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Introduction

Phonetics is the study of characteristics of human
sound-making, especially speech sounds, and includes
methods for description, classification, and transcrip-
tion of those sounds. Acoustic phonetics is focused
on the physical properties of speech sounds, as trans-
mitted between mouth and ear {Crystal, 1991); this
definition relegates transmission of speech sounds

from microphone to computer to the domain of in--

strumental phonetics, and yet, in studying acoustic
phonetics, one needs to ensure that the speech itself,
and not artifacts of recording or p:ocessing, is being
studied. Thus, in this chapter we consider some of the
issues involved in recording, and especially in the

analysis of speech, as well as descriptions of speech
sounds.

The speech signal itself has properties that make
such analysis difficult. It is nonstationary; analysis
generally proceeds by using short sections that are
assumed to be quasistationary, yet in some cases this
assumption is clearly violated, with transitions occur-
ring within an analysis window of the desired length.
Speech can be quasiperiodic, or stochastic (noisy), or
a mixture of the two; it can contain transients. Each
of these signal descriptions requires a different type of
analysis. The dynamic range is large; for one speaker,
speaking at a particular level (e.g., raised voice), the
range may be —10 to 50dB SPL (decibels Sound
Pressure Level) over the entire frequency range
(Beranek, 1954), but spontaneous speech may poten-
tially range over 120dB and still be comprehensible
by a human listener. Finally, the frequency range is
large, from 50 to 20 000 Hz. Though it is well known
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that most of the information in speech occurs in the
range of 300-3500 Hz (telephone bandwidth), if one
is trying to describe and classify speech sounds a
bigger range is needed.

Aspects of the recording method and the recording
environment can also introduce artifacts. Breath
noise can occur if the microphone is directly in front
of the speaker’s lips; moving the microphone further
from the speaker can reduce breath noisz, but then
the speech signal will have a lower amplitude at the
microphone, requiring a quiet recording room and
possibly a more sensitive microphone. The micro-
phone can also be moved to one side, but then the
directional characteristics of speech must be con-
sidered. Higher frequencies are progressively more
directional, meaning that they are highest amplitude
on-axis (directly in front of the speaker’s mouth) and
decreasing in amplitude with angle off-axis. For in-
stance, in the band 5-10kHz, at 60 degrees off-axis
the amplitude is 5 dB lower than at 0 degrees (on axis)
(Beranek, 1954). This difference may be important
for comparisons, across subjects and recording ses-
sion, of parameters such as spectral tilt or formant
amplitude. Differences in microphone placement can
be corrected for as long as the location relative to the
speaker’s mouth (distance and angle) is known and
the microphone is in the acoustic far-field; if in the
near-field, more parameters such as the exact shape
and size of the lip opening are needed.

The acoustic far field is the region where the sound
pressure decreases linearly with distance from the
source. The distance r from the source at which
the far field begins depends on the source extent and
the frequencies of interest. For instance, for frequen-
cies greater than or equal to 350 Hz, far fizld begins at
r=1m, and the source could be as much as 16cm
across (which is much larger than a typical lip open-
ing, or about the size of a medium loudspeaker)
(Beranek, 1954). A far-field pressure can be used to
compute the equivalent source strength of the radiat-
ing surface (the air between the lips) and is, thus, im-
portant for studies in which source strength is derived
from the radiated acoustic signal, or when absolute
sound pressures measured at different locations need
to be compared.

Background noise is often a limiting factor in mi-
crophone placement. If it is 3 dB or ‘more below the
signal, it can be corrected for (or, if 10dB or more
below, ignored), but this must be true at all frequen-
cies of interest. There can be a big amplitude differ-
ence between the peak of the first formant of a vowel
and the amplitude of a weak fricative at frequencies
above 10 kHz. Solutions are to reduce the background
noise by making recordings in sound-proofed, even
anechoic chambers, or to use directional microphones

that are more sensitive to sounds coming from their
‘front’ than their ‘back.’ Directional microphones
work well at reducing background noise, but their
frequency characteristics tend to be much less flat
across all frequencies than those of omnidirectional
microphones. Another solution is to measure the
ambient noise, compare it to the signal plus noise,
and filter out the frequency bands where the noise
dominates the signal. This is commonly done for very
low frequencies (e.g., less than 20Hz, or often to
eliminate mains hum at 50 or 60 Hz).

If it is important to know the absolute sound level
of a speech signal, and keep that information intact
for every kind of analysis, a calibration signal needs
to be recorded as part of the original recording ses-
sion and put through the same stages (amplification,
filtering, sampling, analysis) as the speech. Whatever
factor is needed to return the calibration signal to its
known level can then be applied to the speech signal.
If this is desirable, the microphone and amplifier
should be of instrumentation quality, and there must
not be any automatic gain control applied. This 1s
important if one needs to compare sound levels across
speakers and recording sessions.

Signal Preprocessing

While preprocessing is a relative term, it tends
to be used for processes that are applied to every
signal in a given system before the ‘elective’ processes.
Thus, amplification (which may have more than one
stage), filtering to remove low-frequency noise, anti-
aliasing filtering, sampling, and preemphasis tend to be
common preprocessing stages. They are best under-
stood as changes to the spectrum of the signal. Some
of the changes are reversible, such as amplification and
preemphasis; some are not, because a part of the origi-
nal signal is permanently lost, as in high-pass (e.g., to
remove low-frequency noise) or low-pass (e.g., anti-
aliasing) filtering. Sampling is reversible, provided a
suitable antialiasing filter has been used first. Theoret-
ically, the filter should remove all frequencies greater
than half the sampling rate, that is, the cut-off fre-
quency of the filter f, = f;/2. In practice, no real filter
can cut off abruptly, so the cut-off frequency should be
set somewhat lower than f/2; how much lower will
depend on the characteristics of the filter.

If the signal being sampled includes frequencies
that are greater than f/2, whether because ant-
aliasing was not done or the curoff was too high,
they will be aliased to lower frequencies. Thus, a
6kHz component in a signal sampled at 10kHz
will appear as energy at 4kHz, adding to whatever
energy originally occurred at 4kHz. In general,
an aliased signal cannot be unscrambled. The
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anti-aliasing needs to be done for every sampling
stage, whether the original sampling to convert a
continuous-time signal to a discrete-time (sampled)
signal, or a later downsampling to lower the sampling
rate of a discrete-time signal (McClellan et al., 1998).
In general, one should use the highest sampling rate
likely ever to be needed for that signal and apply
antialiasing for that f; this will, of course, generate
the largest number of samples and, therefore, largest
file sizes, so for particular parts of the analysis where
such high time resolution is not needed, the signal can
be refiltered and downsampled. Systems that sample,
such as DAT recorders and sound cards, now often
have antialiasing filters built in; analysis software,
such as MATLAB, will not necessarily perform this
step automatically.

Preemphasis was originally devised to make opti-
mal use of the small dynamic range of analog tape.
A speech spectrum tends to fall off with frequency;
that is, amplitudes are lower at higher frequencies.
The pre-emphasis filter tilts upward smoothly and
thus flattens out the speech spectrum while leaving
its important peaks (such as formants and harmonics)
intact relative to each other. This is still useful before
computing a spectrogram, since the upper frequencies
will show up better if they have been boosted in
amplitude. Since it is a reversible operation and sim-
ple to describe, there is no reason not to do it, but it is
important to remember when it has and has not been
applied to aid comparisons.

Signal Analysis

The techniques used to analyze speech should be
appropriate to the local signal properties as well as
consistent with the aims of the analysis. The informa-
tion that is desired is typically related to the type of
speech sound — whether it is voiced or not, continu-
ant or not, the place of constriction, and so on. We
will consider speech production models later; let
us first consider analysis methods in relation to the
properties of the signal.

Analysis of Periodic Signals

A perfectly periodic signal repeats exactly at some
time interval TO and so has a fundamental frequency
FO = 1/T0. It may have harmonics, which occur at
integral multiples of FO, i.e., 2 F0, 3 FO, and so repeat
exactly at T0/2, T0/3, ..., respectively. There is no
noise; the signal is entirely deterministic.

In the real world, there is no such thing as a per-
fectly periodic signal. The closest equivalent in speech
is quasiperiodic, meaning that FO changes over time
and has a small amount of noise. A typical example is
a vowel, with the fundamental and many harmonics.

We can look at and measure the time waveform, but if
we want to know the distribution of energy at the
frequency of each harmonic, we need to compute
some type of spectrum. The classic first step for such
a signal is the Discrete Fourier Transtorm (DFT). The
signal is multiplied by a window, and the DFT is
computed of the windowed signal. If we had a per-
fectly periodic signal, there would be no difference in
the result if we included exactly one period, or exactly
two, so we could think of the window as selecting
exactly one period to minimize the amount of com-
putation. With a quasiperiodic signal, the window
can exclude parts of the signal in which FO is very
different. The signal within the window is approxi-
mately stationary, and so taking a single DFT is
appropriate.

The window length and shape are important. The
longer the window is, the finer the frequency resolu-
tion will be; the shorter it is, the coarser. In other
words, the resolution in time is inversely proportional
to the resolution in frequency. There is one wrinkle in
this simple statement, however; the frequency resolu-
tion depends not only on the window length, but
also on the number of points used to compute the
DFT. If we want to be able to see every harmonic
defined, we need fine resolution - perhaps SOHz
between points on the DFT. But then the time window
may be long enough for the signal to change propes-
ties somewhat; if so, the harmonics that are computed
will be an average of the different sets of true values
that occurred during the windowed signal.

- How does the number of samples used to compute
the DFT, which we call Npg, interact with the win-
dow length, and why would we ever want a Nppr to
be longer than the window, since all values outside
the window are zero by definition? The short answer
is that the number of points used to compute the DFT
actually controls the frequency resolution. The Four-
ier transform of a discrete-time signal is a continuous
function of frequency; the DFT samples that trans-
form in the frequency domain, spreading Nppr points
evenly between —f/2 and +f/2. This means that the
bigger Npgr is — the more samples used to compute
the DFT - the more tightly packed the samples are in
the frequency domain and, thus, the finer the frequen-
cy resolution. The technique is called zero-padding,
because the windowed signal is ‘padded’ with zeros to
match the length of the DFT.

If the signal thus treated is perfectly periodic, it has
energy only at the harmonics of its fundamental fre-
quency. Increasing the frequency resolution beyond
the harmonic spacing will not reveal anything else
since there is not any other energy to see. There is a
hazard, however; increasing resolution slightly be-
yond the harmonic spacing can mean that some of
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the harmonics are missed. Increasing the resolution
well beyond the harmonic spacing is less problematic;
zeros between the harmonics will be revealed. If
the windowed signal is not perfectly periodic, energy
will exist between harmonics, and a longer Nppr will
define the shape of the transform of the samples
occurring within the window more accurately. Zero-
padding to use a longer Npgr does not provide any
more information about the properties of the signal,
but does allow what is there to be seen better.

Finally, using a longer Npgr does incur a com-
putation cost, since increasing Nppr increases the
number of operations required to compute the DFT.
The Fast Fourier Transform is an algorithm devel-
oped to compute the DFT efficiently; if Npgr is a
power of two (e.g., 64, 128) the computation will be
faster. However, a 1024-point DFT will still take lon-
ger to compute than 128 or 512 points, and so Nppr
should always be justified in terms of the signal prop-
erties and the information sought by the analysis. We
will return to this subject in the next section.

There are many window shapes, starting with the
rectangular window, which weights every sample
equally and cuts off to zero abruptly, and progressing
to the gradually tapered windows typically used in
speech analysis, the Hanning and Harnming. Since
they are tapered at each end, there is no abrupt
change in amplitude, which could create an artifact
of seeming noise in the signal. They also have better
properties in the frequency domain than does the
rectangular window, minimizing the amount of leak-
age of one spectral component into neighboring com-
ponents. Figure 1 contrasts two Hanning window
lengths used to analyze the same signal to produce
DFTs and (as discussed below) LPC spectral en-
velopes. Figure 1A uses a window of 60 ms; every
harmonic is clearly shown. Figure 1B uses a window
of 10 ms. The major peaks are still visible, at approx-
imately 250, 2600, and 3800 Hz, but the rest of the
spectrum has been flattened. The peak at 250 Hz is
wider, because it includes the energy for two or three
harmonics, as we know from examining Figure 1A.

The DFT is plotted as amplitude, or log amplitude,
vs. frequency. The speech spectrogram is made up of a
sequence of DFTs, each computed for the same length
of windowed signal and plotted as frequency vs. time,
representing the spectral amplitude in greyscale.
A fine-grain effect is achieved by having a skip factor
that is much shorter than the window length; Olive
et al. (1993) specified that they used a 30-ms window
for their wideband spectrograms, skipping that win-
dow along 1 ms at a time. The narrowband spectro-
8ram uses a bandwidth of 25-50Hz and resolves
tvery harmonic; the wideband spectrogram uses a
bandwidth of 200-300 Hz and blurs the harmonics

together, which shows the more widely separated
formants better.

Linear Prediction Coding (LPC) is often used for a
different type of spectral analysis of quasiperiodic
sounds. LPC analysis consists of finding the best set
of coefficients to predict the entire signal in a frame
from a few of its samples. The user chooses how many
samples will be used and, thus, how many coefficients
will be computed; this specifies the order of a polyno-
mial. In the frequency domain, the order specifies
how many poles there will be in what is known as
the LPC spectral envelope. Two poles are needed for
each peak in the envelope, plus another two for over-
all spectral tilt. Thus, if f;=10kHz, and the order is
12, then the spectral envelope will be a smooth en-
velope that captures the main five peaks of the DFT
spectrum. The peaks will often, but not always, line
up with the formants; two formants near each other
in frequency may be represented by one peak. Increas-
ing the order to, say, 40 will allow 20 peaks to be
found in the same spectrum; depending on the actual
FO, these peaks may coincide with harmonics.

Referring to Figure 1 again, we note that the
two LPC spectral envelopes are similar though not
identical. A minor peak around 3 kHz is more no-
ticeable when the wider time window is used; in the
range 5-8 kHz, three peaks are visible for the short
window, only two for the long window, and there
are other differences at higher frequencies. There is
little evidence that the signal has changed properties
substantially within the 60-ms window, or the har-
monic peaks would be wider; therefore its spectral
representations are likely to be more accurate in this
case.

The cepstrum offers another way to compute a
spectral envelope. If you took a DFT and then imme-
diately an inverse DFT (the IDFT), you would recover
the original time waveform. With the cepstrum, the
DFT is computed; then the log is taken, and then the
IDFT. The result is called the cepstrum, in a domain
that is not quite time, not quite frequency, and is
known as quefrency. It is best understood by thinking
of the log spectrum as if it were a time waveform. The
closely packed patterns, the harmonics, would repre-
sent evidence of high-frequency components if the
DFT were a time waveform; the wider-spaced pat-
terns, the formants, would represent lower frequency
components. These elements end up separated in the
cepstrum into what is referred to as high-time and
low-time components, respectively. If only the low-
time components are selected and then the DFT is
taken, the result is essentially the spectral envelope
without the harmonic spikes. Unlike the LPC spectral
envelope, the cepstrum will fit the troughs as well as
the peaks of the spectrum. The only caveat is thart the
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hich- and low-time components must not overlap,
which means that the process works well for low-F0
voices, and less well for higher FO (Gold and Morgan,
2000).

With periodic signals, it is often desirable to find
out what the period (or, equivalently, fundamental
frequency) is; a secondary question is to determine
the entire source spectrum. Many FO trackers exist
and can be roughly grouped into time-domain and
frequency-domain algorithms. If a person measured
FO from a time waveform, they would look for a
repeating pattern using any number of cues such as
the highest-amplitude peaks or longest up- or down-
slope; they would check earlier and later to make sure
that, even though the pattern is slowly changing, the
interval of quasirepetition seems consistent; and final-
ly, they would measure the time interval between
repetitions and invert that value to obtain a local
estimate of FO. Such manual tracking, when done by
people with some training, is extremely consistent
across trackers and has been used as the gold standard
by which to evaluate computer algorithms. It should
not be surprising, then, that some of the most success-
ful algorithms use similar simple parameters defined
on the time waveform (Rabiner and Schafer, 1978;
Gold and Morgan, 2000).

Another time-domain algorithm takes a different
approach, beginning by computing the autocorrela-
tion of a windowed part of a signal with itself. The
signal and its copy are aligned, the product is com-
puted of each sample with its aligned counterpart,
and the products are summed. The value resulting is
that for the lag ©= 0. Then the copy is shifted by one
sample, and the process is repeated, with products
being formed of each sample with its one-sample-
earlier counterpart. The new sum is computed for
t=1. As the signal and its copy get more and more
out of alignment, the sum of products decreases —
until they are misaligned by one pitch period, and
then the sum will have a high value again. When the
total lag equals two and three pitch periods the sum
will peak again, but because the two signals overlap
less and less, successive peaks will be smaller. The
algorithm computes the autocorrelation and then
finds the peaks in the signal. The lag 7 of the first
peak is taken as TO, of the second peak is 2 TO, and so
on until the peaks are too low in amplitude to be
reliable indicators. Autocorrelation-based FO trackers
work better on high FO voices, because the pitch
beriods are shorter so more of them fit within the
Same size window (Rabiner and Schafer, 1978).

Frequency-domain FO trackers use some form of
a spectrum in which the harmonics are visible. The
Peaks are found, and their lowest common divisor
1 determined. This method can work even if the

fundamental and some of the harmonics are missing
(as in telephone speech). Preprocessing, especially
using low-pass filtering, though sometimes more
elaborate, is used. In one algorithm LPC analysis is
used to find the formants; an inverse filter is then
devised and multiplied by the original signal to re-
move the formants, leaving the harmonics of now
nearly uniform amplitude. Then LPC analysis with a
higher order is used, and the peak frequencies, and
their lowest common divisor, are found (Gold and
Morgan, 2000).

FO trackers have been compared extensively.
Some work better with speech recorded in noisy
environments; some work better with high, or low,
voices. Generally, voices become very difficult to
track when they verge into vocal fry, diplophonia, or
other kinds of vocal instability. A manual tracker may
be able to discern periodicity where an automatic
tracker has declared a signal unvoiced. Most trackers
include heuristic thresholds that, for instance, do not
allow octave skips in the output FO values. This is
unfortunate when the speaker has actually produced
a sudden octave change by going into falserto or
yodeling.

Analysis of Stationary Noise

In completely random noise, adjacent samples are
uncorrelated, and the noise must be described statis-
tically. The time waveform can be described by the
probability distribution of amplitudes, and that dis-
tribution can be described by its mean, variance, and
higher moments. The noise can also be described by
its power spectrum, and can be classified in general
terms as wideband or narrowband noise. White noise
is flat across all frequencies and therefore is wide-
band. One can think of the bandwidth of noise in
terms of the rapidity of the variation possible in the
time domain.

For all such descriptions of noise, stationarity
means that the properties of the noise do not change
with time. If this is true, we can collect a very long
example of the signal to analyze; equally, we could
collect sections of it today, tomorrow, and next year
and assume that the mean, variance, and higher
moments are the same in all of our samples.

In the real world, signals carrying information are
not perfectly stationary. As with periodicity, though,
we can declare something to be quasistationary if its
properties do not change very fast compared to the
intervals we are interested in; alternatively, we can
assume that a signal is stationary and, as part of the
analysis, try to determine if that assumption is valid.

In speech, the central portions of unvoiced frica-
tives are often treated as if stationary; sometimes the
entire fricative is treated this way, even though the



448 Phonetics, Acoustic

transitions are clearly regions of rapid change. If
nonstationary noise is treated as stationary, the result
is likely to be a sort of muddling together of the
changing values describing the noise. However, non-
stationary noise is sometimes analyzed as if it were
a deterministic signal, and this is likely to lead to
erroneous conclusions.

From comments in the previous section on how the
frequency resolution depends on the length of the
DFT (Npgr), it might seem that the best way to
analyze a noisy signal would be to use a relatively
short window so that the noise within it is close to
stationary, and then use a big Npgr so that the result-
ing transform is sampled with a fine frequency reso-
lution. But it is possible to prove that taking a single
DFT of noise results in a spectrum with an error of the
same magnitude as the true value. Some form of
averaging must be done in order to describe noisy
signals. Using a longer window (and DFT) before
taking a single DFT, which intuitively seems to be a
good idea because more samples are included, does
not help; the frequency resolution becomes finer, but
the values still have a large error. If, on the other
hand, the samples in the long window are subdivided
into many short windows, the DFT is computed for
each short window separately, and the results aver-
aged at each frequency, the resulting averaged power
spectrum converges to the true value. If each window
contains independent, identically distributed samples
“of the same underlying process, the variance of the
estimate decreases as the number of such windows
increases (Bendat and Piersol, 2000). This is shown
graphically for white noise being time-averaged with
an increasing number of averages in Figure 2.

There are three ways in which averaging can be
done, each of which will reduce the error of the
spectral estimate, but each also with its own pros
and cons. The method just described, of chopping a
long interval into short windows, is called time aver-
aging (see Figure 3A). If Hanning or Hamming win-
dows are being used, the samples at the tapered edges
can be ‘reused’ by overlapping windows to some
degree: rules of thumb range from 30 to 50% overlap.
In this way, 100 ms of signal could be chopped into
nine overlapping 20-ms windows, which could sig-
nificantly improve the variance of the estimate —
provided that the signal is more or less stationary
during the 100 ms. The practice used in some speech
studies of overlapping the windows much more than
this (e.g., using a 20-ms window and a skip factor of
1ms, so that 40ms of signal is used to generate
21 windows and, thus, 21 DFTs) has two disadvan-
tages: the variance of the estimate is not reduced
proportionate to the number of averages, and the
result is weighted toward the characteristics of the
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Figure 2 White noise, analyzed with time-averaging. The num-
ber of DFTs computed and averaged at each frequency is shown as
an n value with each curve. (From Shadle {1985) The acoustics of
fricative consonants. PhD thesis, MIT, Cambridge, MA. RLE Tech.
Report 504, with permission.)

middle 20ms of the 40 ms, since that is the most
heavily overlapped portion.

A second way is to compute the ensemble average
(see Figure 3B). An ensemble of signals means essen-
tially that different signals have been produced under
identical conditions, leading to the same properties
for the noise in each signal. The noise properties can
vary in time, but the time variations must be the same
for each member of the ensemble. For instance, if our
signal is the sound of raindrops falling on the roof,
and they fall louder and faster as the wind blows
harder, then an ensemble could consist of raindrops
falling in ten different storms, in all of which the wind
increased at the same rate. We place our windows at
the same time in each signal (relative to the wind
speed, or other controlling parameter), compute the
DFTs, and average as for the time average. The obvi-
ous problem here is in knowing that every member of
the ensemble had the same controlling parameters at
the same times. However, each individual signal does
not need to be stationary for more than the length of
the short window.

A third way is to compute the frequency average, by
computing a single DFT and then averaging in the
frequency domain (see Figure 3C). Ten adjacent fre-
quency components can be averaged to produce a
single component. This reduces the frequency resolu-
tion but improves the error. However, this works well
only if the spectrum is fairly flat. If the spectrum has
significant peaks or troughs, the frequency averaging
will flatten them and so introduce bias to the estimate,
meaning that it will converge to the wrong value.

For speech, all of these methods have been
used, but none is ideal. Another method exists and
is beginning to be used in speech research: multitaper
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for which the DFT is computed. The 'Average’ boxes compute an average of the DFT amplitude values at each frequency. (A) Time

averaging. (B) Ensemble averaging. (C) Frequency averaging.

analysis. With this method, a single short signal seg-
ment is used, but it is multiplied by many different
windows — called tapers — before computing and av-
eraging their DFTs. The particular shape of the tapers
satisfies the requirement for statistical independence
of the signals being averaged. Figure 4 compares a
multitaper estimate and a DFT spectral estimate of
the same central portion of an [s]. The jaggedness of
the DFT curve can provide a rough visual indication
of its greater error compared to the multitaper curve.
Spectrograms can be constructed of a sequence of
multitaper estimates and plotted similarly. There are
important choices to be made about the number of
tapers to use and other parameters, but the method
offers advantages in speech analysis over the three
averaging techniques described above (Blacklock,
2004).

Note that spectrograms, although they do not in-
clude spectral averaging explicitly, are not as mislead-
Ing as using single DFTs for noisy sounds. Essentially,
the eye averages the noise, aided by the use of a small
skip factor in the computation. The same is not true
of spectral slices derived from a spectrogram; since
these are constructed from a single DFT, there is
nothing shown for the eye to average. This problem
was recognized in an early article about the use of the
Spectrogram (Fant, 1962: Figure 6, p. 20).

Analysis of Mixed Noise and Periodic Signals

Mixed-source signals would seem to call for two
different analysis techniques. Examples in speech
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Figure 4 Multitaper spectrum of {s] in ‘bassoon’ in blue
(smooth curve) overlaid on DFT of same signal in red (jagged
curve). British male speaker. (After Blacklock, 2004.)

include voiced fricatives and affricates, and also
breathy or hoarse productions of vowels, liquids,
and nasals. In all of these cases the signal analysis is
complicated by the fact that the noise and voicing
source are not independent; in voiced fricatives the
noise can be modulated by the voicing source, and
breathy or hoarse sounds are likely to change as the
vocal folds vibrate, even if the noise is not specifically
modulated by the acoustic signal.

Mixed-source signals should be analyzed with time
averaging, ensemble averaging, or multitaper. If the
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periodic component is stationary, the spectral averag-
ing will not affect it, but will reduce the error in the
estimate of the noisy components. If FO of the period-
ic component changes noticeably during the interval
or across the ensemble averaged, the harmonics will
be smeared out, which may be obvious in the aver-
aged power spectrum, or may become clear when that
is compared to a spectrogram. In that case, time
averaging should be avoided in order to decrease the
averaging interval length.

Mixed-source signals can also be decomposed into
two parts, harmonic and anharmonic. A wide variety
of algorithms exist that accomplish this. After decom-
position, each component can be analyzed in the way
appropriate to a harmonic signal and a noisy signal,
respectively. Jackson and Shadle (2001) reviewed
such algorithms and presented their own, which was
used to investigate voiced fricatives. Multitaper analy-
sis can also be formulated to identify harmonics
mixed with colored noise; a detailed comparison of
the two techniques has not yet been made.

Analysis of Noisy Transients

A transient includes nondeterministic noise, is highly
nonstationary, and is generally very short. An exam-
ple from speech is the stop release. Because it is noisy,
it requires averaging, but with such a short signal that
is difficult to do. Ensemble averaging is possible, but
an independent means of aligning the signals in the
ensemble would need to be established. Multitaper is
also a possibility.

Production Models

We turn now from consideration of analysis techni-
ques appropriate to the type of signal to models of
speech production that indicate the parameters we
seek from analysis in order to describe and classify
sounds. The vast majority of speech production mod-
els that are useful for this purpose are source-filter
models, with independent source and filter, and linear
time-invariant filter. The assumption of independence
is flawed — interactions of all sorts have been shown
to exist — but it serves well for a first approximation,
in part because the models become simple concep-
tually. The source characteristics can be predicted,
and the source spectrum multiplied by the transfer
function from that source to an output variable such
as the volume velocity at the lips. (If both character-
istics are in log form, it is even simpler; they can just
be added at each frequency.) While it took years to
develop the theory underlying the source characteris-
tics and the tract transfer functions, it is now straight-
forward to vary a parameter such as FO, a formant
frequency, or pharynx cross-sectional area in such a

model and see its acoustic effect. It is not so straight-
forward to analyze the far-field pressure into true
source and filter components.

Sources

There are two basic types of sources: the voicing
source, generated by vocal fold vibration and nomi-
nally located at the glottis, and noise sources, which
can be located anywhere in the vocal tract, including
at the glottis. In both cases the location of the source
is where some of the energy in the airflow is converted
into sound. Determining the exact location for noise
sources 1s still a subject of research, and slight dif-
ferences can affect the predicted radiated pressure
significantly.

A number of factors affect the voicing source: sub-
glottal pressure, degree of adduction of the vocal
folds, tension of the folds, and supragloteal imped-
ance. They determine, first, whether the vocal folds
vibrate and, if so, the frequency at which they vibrate
and the mode or register of vibration. The frequency
of vibration affects FO and all its harmonics; the
mode of vibration affects the amplitude of all harmon-
ics and also whether noise will also be produced (as in
breathy or whispered speech). These differences can
be characterized in the time waveform of the glottal
volume velocity, Ug(t), or in its spectrum, Uy(f). As
a general rule, abrupt ‘corners’ or changes of slope
in the time waveform, which occur for the more
adducted registers like modal register or pressed
voice, mean there will be more high-frequency energy,
1., the harmonics will have higher amplitudes com-
pared to falsetto or breathy voice. Figure 5 shows a
typical glottal waveform, with a clear closed phase,
and a range of possible spectra; the steeper the slope
(e.g., —18 dB/oct), the smoother the time waveform,
with a sound quality as in falsetto; the shallower
slopes (—12, —6 dB/oct) correspond to a richer, brass-
ier sound. The sound quality is related to the spectral
tilt; the spacing of the harmonics that define the
spectrum is related to TO, the spacing between glottal
pulses (Sundberg, 1987; Titze, 2000).

Noise sources occur when the air becomes tur-
bulent and the turbulence produces turbulence
noise. Whether turbulence occurs is determined by
the Reynolds number, Re = VD/v = UD/Av, where
V = a characteristic velocity, D =a characteristic di-
mension, typically the cross-dimension where V is
measured, U=volume velocity, A= cross-sectional
area where D is measured, and v = kinematic viscosity
of the fluid = 0.15 cm?/s for air. If V increases while
D remains the same, or if U stays the same but
A decreases, Re will increase. Thus, although the
volume velocity must be the same all along the tract
(since there is nowhere else for the air to go), the
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Figure 5 Plots of typical glottal volume velocity, as (A) time
waveform Uy(t), and (B) spectrum, Ug(f). (Adapted from Titze
(2000) Principles of voice production (2nd printing). lowa City, lowa:
National Center for Voice and Speech, with permission.)

Reynolds number will be highest at the points of
greatest constriction. When Re is greater than a cer-
tain critical Reynolds number, Re.;,, the jet emerging
from the constriction will become turbulent, but
where the most noise will be generated depends on
the geometry downstream of the constriction.

The simplest model for such turbulence noise is to
treat it as completely localized at one place, and place
a series pressure source at the equivalent place in the
mode]. The strength of the source, py, is related to the
parameters that affect the amount of turbulence gen-
erated: the pressure drop across the constriction, and
the volume velocity and area of the constriction. The
spectral characteristic should be broadband noise;
sometimes, for convenience, it has been defined as
high-pass-filtered white noise (Flanagan and Cherry,
1969). Stevens specified a broad peak characteristic
of free jet noise (though free jet noise generation is
distributed along the length of the jet) (Stevens,
1971), but some experiments indicate it should
have a characteristic with its amplitude highest at
low frequencies (Shadle, 1990) (see Figure 6). The
location of the source has been experimented with;

Free Jet
]

Amplitude (dB)

Frequency

Jet plus
obstacle ——

Amplitude (dB)

Frequency

Experimental Source

Geometry Spectra

Figure 6 Noise source: shape downstream of constriction and
spectrum of noise resulting experimentally, for free jet (top) and
jet impinging on an obstacle (bottom).

Flanagan and Cherry (1969) placed it 0.5 cm down-
stream of the constriction exit; Fant (1970) sought the
location generating the best spectral match for each
fricative; Stevens (1998) has demonstrated the differ-
ence made by placing it at any of three locations
downstream. It seems clear that, for some fricatives,
a localized source and a characteristic of spoiler in
duct is fine, while for others, a distributed source with
the broad peak characteristic of a free jet is needed
(Shadle, 1990).

Because ps is related to the pressure drop across the
constriction, the amount of noise will change as
the constriction area changes (as is needed during a
stop release, or in the transitions into and out of a
fricative) and as the pressure just upstream of the
constriction changes (as when the pressure drop
across the glottis changes). Modulation of p, by the
glottal volume velocity is possible in such a model
(Flanagan and Cherry, 1969), though the actual mech-
anism affecting the source in voiced fricatives appears
to be somewhat more complex than can be modeled
by their synthesizer (Jackson and Shadle, 2000).

Filters

The filtering properties of the vocal tract depend on
its shape and size and, to a small extent, on the
mechanical properties of its walls. Wherever sound
is generated 1in the tracrt, sound waves emanate out-
ward from that point. At any acoustic discontinuity
{such as a change in cross-sectional area, or encoun-
tering a solid boundary), some of the wave may travel
onward, and some may reflect. Reflected waves can
interfere with sounds emitted from the source later,
combining constructively and destructively. At
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frequencies in the sound where the interferences recur
at the same spatial positions, standing wave patterns
will be set up.

Many explanations of standing wave patterns
exist (see, for example, Stevens, 1998; Johnson,
2003). It is simple to compute the frequencies at
which such patterns will occur for lossless uniform-
diameter tubes, where only two cases matter: tube
closed at one end and open at the other, so that the
boundary conditions differ, and tube open at both
ends or closed at both ends, so that the boundary
conditions are the same. The first sustains quarter-
wavelength resonances, that is, the tube length equals
integral multiples of /4, so the resonance frequencies
are f, = c(2n + 1)/4L, wheren=0, 1, 2, 3, ..., and

= nth resonance, ¢ = speed of sound, and L = length

of tube. The second sustains half-wavelength reso-
nances; the tube length equals integral multiples
of A2, so the resonances are f, =cn/2L, where
n=0,1,2,3,....

More complex tract shapes can be approximated by
concatenating two or more tubes, each of uniform
cross-sectional area. If the number of tubes is low, it
is still relatively easy to predict the resonances of the
combined system and is, thus, useful conceptually.
Analytic solutions can be found for the resonances
of the system by solving for the frequencies at which
the sum of the admittances at any junction is zero.
This was first shown by Flanagan (1972) for a set of
two-tube systems approximating vowels. For more
than two tubes, it is still possible, but the calculations
become so complex that it is preferable to use many
more tubes, simulate them as a digital filter, and cal-
culate the resonances by computer. However, if the
area changes by a factor of six or more between sec-
tions, for instance, with a constricted region between
two larger-area sections, one can assume that the
cavities are decoupled and compute the resonances
for each tube — in this case, three — separately. In this
situation, each resonance of the system will have a
strong cavity affiliation, with its frequency inversely
proportional to the length of that cavity. In other
cases, where the area does not change so significantly
between sections, the resonances are coupled. An ex-
treme case of a coupled resonance is the Helmholtz
resonance, which depends on the interaction of a
small-area neck and a large-volume cavity.

All of these resonances result from plane-wave
modes of propagation, meaning that the acoustic
wavefronts are planar, perpendicular to the duct’s
longitudinal axis. A point source in the duct will
radiate sound in all directions, but below a certain
cut-on frequency any sound traveling in directions
other than along the duct’s axis will die out; these
waves are evanescent. The cut-on frequency depends

on the cross-dimensions of the duct and its cross-
dimensional shape. It is easiest to understand for
a duct that has a rectangular cross-dimension, say,
L, by Ly; the cut-on frequency occurs where a half-
wavelength fits the larger of L, and L, which
we shall call L. In other words, feo = ¢/2L .
For a duct of circular cross-section, with radius a,
feo = 1.841c/(2am).

Above the cut-on frequency, cross-modes will pro-
pagate. These modes are also dispersive, meaning that
higher frequencies travel faster (Pierce, 1981). Many
of the assumptions underlying the basic model used in
speech become progressively less true.

For vocal-tract-sized cross-dimensions, what are
the cut-on frequencies? If the duct is rectangular,
with Loac=2.5cm, f,=72kHz; Lp.=4.0cm
gives f., =4.41kHz.

If the duct is circular, a diameter 2a =2.5 cm gives
f.,=8.42kHz; 2a =4.0 cm gives f., = 5.26 kHz. The
maximum cross-sectional areas in these cases are,
respectively, 6.2 and 16 cm? for rectangular duct,
and 4.9 and 12.6 cm? for the circular duct. (We use
c=35,900cm/s as the speed of sound at body
temperature, 37 °C, and for completely saturated air.)
Obviously the'vocal tract is never precisely rectangu-
lar or circular in cross-section. But in comparing to
Fant’s data, for instance (1970), we can estimate that
the cut-off frequencies for the six vowels of his subject
ranged from 4.6 to 9.0 kHz (assuming a rectangular
cross-section) or 4.8 to 9.3kHz (assuming cir-
cular cross-section). For a smaller subject, and where
cross-dimensions are given (Beautemps et al., 1995),
the largest cross-dimension in the front cavity is
1.79 cm (for /a/), giving f.,=10.0 to 11.8kHz; the
largest back-cavity cross-dimension is 2.4 cm (for /i/),
giving f.o = 7.5 to 8.8 kHz. For formant estimation for
vowels, then, the lumped-parameter models consider-
ing only plane-wave propagation are based on reason-
able assumptions. For fricatives, there may well be
significant energy above the cut-off frequency, where
these models become increasingly inaccurate, butin the
absence of articulatory data good enough to support
more complex high-frequency models, plane-wave
propagation models are often pressed into service.

There are several sources of loss in the vocal tract
that have the effect of altering resonance frequencies
and bandwidths. The most significant is radiation
loss, especially occurring at the lip opening, but also
present to a lesser extent wherever a section with
small cross-sectional area exits into a region of much
larger area. The main effect is to tilt the spectrum up
at high frequencies. If resonances have been com-
puted assuming no loss, their predicted frequencies
will be higher than actually occur, and the difference
is bigger at higher frequencies. The larger the area of
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the mouth opening relative to the front-cavity vol-
ume, the greater the radiation loss. If there is a small
constriction such that front and back cavities are
decoupled, back-cavity resonances will have little ra-
diation loss and so will have sharper peaks (lower
bandwidths) than the front-cavity resonances.

Viscosity describes the loss that occurs because of
the friction of the air along the walls of the tract; heat
conduction describes the thermal loss into the walls.
Both increase when the surface area of the tract is
higher relative to the cross-sectional area and increase
with frequency. Though not as big sources of loss as
radiation, they contribute to the increased band-
widths of higher resonances. Finally, the walls of the
tract are not rigid; when modeled as yielding,
the bandwidths of low-frequency resonances are
predicted to increase (Rabiner and Schafer, 1978).

Any sound source excites the resonances of the
vocal tract, and those resonances can be calculated,
approximately or more precisely, by the methods out-
lined above. There may also be antiresonances, when
the tract is branched and/or when the source is inter-
mediate in the tract. The antiresonances vary accord-
ing to the position and type of source; for each source
possibility, a different transfer function can be com-
puted. The transfer function is a function of frequency
and is the ratio of output to input. Thus, multiplying
the transfer function for a particular source by the
source’s spectral characteristic yields the predicted
output spectrum. At frequencies where the transfer
function equals zero, the output will be zero no matter
what input is applied; at frequencies where the trans-
fer function has a high amplitude, any energy in the
input at that frequency will appear in the output,
scaled by the amplitude of the transfer function.

It is worth remembering that the resonances and
antiresonances are properties of the actual air in the
tract, duct, tube system. Poles and zeros are attributes
of the transfer function, where the analytical expres-
sion goes to infinity (at a root of the denominator) or
to zero (at a root of the numerator). A spectrum of
actual speech is best described as having peaks and
troughs; according to the particular set of approxima-
tions used, these may be modeled as corresponding to
poles and zeros. A given spectral peak may be pro-
duced by more than one resonance, modeled by more
than one set of poles; a pole-zero pair near each
other in frequency may effectively cancel, producing
neither peak nor trough.

Methods of Classification
Vowels

Peterson and Barney (1952), in their classic study,
determined the range of variation in the first two

formants for 10 vowels, thus demonstrating not
only the usefulness of those two parameters but also
their average values for men, women, and children.
Although they measured formants from spectral
slices, having determined the best place to compute
the slice from a spectrogram, that is only one of
several techniques available now. One can locate the
vowel using only the time waveform and compurte the
LPC spectral envelope and determine the frequencies
of the peaks in that envelope. One can run an LPC-
based formant tracker on the entire utterance, which
computes the peak frequencies directly. Since LPC
can occasionally fail to identify closely spaced for-
mants separately, as a safeguard one can compute
either a single DFT or the entire spectrogram, respec-
tively, and superimpose the LPC spectral envelope or
formant tracks on top for a quick visual check of the
LPC performance. The window used for either DFT
or LPC analysis should be at least as long as a single
pitch period; the LPC order should be chosen to allow
for the expected number of formants within the fre-
quency range, or adjusted and recomputed after an
initial analysis.

To understand formant patterns, it is useful to con-
sider vocal tract shapes as departures from a uniform
tube that is closed at one end, the glottis, and open at
the lips. For a length of 17.5 cm, assuming no losses,
resonances are predicted at 500, 1500, 2500, ... Hz.
Shortening the uniform tube raises all frequencies.
Decreasing the area at the lip end only, akin to round-
ing, lowers all frequencies and reduces the band-
widths. To consider vowels other than schwa, we
need at least a two-tube model. If the tongue is high,
the pharyngeal area becomes large, and the oral cavi-
ty area becomes small. The lowest formant is best
modeled as a Helmholtz resonance and moves down
from 500 Hz; upper formants shift, depending mainly
on the lengths of the two cavities, and partly depend-
ing on the area ratio. The rule of thumb, often quoted,
is that increasing tongue height brings down F1, and
increasing tongue frontness brings up F2. This rule
works roughly, even though /u/ cannot really be mod-
eled by a two-tube combination. The extreme, cardi-
nal vowels /i/ and /a/ do fit. For /i/, the tongue is high
and front, F1 is low, and F2 is high. For /a/, the tongue
is low and back, F1 is high, and F2 is low. For these
vowels with large area differences from pharynx to
oral cavity, the tubes can be treated as decoupled,
Jeading to the observation that cavity affiliation of
each formant occurs in a different order. For /i/, F1 1s
a Helmholtz resonance, and F2, F3, and F4 are, re-
spectively, back, front, and back-cavity resonances.
For /a/, F1 to F4 are, respectively, back, front, back,
front-cavity resonances. This means that, in a transi-
tion from one to the other, as occurs in the diphthong
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/al/, the formants do not smoothly change frequencies
from one vowel to the other.

These models help us tc understand, but real
speech is seldom so clean. Figure 7 shows waveforms
and spectrograms of two sentences, one spoken by an
adult female (Figure 7A), “Don’t feed that vicious
hawk,” and one by an adult male (Figure 7B}, “You
should be there on time,” both British speakers. We
will be referring to these spectrograms throughout
this section. Note that the vowel in ‘You’ at the start
of Figure 7B has a low F1, but high F2 inconsistent
with /u/; /ju/ has apparently been realized as [jI]. The
vowel in ‘should’ is very short, but still has three
steady formants visible. The vowel in ‘be,” after the
initial formant transitions, has a classic pattern for
/i/; note the differences between this [i] and that in
Figure 7A, ‘feed.” The words ‘there on’ show a fairly
gradual lowering of F3 for [r], followed by a more
sudden lowering of F2 for [a]. The formants in ‘time’
do change from F1 and F2, from being near each
other to a wider separation, as expected, but F2
does not rise very far.

The simple models also allow one to understand
how vowels vary with gender and age. As children
grow, their pharynxes lengthen more than do their
oral cavities; the vocal tract length differences be-
tween adult men and womer are due more to differ-
ences in pharyngeal than in oral cavity length. Thus,
the formant space does not scale uniformly by vocal
tract length. The higher F2 in the female subject’s [i]
agrees with this explanation.

To a first approximation, the voicing source and
the vocal tract filter are independent. We can there-
fore think of the transfer function from glottis to lips
as a spectral envelope that is sampled by the funda-
mental and its harmonics. If the vocal tract remains
the same shape, leaving the formants at the same
frequencies, the harmonics sample it more coarsely
at higher values of FO. On average, speakers with
smaller larynges also have shorter vocal tracts, so
that, as the range of FO values possible moves up,
the range of formant frequencies increases too. How-
ever, as Peterson and Barney’s data show (1952), they
do not increase at the same rate; women’s FO is 1.7
times higher than men’s, while their formant frequen-
cies are only 1.135 times higher, on average. This
means that FO is much more likely to approach F1
in women than in men, and formants may be difficult
to resolve. An example of this occurs in Figure 7A in
‘feed,” where FO is 273 Hz.

Finally, sometimes the properties of the voicing
source are of more interest than the filter properties
of vowels. It is possible to inverse filter the speech
signal and arrive at an estimate of the glottal volume
velocity. In order to inverse filter, one must estimate

what the filter was, invert that, and muluply it by the
speech spectrum. Clearly, the estimate of the glotral
volume velocity is only as good as the estimate of the
tract filter function, but the technique has led to
detailed explanations of voice quality differences, in-
cluding source differences between men and women.
One of the berter-known techniques uses the Rothen-
berg mask to measure volume velocity at the lips and
inverse filter that signal rather than the far-field pres-
sure. This provides information about the mean flow
of air through the vocal tract, including the degree of
breathiness in the glottal volume velocity.

Nasals

In order to produce a nasal, the velum is lowered, and
complete closure is effected in the oral cavity. The
oral cavity becomes a side branch that contributes
antiresonances inversely related to the length from
pharynx to place of closure; the resonances arise
from the pharynx and nasal cavities. The nasal cav-
ities are convoluted in shape, uniquely so for each
individual; the length of the effective tract is thus
longer than that of pharynx plus oral cavity, with a
correspondingly lower first formant. Bandwidths of
all resonances are also larger because there are more
surfaces to absorb sound.

As with fricatives, the radiated spectrum is a mix-
ture of peaks and troughs that are not always easy to
map to particular cavities. The nasal formants are
packed more closely in frequency than nonnazalized
vowel formants, but they may not all be apparent
because of the antiresonances. Some of the series of
antiresonances may appear as deep spectral troughs,
but where they coincide with nasal formants, they
will cancel, or nearly so, and neither will be apparent.
Because of the cancellation and the wide band-
widths, the spectrum of a nasal will overall have
lower amplitude than an adjacent vowel. While the
antiresonances that could provide a place cue may not
be strikingly apparent, particularly if there is back-
ground noise, the formant transitions in adjacent
vowels will also provide place cues; briefly, all for-
mants will decrease before a bilabial nasal, F1 and F3
will decrease and F2 will increase before a velar nasal,
and F1 and F3 will decrease and F2 will decrease or
increase depending on the vowel before an alveolar
nasal (Kent and Read, 1992; Johnson, 2003).

The clearest example of such transitions occurs in
Figure 7A in ‘don’t,” where F2 clearly rises during the
nasalized portion. In Figure 7B, no transitions are
obvious in the vowel of ‘on,” though F2 and the
amplitude both decrease abruptly at the start of the
nasal. In ‘time,” a slight F1 transition is observed,
and F3 appears to drop abruptly, though it 1s not
well-defined in the spectrogram.
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Figure 7 Waveform and spectrograms of two sentences. (A) “Don’t feed that vicious hawk,” female British speaker, as in Figure 1;
{B) "“You should be there on time,”’ male British speaker. Note spectrograms extend up to 12kHz.
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In nasalized vowels the velum is down, but the oral
cavity is not closed. The presence of two distinct paths
still allows for interference effects, but the antireso-
nances will be at different frequencies than for nasals,
and these frequencies will depend on the area of the
velo-pharyngeal port. The resonances will correspond
to those of the vowel alone (pharynx plus oral cavity)
and the nasal formants (pharynx plus velo-pharyngeal
port plus nasal cavities); the antiresonances may can-
cel some of these, or may show vp as spectral troughs,
but it is likely that the lowest nasal formant will be
the highest-amplitude peak.

Fricatives

Many different sets of parameters for fricatives have
been explored, but none are yer sufficient to classify
them. Theoretically it seems straightforward; when
the constriction is small, as during the ‘steady-state’
portion of a fricative, the back-cavity resonances
are essentially cancelled. The noise source excites
the front-cavity resonances, and antiresonances -—
zeros — appear at low frequencies and at higher fre-
quencies inversely related to the distance between
source location and constriction exit. If the source
is not well localized, these higher-frequency anti-
resonances may smear out and not be readily appar-
ent. The frequency at which the energy appears in the
spectrum thus should differentiate fricatives by place,
with longer front cavities for palatals and velars
corresponding to energy at lower frequencies. How-
ever, the frequency ranges used for different fricatives
overlap extensively across subjects. Further, inter-
dentals seem to be highly variable even within sub-
ject, with, sometimes, barely discernable noise. For
instance, in Figure 7A, [f] has significant energy from
1200Hz to 11kHz (and possibly higher; the anti-
aliasing filter begins to act there), though clearly not
as high amplitude as the [s] or [[] in the same sen-
tence, and lasting for 150ms. The [v], however,
appears to consist of a voicebar lasting 100 ms and
weak noise, albeit at roughly the same frequency
range, for only 10-20 ms. Note also that [f] differs
slightly in Figure 7A and 7B, with the frequency of
the lower edge of the high-amplitude region occurring
at approximately 2.0 kHz for the female, 1.5 kHz for
the male subject. This may be due to a difference in
length of the front cavity, or, more likely, to the influ-
ence of the vowel context, with the higher cut-on
frequency corresponding to the high unrounded
vowel.

It was thought at one point that identification of
interdentals depends on transitions, while that of /s, J/
depends only on steady-state characteristics. An ob-
vious difference in articulation tends to support this
theory; /6/ requires the tongue tip to be in contact

with the teeth, unlike in /f/. However, careful manipu-
lation of speech signals shows that transitions as well
as steady-state characteristics are important for /s, [/
(Whalen, 1991).

In the transition from a vowel to a fricative several
things happen, and not always in the same order.
Formants shift as the constriction becomes smaller,
noise begins to be produced, and the formants as well
as antiresonances begin to be excited. Back-cavity
resonances can be prominent for a time until the
constriction area decreases sufficiently for them to
be cancelled. As the noise increases, the rate at
which it increases depends on the fricative; stridents
appear to have the most efficient noise sources, in that
the noise produced increases at a greater rate propor-
tional to the flow velocity through the constriction.
Both spectral tilt and overall spectral amplitude are
affected. Within a given place and for a given subject,
the spectral tilt can be thought of as occurring in a
family of curves; if the same fricative is produced with
greater effort, the spectrum tends to have higher
amplitudes overall and a less negative slope. Voiced
fricatives with the same place will have a set of curves
with a similar relationship of spectral tilt to effort
that is less than, but overlapping with, the range for
their voiceless versions. However, these differences,
while predictable from an understanding of flow
noise sources, do not sufficiently distinguish fricatives
(Jesus and Shadle, 2002). Finally, voicing changes
during the transition for both voiced and voiceless
fricatives, presumably to allow sufficient pressure
drop across the constriction to support {rication.

Many researchers have pursued methods of char-
acterizing fricative spectra by statistical moments,
as if they were probability distributions. Recently
Forrest et al. (1988) described their calculation of
spectral moments, indicating that these were suffi-
cient to distinguish stops, but applied to fricatives,
distinguished /s, [/ from each other and from the
interdentals /f, 6/, but did not distinguish the inter-
dentals at all. More recent studies have used methods
of computing the moments that showed that certain
moments of the English voiceless fricatives were sta-
tistically significantly different, but the differences
were not enough to allow for categorization.

Spectral moments capture the gross distribution of
energy over the chosen frequency range, but ignore
particular features that we can attribute to particular
production methods, such as back-cavity formants
appearing in the transition regions, or the salience
and frequency of spectral troughs. In addition,
the gross parameters captured depend greatly on the
particular spectral representation from which the
moments were calculated. Ideally, a low-variance
spectral estimate would be used, but this has not
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typically been done. Computing the moments does
some spectral smoothing as with frequency interpola-
tion, but with more bias, and amplitude thresholding
and frequency range can affect the results dramatical-
ly. One question was whether using a better spectral
estimate before computing moments might improve
results. It appears that starting with a good spectral
estimate helps, but only marginally; new parameters
are needed for significant gains (Blacklock, 2004).
The best parameters appear to be based on mult-
taper spectra, with frequency range to 20kHz, am-
plitude threshold carefully controlled, and identical
recording conditions across subjects, as shown in
Figures 4 and 8. Figure 8 shows examples of multi-
taper spectrograms of the voiceless fricatives uttered
in the same vowel context, by the same subject. While
differences between the fricatives are apparent in
these examples, the problem is to find characteristics
that hold up across tokens, contexts, and subjects.
Men and women require different parameters; an
examination of the variance of the mean power

spectral density in 12 subjects indicated that /s, [/
can best be distinguished from each other at 2.5 kHz
for men, 3.0 kHz for women. The main spectral peak
in /f/ occurred at 2, 4, or 7kHz for men, but most
often at 2 kHz; for women the peak occurred ar 2, 4,
or 8§ kHz, and was more evenly distributed among
these frequencies. Spectral variation within particular
tokens was also examined, with somewhat inconclu-
sive results. Clearly multitaper analysis is a powerful
tool that bears further investigation (Blacklock,
2004).

Finally, voiced fricatives often devoice, with the
amount somewhat dependent on language (studies
on English, French, and Portuguese are cited in Jesus
and Shadle, 2002) as well as with fricative place
(posterior fricatives devoice more often) and position
within the phrase {end of sentence devoices more
often). Devoicing allows more air pressure to be
dropped across the supraglottal constriction, thus
strengthening the noise source. However, it appears
that in some cases the fricative ‘denoises’ instead,

Multitaper spectrogram: [th]

Multitaper spectrogram: [f]
20 . —re .

Frequency (kHz)

0 27 54 81 108 135
Time (ms)

Multitaper spectrogram: [s]
20 . - :

Frequency (kHz)

0 27 54 81 108 135 162
Time (ms)

20 : 1

16

0 27 54 81 108
Time (ms)

Multitaper spectrogram: [sh]
20 ‘ . .

0 27 54 81 108
Time (ms)

Figure 8 Multitaper spectrograms of [f] from ‘buffoon,’ [8] from ‘Methuselah,’ [s] from ‘bassoon,’ and [[] from ‘cashew,” same British

Male speaker as in Figure 4. (After Blacklock, 2004.)
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with additional pressure drop being used across the
glottis, strengthening the voicing source. Voiced fri-
catives are shorter in duration than their voiceless
equivalents in all languages studied. The modulation
of the noise source by the voicing source indicates
that the phase of the modulation changes rapidly in
the transition into and out of the fricative (Jackson
and Shadle, 2000). This may be a feature that humans

notice and use in identification; further studies await.

Stops and Affricates

Stops are a relatively well-understood class. The man-
ner in which they are articulated is related to the
temporal events that are observable in the time wave-
form; the place at which they are articulated is related
mainly to spectral cues. Before the stop begins, articu-
lators are moving toward closure; if the stop occurs
postvocalically, formant transitions will occur that
offer place cues. For the stop itself, first is the period
of closure, during which no air exits the vocal tract;
voicing may continue briefly but no other sounds are
produced. When closure is released, there may be the
release burst, followed by brief frication as the articu-
lators move apart, followed by aspiration and, finally,
by voice onset. After voice onset the formants are
more strongly excited, and transitions characteristic
of the stop’s place will again be observable.

Not all of these stages occur with every stop. If the
stop is preceded by /s/, it has a closure period but no
burst release. Syllable-final stops are often not re-
leased. The frication period is not always present
and distinguishable from aspiration. Both frication
and aspiration may be missing in voiced stops; they
tend to be present in voiceless stops, but formant
transitions are less obvious in the vowel occurring
after the stop.

These latter two points are related to one of the
stronger cues to voicing of a stop, the voice onset time
(VOT). The VOT is the time between stop release and
voice onset. In voiced stops, although voicing may
well cease during closure as the pressure builds up in
the vocal tract, the vocal folds remain adducted;
when the supraglottal pressure suddenly drops fol-
lowing release, phonation begins again quickly, lead-
ing to a short VOT. In voiceless stops, the vocal folds
are abducted and take time to be adducted for the
following voiced segment, leading to a long VOT.
Aspiration noise is produced near the glottis because
the glottis, while narrowing, provides a constriction
small enough to generate turbulence noise.

Experiments in which the VOT has been varied
in synthetic stimuli have shown that VOT alone
produces a categorical discrimination between voiced
and voiceless stops, with a threshold value of 20-
30 ms. However, VOT varies to a smaller extent by

place, with velar stops having longer VOT than bila-
bial stops; this difference is as much as 20 ms. Finally,
VOT varies with speech rate, with values shortening
at higher rates.

The main spectral cues in stops are the burst spec-
tral shape and the formant transitions in adjacent
vowels. Additional cues lie in the spectral shape of
the frication interval, but this is so brief, relatively
weak, and time-varying that it is much less easy to
analyze. The spectral shape of all three is related to
the movement of the articulators toward closure for
the stop. It can be shown that any narrowing in the
anterior half of the vocal tract will cause the first
formant to drop in frequency. The direction of fre-
quency change in F2 and F3 depends on the place
of the target constriction (of the stop) and the posi-
tion of the tongue before the movement began (the
vowel front- or backness). As demonstrated initially
by Delattre et al. (1955) and cited in numerous refer-
ences since, for bilabial stops all formants decrease in
frequency when moving toward the stop (i.e., wheth-
er observing formant transitions pre- or poststop);
a clear example of this is seen for ‘be’ in Figure 7B.
For velar stops, F1 and F3 decrease; F2 increases
when moving toward the stop. For alveolar stops,
F1 and F3 decrease; F2 increases for back vowels
and decreases for front vowels. But note that in
Figure 7A, the vowel formants in ‘hawk’ do not
change noticeably near the closure.

The burst spectra follow related patterns, since
they are produced by an impulse excitation of the
vocal tract just after closure is released. For bilabials,
the spectrum has its highest amplitude at low fre-
quencies and falls off with frequency. Alveolars are
high amplitude at 3-5 kHz, and velar bursts are high-
est amplitude at 1-3 kHz. Though these are referred
to, respectively, as having shapes of falling, rising, and
indeterminate or compact or midfrequency, these
terms are relative to a frequency range of 0 to, at
most, S kHz. The [t] in ‘time’ in Figure 7B shows a
striking burst, frication, aspiration sequence, which
extends up to 12kHz. The theoretical burst spec-
tral shapes are roughly similar to those of fricatives
at each place, as we would expect, since all back-
cavity resonances should be cancelled immediately
postrelease, and the front-cavity resonances are
excited.

Affricates can be thought of as a combination of a
stop and a fricative, but with some importanc differ-
ences in timing and place from either. The closure and
release of a stop are evident, but the frication period is
Jong for a stop and short for a fricative. Aerodynamic
data indicate that the constriction opens more slowly
for /tf/ than for /t/, directly supporting the longer
frication duration for the affricate compared to the
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stop (Mair, 1994). The rise ime for the frication noise
for /tJ/ is significantly shorter than for /f/ (Howell and
Rosen, 1983).

Conclusion

We have surveyed some aspects of acoustics, record-
ing equipment, and techniques, so that appropriate
choices can be made. It is possible to compare speech
analysis results using recordings that were not made
in the same way, provided that information such as
type of microphone and its position relative to the
speaker have been noted, ambient noise has been
recorded, and so on.

By the same token, signal processing principles and
techniques have been reviewed so that the techniques
can be chosen appropriately for both the signal type
(whether periodic, noisy, or a combination) and the
information sought (absolute level, formant frequen-
cies, properties of the voice source, etc.). Some para-
meters must be estimated and the analysis done twice
or more, iterating. Others must be done correctly the
first time, such as antialiasing before sampling a sig-
nal. Each of the different methods of spectral analysis
has its place; the choice of which is best depends not
only on the type of speech sound being studied, but
also on the speaker.

Finally, the basic manner classes of speech have
been reviewed and parameters that can be used for
classification discussed.

See also: Phonetics, Articulatory; Voice Quality.
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