stationary experimental conditions. Our
basic model will be presented in Section 2.

2. Attractor dynamics for prisi adaptation

Let x € R denote the performance error of subjects participat-
ing in a prism adaptation experiment. For example, we may think
of an experiment in which subjects are asked to throw a ball
to a target. Then x would correspond to the distance of the ball
from the target and serves as the feedback signal mentioned in
Section 1. The performance error x as a function of time t is as-
sumed to satisfy a first-order dynamical evolution equation of the
form
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d
W= f&x.0. (1)

The function f is composed of several terms that reflect differ-
ent contributions to the error dynamics. First of all, f involves a
function fo which describes the baseline performance and a func-
tion fa that accounts for the adaptation process. Second, since
the error dynamics in general depends on changes of experimental
conditions (see Introduction), we assume that f consists of a set of
functions Z; with i =1, 2, 3, ... that represent the impacts of these
conditions (right versus left-hand throwing, throwing speed,...).
In sum, we have f = fo+ fa+ > ; Z;. Since the decomposition of
f into fo and the functions Z; is not unique we define fp and
the functions Z; such that under baseline performance we have
Y"; Zi =0. In fact, the term ) ; Z; can be neglected in the context
of the fundamental prism paradigm when experimental conditions
other than that of putting on and off prisms are not varied. In con-
trast, as we will show below for the extended prism paradigm the
term _; Z; is of crucial importance.

The function fy depends on the performance error and corre-
sponds to the force of an intrinsic attractor with potential Vo(x) =
—f * fo(x')dx’, where both x and ¥ denote performance errors. We
assume that the intrinsic attractor is attractive with f(0) =0 and
dfo/dx < 0. When participants put on prisms, the reference frame
for perceiving and acting is shifted in a particular direction and
by a particular amount. Therefore, in general we write fo(x —s),
where s € R denotes the prismatic shift. For s # 0 the fixed point
of the attractor is shifted to x = s. Of course, under baseline con-
ditions we have s =0.

In line with the dynamic systems approach to learning [8-10],
we assume that f4 reflects a new attractor that emerges during
the adaptation process. This adaptation attractor will be described
in terms of the potential f4 = —3dV 4/3x. For the sake of simplic-
ity, we describe the intrinsic attractor and the adaptation attrac-
tor in the same coordinate system. Consequently, V4 depends in
general on x — s. In addition, V4 depends on t because the po-
tential reflects a dynamic attractor that changes with time such
that V4 = Va(x — s,t). Taking all the aforementioned considera-
tions into account, we see that Eq. (1) becomes

d a ‘
a?x:fo(x—s)—5;V,;(x~s,t)+ZZi. 2)

1

Note that above and in what follows we use the continuous time
variable t to develop and analyze our model for prism adapta-
tion. Taking a conceptual point of view, however, t is assumed to
be closely related to behavioral activity (for example, in the fig-
ures presented below we will calibrate t to the number of throws
that a participant performs during adaptation and re-adaptation).
That is, although we make extensive use of the time variable
t, we do not claim that time as such drives adaptation and re-
adaptation processes. Eq. (2) is a top-down approach to model the
system constituted by the agent, the environment, and the task in-
volved in the prism adaptation. The terms in Eq. (2) reflect the
neural network with its connections «; as well as the perception-
action system in general and environmental properties (e.g. target
and ball). That is, the evolution equation for the error dynam-
ics accounts for the agent-environment-task system in its entity
including the neural network mentioned in Section 1 as a spe-
cial part. The fixed connectivity parameters ko are represented
in Eq. (2) by the baseline function fy. They are assumed to be
context-dependent which implies that «; o are also related to the
experimental constraints expressed in terms of the parameters Z;.
The variable synaptic connectivity parts d;(f) are expressed in the
top-down modeling approach (2) in terms of adaptation potential
V4. However, as mentioned already, the terms Va, Z;, and fo do
not refer exclusively to neural network properties but to the agent-
environment-task system.

Returning to Eq. (2), we decompose the attractor force
—dV 4 /dx into its amplitude B(t) > 0, a prototype force ha that
exhibits a fixed shape and a time-dependent tuning parameter
a(t) € R. We assume that the prototype force corresponds to a
fixed point attractor with hs(0) =0 and dha(x)/dx < 0. The tun-
ing parameter shifts the fixed point of the adaptation attractor
such that —dVa(x — s, t)/dx = B(Dha(x — s — «(t)). Substituting
this expression into Eq. (2) yields

d )
= ol =9 +pOA(x~s ~@®) + 3 S Zi. 3)

We further assume that B(t) increases during the adaptation pro-
cess according to df/dt = g(x,«, B). Likewise « changes during
the adaptation process in the manner de/dt = G(x, «, 8). That is,
we assume that we are dealing with autonomous processes that
do not depend explicitly on time. In order to guide our model-
ing approach by analytical results, we neglect the g-dynamics to a
certain extent and put 8 = cla|. Note that other choices for which
B increases monotonically as a function of jx} (e.g. p ocee?) could
alternatively be used and would not affect the fundamental prop-
erties of our model. Absorbing the parameter ¢ into the function
ha, we can simply write g = |«|. This gives us

d
a?x:fg(x—s)—I-{(x(t)]h,;(x~s~oz(t)) Jf—ZZ,x (4)

Moreover, we will assume that G depends only on the performance
error X,

d
a~toz = G(x), (5)

and that the adaptation attractor becomes stationary when the
error vanishes: G(0) = 0. The parameter « must counteract the
performance error x. Therefore, we require dG(x)/dx < 0. That is,
o increases for negative errors and decreases for positive errors.
Moreover, G may involve a saturation threshold (e.g. we may use
G(x) = —« arctan(x) with x > 0). Finally, note that it is plausible to
assume that in general there is a time delay T between the occur-
rence of the performance error x at time t and the utilization of x
to control the dynamics of «. That is, the argument of the function
G(x) in Eq. (5) will be retarded like G(x(t — t)). A detailed analy-
sis of the time-delayed dynamic system composed of Egs. (4) and
(5) is beyond the scope of the present study, which is the reason
why we will put in what follows T = 0. However, we will return
to potential implications of a finite delay 7 > 0 in the Conclusions.

Egs. (4) and (5) describe the evolution of the attractor potential
V a(x, t) during adaptation. Note that Eqs. (4) and (5) describe a set
of nonlinear evolution equations even if the function fo, ha and G
are linear functions. This is because of the nonlinear coupling be-
tween the amplitude dynamics and the dynamics of the fixed point
shift represented by the expression |a(t)|ha(x —s — a(t)). We will
return to this issue briefly in the conclusions. When participants
remove the prisms, their perception-action capabilities have to re-
adapt. In line with our dynamic systems approach, we see that
during the re-adaptation process the adaptation attractor weakens
and eventually disappears. We will assume that the laws that gov-
ern the emergence of the adaptation attractor also determine its
progressive weakening. That is, the re-adaptation process is de-
scribed by the evolution equations (4) and (5} again. However, we
have s = 0. As we will see in the following sections, Eq. {4) with
s =0 describes indeed the evolution of the aftereffect.

As mentioned in the introduction, a change of the experimental
conditions across adaptation and re-adaptation processes induces
the emergence of a partial re-adaptation process that might be
followed by a secondary re-adaptation process. In particular, the
similarity of test and training conditions affects the ability to re-
call studied items (see Introduction). If test and training conditions
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Table 1
Nonlinear dynamic processes as discussed in Section 2 and defined by Egs. {(4)
and (5).

Fundamental case

(prismoff) o
A‘da‘ptatidxi process A
(Prism on)

Re-adaptation process R
(Aftereffect) :

condary re-adaptation Ry
ntal conditions reinst

differ recall performance becomes worse. Likewise, in studies on
bimanual coordination, evidence has been found that the degree
of symmetry of the experimental setup affects performance |2,
28-30]. For example, when human subjects swing two pendulums
simultaneously with their right and left hands, then motor per-
formance depends crucially on the symmetry of the experimental
setup. That is, the motor performance of subjects who hold pendu-
lums in a symmetric fashion (both pendulums point downwards)
differs from the performance of subjects with one ordinary and
one inverted pendulum (one pendulum points upwards; the other
downwards). The evidence provided in the aforementioned stud-
ies can be summarized in a phenomenological law. Accordingly,
breaking the similarity or symmetry in experiments on memory,
motor performance, and adaptation induces forces that affect the
dynamic processes underlying memory retrieval, motor coordina-
tion, and adaptation. That is, we will consider next forces that
emerge due a mismatch or asymmetry in experimental condi-
tions. The most fundamental force in this context is a constant
force [2]. We assume that in this case the expression ) ; Z; can
approximately be regarded as a constant force term }_; Z; = 8. Ac-
cordingly, we assume that the force term }; Z; = § varies when
experimental conditions across adaptation and re-adaptation pro-
cesses vary.

Note that in general this asymmetry-induced force can depend
on state variables [30] and in particular on the performance er-
ror x. For the purpose of our analysis, however, the crucial issue
is to assume that Y _;Z; is different from zero in the case of
the extended prism paradigm (as it is depicted in Fig. 1) with-
out identifying precisely how it is different from zero. The func-
tional relationship between >_; Z; and x is an interesting issue, of
course, but at the present stage of our modeling effort of sec-
ondary importance. In short, Egs. (4) and (5) with s =0 and
3" Zi =8 describe primary re-adaptation processes under changed
experimental conditions. If experimental conditions of the adap-
tation process are reinstated, then the asymmetry-induced force
vanishes: § = 0. Consequently, the secondary re-adaptation pro-
cess (latent aftereffect) is described by Egs. (4) and (5) for s =0
and Y ;Z; = 0. Table 1 summarizes the nonlinear dynamics of
adaptation attractors emerging in the fundamental and extended
prism adaptation paradigm in line with the consideration that
we made so far. In addition, to the cases listed in Table 1 one
may consider an experimental condition for which test conditions
during the primary re-adaptation process and adaptation process
are held constant (s =0, > ;Z; = 0) but differ during the sec-
ondary re-adaptation process (s =0, Y_; Z; # 0). This condition
could serve as a control condition for the experimental realiza-
tion of the extended prism paradigm as described in Table 1. In
the following sections, we will discuss these cases for linear forces
f() and hA.

2.1. Fundamental prism adaptation paradigm

Let us discuss how the perfermance error in general or the dis-
tance to the target in ball throwing tasks changes as a function
of time provided that we are dealing with attractors that feature
approximately linear forces. Let fo and ha denote linear functions
fo(¥) = —x/To and ha(x) = —x/T4, respectively, where T and T
are constants. Then Egs. (4) and (5) become

d 1t o le®l,

= To(x ) T (x=s—a®),

d

a?o::G(x)' (6)

The adaptation process A invelves the initial conditions x(0) =s
and «(0) = 0. The dynamic system (6) exhibits a single fixed point
or stationary point (Xsy, O!st, prismon) at Xsr = 0 and

s 4D
O st pri =—={1+ [1+=— ) 7
st, prismon 2( + TO) ( )

Note that in what follows the subindex ‘st’ refers to stationary.
Note also that above and in what follows we will frequently use
the rescaled time constant D defined by D = T4/|s]. If s is positive
(negative) we find that o prismon is negative (positive). Roughly
speaking, the tuning parameter « shifts the reference frame of
the perception-action system back in the direction of the original
(unperturbed) reference frame. Note that the inequality |og| > |s]
holds. The reason for this is that the force of the adaptation attrac-
tor has to compensate for the impact of the intrinsic force fo. That
is, for & = —s the adaptation attractor has a fixed point at the ori-
gin such that the performance error would converge to zero under
the exclusive impact of the adaptation attractor. Due to the im-
pact of the intrinsic force fo, however, the adaptation process has
not reached stationarity at ¢ = —s. Stationarity is only established
at o = ot prismon given by Eq. (7). Linear stability analysis of the
fixed point reveals that for small values of x we have
2

adﬁx—kB%x-fny:O (8)
with B =1/To+ |ets; prismonl/Ta > 0, ¥ = —dG(0)/dx> 0, and C =
(2letst, prismon| — I51)/Ta > 0. Consequently, we have a stable fixed
point and the adaptation process converges from (x, ) = (s, 0) to
(%, ) = (0, tsy, prismon) for any prismatic shift s. From the damped
oscillator equation (8), it follows that for B? > 4y C we have a sta-
ble node at (0, &g, prismon). Close to the fixed point the adaptation
process A corresponds to an overdamped dynamics. In contrast, for
B? < 4y C we have a stable focus and the adaptation process ex-
hibits an oscillatory damped behavior. Using the explicit solution
(7}, we obtain

2
11 [ 4D dG() |. 4D
(14 J1+5 ) €4 14—, 9
[T0+2D(+ +T0)]> dx 1 ©)

Let us consider B as independent parameter and D(B) as depen-
dent parameter. In this case, the separation line between oscilla-
tory damped and non-oscillatory behavior in the parameter space
spanned by B/y and Toy? is given by

B _ufix h ! 10
y T 16Toy2 ) (10

Fig. 2 illustrates the parameters domains for which damped oscil-
latory and overdamped (non-escillatory) dynamic patterns can be
found.

When subjects take off their prisms, the re-adaptation dynam-
ics R satisfies the evolution eguations (4) and (5) with s = 0 which
in the case of linear attractor forces read
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d  x  Je@lx-ad)

dt” To Ta ’

-d-a =G(x) (11)
de

The aftereffect typically is smaller in the amount than the pris-
matic shift (see e.g. [31]). The deviation between prismatic shift
and aftereffect depends on experimental details. For example, the
duration of the break between the adaptation and re-adaption con-
dition affects the magnitude of the aftereffect [32]. Consequently,
the initial conditions x(0) and «(0) for the prism off phase in gen-
eral will depend on experimental details and we would need to
model these details by a separate set of evolution equations. If the
between-phases dynamics can be neglected we are dealing with
some kind of idealized case (which will be illustrated in Fig. 3;

10

stable node
8

Bly

4 stable focus

Toy

Fig. 2. Separation line computed from Eq. (10) separating two parameter domains
for which adaptation is governed by qualitatively different types of attractors (nodes
versus foci).
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Distance to target [m] & ALPHA [m]
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Throw number

(a)

see below). In this case, the initial state of the perception-action
systems in the prism off phase corresponds to the final state of
the system of the preceding prism on phase. Accordingly, the ini-
tial conditions are x(0) = —s and «(0) = e, prismon &S defined
by Eq. (7) (note again that alternative initial condition such as
[X(0){ = |s| — € with € > 0 can be used as well; this does not affect
the following discussion).

The re-adaptation dynamics exhibits the fixed point (xst, &tst) =
(0, 0). Eq. {11) can equivalently be expressed in terms of the non-
linear oscillator equation

£a~~(-l—~[oz| dG(y~da/dnT N d el
T dx T,

Note that the expression —[dG/dx]™! is larger than zero in any
case. Consequently, the damping coefficient is positive in any case.
Likewise, the force —T;lial(x is attractive. Therefore, the point
(a,de/dt) = (0,0) is a stable fixed point and the re-adaptation
dynamics R converges from (x, o) = (=S, Olgt, prismon) 10 (x,0¢) =
(0,0). Simulations of adaptation and re-adaptation processes A
and R, respectively, are shown in Figs. 3 and 4. Panel (a) in Fig. 3
illustrates the vanishing of the performance error in the case of a
overdamped non-oscillatory adaptation process related to a stable
node (i.e. the upper sign in Eq. (9) holds). Panel (a) in Fig. 4 depicts
the corresponding re-adaptation process R. That is, Fig. 4(a) illus-
trates the aftereffect of the adaptation dynamics shown in Fig. 3(a).
For these parameters the re-adaptation dynamics is a overdamped
non-oscillatory process. Panel (b) in Fig. 3 illustrates the prism
adaptation process A for a perception-action system involving a
stable focus (ie. the lower sign in Eq. (9) holds). In this case
the corresponding re-adaptation process R exhibits an oscillatory
damped pattern as well, see Fig. 4(b).

-1
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-

=2t v
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Fig. 3. lllustration of adaptation dynamics as computed from Eq. {6). Performance error is here and in the following figures regarded as the distance to target in a throwing
task. x(t) (solid line) and w(t) (dashed line) versus rescaled time given in units of throws. (a) Non-oscillatory case for s=1m, To =1 min, D=1 min (= T4 =1 minm),
G = —k arctan(x), « =4 min~?, time rescaling: 2 throws/min. (b) Oscillatory case; parameters as for panel (a) but with To = 0.1 min instead of To = 1.0 min. Numerics:
Eq. (6) was solved iteratively using an Euler forward scheme with time step At = 0.01 min.
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Fig. 4. Re-adaptation dynamics computed from Eq. (11). x(¢) (solid line) and «(t) (dashed line) versus rescaled time. (a) Non-oscillatory case. (b) Oscillatory case. Parameters

and nurnerics as in Fig. 3.
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Fig. 5. illustration of primary (partial) re-adaptation dynamics as computed from Eq. {13). x(t) (solid line) and «(t) (dashed line) versus rescaled time. () Non-oscillatory
case for s=1m, §=1m/min, To=0.1 min, D=1 min (= T4 =1 minm), G = —xarctan(x), k =4 min~!, time rescaling: 2 throws/min. (b) Oscillatory case; parameters
as in panel (a) but with T = 1.0 min instead of To = 0.1 min. Numerics: Eq. (13) was solved iteratively using an Euler forward scheme with time step At =0.01 min.
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Fig. 6. Secondary re-adaptation dynamics computed from Eq. (11). x(t) (solid line) and «(t) (dashed line) versus rescaled time. (a) Non-sscillatory case. (b) Oscillatory case.

Parameters and numerics as in Fig. 5.
2.2. Extended prism adaptation paradigm

Let us consider next the extended prism adaptation paradigm
featuring the re-adaptation processes Ry and R;. The primary re-
adaptation process Ry is described by Egs. (4) and (5) with s =0
and ¥°;Z; = & # 0. When subsequent to Ry the original experi-
mental conditions are reinstated, the secondary adaptation pro-
cess R occurs that is described by Egs. (4), (5) with s =0 and
$°:Zi =0 (see also Table 1). To begin with, Egs. (4), (5) for the
primary process R can be cast for linear attractor forces fp and
h4 into the form

A X le®le-aw)

dt To Ta ’

d

-CE(X =G(x). (13)

In line with our discussion in the preceding section on the mag-
nitude of the aftereffect relative to the magnitude of the pris-
matic shift, we mention that we may consider the idealized case
in which the re-adaption process involves the initial conditions
x(0) = —s and «(0) = cg prismon- However, Eq. (13) can also be
solved for alternative initial conditions. For example, we may as-
sume that the initial error x(0) is given by the fixed point of
Eq. (13) when « is regarded as a constant defined by the final pa-
rameter value of the preceding prism on phase. In this latter case,
we obtain x(0) = —s+68/(1/To + |, prismon!/T ) Which for appro-
priately chosen system parameters results in [x(0)] < |s|.

The fixed point of the re-adaptation dynamics Ry is given by
x5t = 0 and

st = —sgn(®)/181T 4, (14)

where sgn(z) is the sign operator with sgn(z) =1 for z> 0 and
sgn(z) = —1 for z < 0. Using linear stability analysis, we can show
that small perturbations x satisfy the escillator equation
d? d

—X+B—x Cx=0

T TR

with B = 1/Tg + |&st.51/Ta > 0, y = —dG(0)/dx > 0, and C =
2lost s1/Ta > 0. We see that we are dealing again with a damped
oscillator and a stable fixed point. Mereover, we can distinguish
between a stable node and a stable focus. Using the approach of
the previous section, we obtain the inequalities

2
1 18] dG() [19]
[‘r;*“ 7;} ST \[;

If the upper (lower) sign holds, we are dealing with a stable node
(stable focus). The secondary adaptation process Ry is defined
Eqgs. (4), (5) with s =0 and }_; Z; =0 which for the special case
of linear forces fo and hu correspond to Eq. (11). In the context of
the extended prism paradigm, Eq. (11} describes the latent afteref-
fect. We have discussed solutions of Eg. (11) in detail in Section 2.1.
For the re-adaptation process Rz, we need to consider the initial
condition «(0) = ag s = —sgn(8)/[81 4. The initial performance
error x(0) corresponds to the fixed point of the error dynamics
when « = a(0) is considered to be constant. Thus, we obtain the
initial condition x(0) = —8/(1/Tg + f18]/T4 ). Since from the ex-
periment it is known that the sign of x(0) is opposite to the sign
of the prismatic shift s, we see that the sign of & is fixed by the
sign of s: s8 > 1. Figs. 5 and 6 illustrate typical primary and sec-
ondary aftereffects R1 and Ry as predicted by our model using
the initial conditions x(0) = —s + §/(3/To + [ttst prismon!/T4) and
x(0) = —8/(1/To + /181/T4), respectively. Fig. 5 depicts the evo-

(15)

(16)
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Fig. 7. Adaptation dynamics as computed from Eq. (6) with s replaced by a time-dependent prismatic shift s(t) = so Sinat/Tqpiye)- (a) x(t) (solid line), ex(t) (dashed line),
and s(t) (dotted line) versus rescaled time. (b) Trajectory in the phase space (x, ). Parameters and numerics as in Fig. 3; Tgyjye = 10 min, sp=1m.

lution of the performance error during the primary re-adaptation
process Ry under changed experimental conditions. For the graph
shown in panel (a) the parameters are chosen such that the up-
per sign in Eq. (16) holds. That is, we are dealing with an attractor
defined by a stable node. Fig. 6(a) depicts the latent aftereffect
R, following the primary aftereffect shown in Fig. 5(b). Fig. 5(b)
exemplifies a primary re-adaptation process R; for the oscilla-
tory damped case discussed above (ie. the lower sign in Eq. (16)
holds). According to our numerical simulation, the secondary re-
adaptation process Ry shows in this case an oscillatory damped
pattern as well, see Fig. 6(b).

2.3. Prism adaptation under non-stationary experimental conditions

Our dynamic model may be used to explore from a theoretical
perspective adaptation processes under non-stationary experimen-
tal conditions. Non-stationary conditions occur, for example, when
participants have to adapt to a sequence of gradual manipula-
tions {33]. In the context of prism adaption, we may assume that
the prismatic shift s during the adaptation process is changed peri-
odically like s(t) = s sin(§2t). In this case, Eqs. (4) and (5) describe
a periodically driven second-order dynamical system. In general,
such systems can exhibit various dynamic patterns and a thor-
ough analysis of this case is beyond the scope of our present effort.
However, we carried out a numerical analysis and showed that the
adaptation process under such a non-stationary condition can set-
tle down in a periodic behavior with an oscillation period equal to
the period of the driving force, see Fig. 7. Panel (a) shows the oscil-
latory prismatic shift s(t) as well as the response of the adaptation
dynamics in terms of performance error x(t) and attractor ampli-
tude a(t). Panels (a) and (b) indicate that the adaptation dynamics
approaches, after a transient period (of about 5 throws for the pa-
rameters used in Fig. 7), a periodic solution in the phase space
spanned by x and «. It is clear that both theoretical and experi-
mental future efforts are needed to obtain a more comprehensive
understanding for adaptation dynamics in such non-stationary ex-
perimental paradigms.

3. Conclusion

Prism adaptation does not exhibit one-trial learning. Likewise,
re-adaptation processes do not exhibit one-trial learning. The per-
formance error during adaptation and re-adaptation gradually de-
creases [14-18]. That is, there is empirical evidence that partic-
ipants of a prism adaptation experiment do not use an explicit
strategy to compensate for the performance errors that they ex-
perience. Even for participants who attempted to use a volitional
strategy, gradually evolving adaptation processes have been ob-
served in prism adaptation experiments [22]. We developed a the-

oretical account for this observation. Accordingly, adaptation and
re-adaptation processes involve a dynamic attractor that evolves
and devolves as a function of time related to the performance of
some kind of behavioral activity (e.g. throwing a ball to a target).
Consequently, adaptation and re-adaptation are dynamic processes.
In such a conceptual framework learning consists of a sequence of
differential improvements and one-trial learning is impossible.

Our approach takes the context-dependency of adaptation pro-
cesses into account. When the context changes between the adap-
tation and the re-adaptation processes then only a partial re-
adaptation process occurs. As soon as the context is reinstated a
latent re-adaptation process occurs. Context changes were regarded
as asymmetry-induced forces. The inequality (16) indicates that the
nature of the attractors that govern the re-adaptation dynamics
crucially depends on such forces.

In Section 2, we have discussed our proposed model from the
dynamic systems perspective of learning {8-10]. This perspective
in general and Egs. {(4) and (5) in particular are to a certain extent
consistent with alternative approaches to learning. For example,
we may re-interpret the adaptation potential V4 as a weighted
combination of basis function ¢; related to motor primitives r; {34,
35]. In this case, we decompose Va like Va(z,t) = > wi(D)¢i(2),
where w;(t) are weights that change during adaptation and re-
adaptation processes. If we use a set of bi-orthogonal functions ¢;
and ¢} (ie. we have [ ¢ (2)¢y(z) dz = 8) we can compute the
evolution of the weight factors w; from w;(t) = fq&f(z)VA (z,t)dz.
As far as the latent aftereffect is concerned, we note that the con-
text change addressed in Section 2.2 would imply a shift from a
motor primitive set {r;} to another set {r}} which in turn would
imply a basis function shift ¢; — ¢{. Assuming that the shifted ba-
sis functions ¢; can approximately we written like ¢ =i + Ay,
where A; measures the function mismatch, then the functions Z;
in Eq. (4) could be interpreted as Z; = w;A;. That is, the parame-
ter § = Y; Z; # 0 occurring in the context of the extended prism
paradigm could be interpreted as the weighted mismatch between
motor primitives (or basis functions) available in different contexts.

As discussed in Section 2.2, the parameter § may be used to
determine the magnitude of initial aftereffects in the extended
prism paradigm. Accordingly, we have x(0) = —s + 8/(1/T¢ +
{etst, prismon!/TA) and x(0) = —5/(1/To + /18]/Ta) for Ry and Ry,
respectively. In this case, our considerations suggest a reciprocal
relationship between the magnitudes of the aftereffects: for Ry we
see that {x(0)| decreases with |§] (i.e. we have d|x(0)|/d|$| < 0); for
R, we see that [x(0)] increases with |§] (i.e. we have d|x(0)]/d|8| >
0), see Fig. 8. This reciprocal relationship (the smaller the primary
initial aftereffect, the larger the latent initial aftereffect) has in-
deed been found in the experiment by Fernandez-Ruiz et al. [21].
Note that in the special case 1/T¢ > |tst, prismon!/Ta and 1/To >
J18/T4 we see that the magnitudes of the aftereffects simply add
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Fig. 8. Magnitudes of primary and latent initial aftereffects computed from x(0) =
=5+ 8/(1/To + lotgt, prismonl/T4) and x(0) = —8/(1/To + J/IB7Ta) and Eq. (7).
Parameters (as in Figs. 5 and 6 for the non-oscillatory case): s=1 m, Tp = 0.1 min,
Ta=1minm

up to the magnitude of the prismatic shift: xg, (0) + xg,(0) = —s.
In the literature there is so far only one study available in which
the relationship between xg,(0) and xg,(0) has been addressed
(Fernandez-Ruiz et al. [21]). However, the focus of {21} was not on
exploring this relationship in detail. Therefore, future experimental
work is needed to clarify the functional dependencies between the
primary and latent aftereffects and to see to what extent they are
related to the aforementioned predictions of our dynamic systems
approach to prism adaptation.

QOur proposed model is nonlinear even if the functions fo, ha
and G are linear functions. This is because of the nonlinear cou-
pling between the amplitude dynamics and the dynamics of fixed
point shift (e.g. see the expression |a(t)|ha(x — s — «(t)) in Eq. (4)
as well as the term B(t)ha(x — s — «(t)) in Eq. (3) for the more
general case).

The attractor dynamics satisfies a coupled set of evolution
equations in which the performance error is coupled to the am-
plitude and shift parameter of the adaptation attractor. This results
in the emergence of second-order dynamical processes. In partic-
ular, the adaptation and re-adaptation processes are determined
by attractors given in terms of stable nodes and stable foci. Con-
sequently, our analysis highlights the need to distinguish in the
context of the prism adaptation paradigm between overdamped
non-oscillatory processes and oscillatory damped processes. While
clinical studies have pointed out the need to explore quantitatively
the properties of prism adaptation processes [18], to the best of
our knowledge empirical research has not yet been devoted to
identify quantitatively the nature of adaptation attractors. Our non-
linear physics approach to adaptation processes provides a sound
basis for future research in this direction.

As mentioned above, our model effectively corresponds to a
second-order dynamical system although the error dynamics is as-
sumed to satisfy a first-order dynamical evolution equation, see
Eq. (1). The first order dynamics in Eq. (1) may be motivated by the
observation that performance errors initially decay in a monotonic
fashion (as illustrated schematically in Fig. 1). Such a monotonic
decay is a characteristic feature of first-order dynamical systems.
However, higher-order dynamic systems can produce monotoni-
cally decaying functions as well. Consequently, in general, we may
consider a more general model for prism adaptation processes as
defined by

N k
éc;cglt—kx:fo(x = 8)+la@®halx —s—a () + Zzi,

d .
a;oz =G(x) 17)

with ¢y = 1. In this case, the error x(t) satisfies a differential equa-
tion of order N and the total coupled dynamical system represents

a differential equation of the order N -+ 1. A linear stability anal-
ysis for such higher order dynamical systems can in principle be
carried out but becomes mathematically more involved for N > 1
than for N = 1. The case N =1 discussed in Section 2 does not ad-
mit for chaotic solutions, whereas for N > 1 it might be the case
that such solutions exist. Consequently, if experimental evidence
for chaotic adaptation dynamics could be found, then this would
speak in favor for a higher order adaptation dynamics as described
by Eq. (17) with N > 1. Alternatively, chaotic behavior could in-
dicate that we need to take a time delay into consideration - as
briefly addressed at the beginning of Section 2.

As mentioned at the beginning of Section 2, it is plausible to
replace G(x) in Eq. {17) by a time-delayed feedback function of
the form G(x(t — 7)). In general, it is known that a time de-
lay 7 in a dynamic system with a fixed point can destabilize the
system such that is becomes oscillatory [36,37] or chaotic [38]. Fu-
ture work has to explore whether the adaptation model (17) with
G = G(x(t — 1)) exhibits such delay-induced oscillatory and chaotic
solutions and under which conditions they occur. If such solutions
exist it would be useful to distinguish between solutions with low
and high amplitudes. In the low amplitude case, the oscillatory
or chaotic behavior could be interpreted as some kind of dynamic
noise. In this case, the model would predict that the performance
variability of participants is on a relatively high level but never-
theless participants were able to adapt and readapt successfully to
experimental manipulations. In the high amplitude case, we would
identify the oscillatory and chaotic processes as non-stationary be-
havioral patterns. The model would predict a failure of both the
adaptation process and the re-adaptation process in the sense that
these processes would no longer be able to reduce performance
errors towards stable stationary levels close to zero.
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