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ABSTRACT

A procedure is demonstrated for learning to recover the relative positions of simulated
articulators from speech signals generated by articulatory synthesis. The algorithm
learns without supervision, that is, it does not require information about which
articulator configurations created the acoustic information in the training set. The
procedure consists of vector quantizing short time windows of a speech signal, then
using multidimensional scaling to represent quantization codes that were temporally
close in the encoded speech signal by nearby points in a continuity map. Since
temporally close sounds must have been produced by similar articulator configurations,
sounds which were produced by similar articulator positons should be represented
close to each other in the continuity map. Continuity maps were made from parameters
(the first three formant center frequencies) derived from acoustic signals produced by an
articulatory synthesizer that could vary the height and degree of fronting of the tongue
body. The procedure was evaluated by comparing estimated articulator positions with
those used during synthesis. High rank-order correlations (0.95 to 0.99) were found
between the estimated and actual articulator positions. Reasonable estimates of relative
articulator positions were made using 32 categories of sound and the accuracy improved
when more sound categories were used.

REsuME

Une procédure visant 2 inférer, partir du signal acoustique, les positions correspon-
dantes des articulateurs du conduit vocal est présentée dans cet article. Elle est évaluée
sur des signaux de parole synthétique obtenus par synthase articulatoire : Je but est de
retrouver les positions relatives des articulateurs qui ont effectivement été les com-
mandes du modele articulatoire utilisé dans la syntheése. L'algorithme est fondé sur un
apprentissage non supervisé, qui ne requiert aucune information sur les dispositions
articulatoires qui ont été utilisées dans le corpus d'apprentissage. La procédure consiste
d'abord en la quantification vectorielle de courtes fenétres temporelles du signal de
parole ; puis grice a une technique de mise 2 I'échelle multidimensionnelle (Multidi-
mensional scaling) on représente les codes de quantification qui se succédent temporel-
lement dans le signal de parole ainsi codé par des points voisins dans une carte de conti-
nuité. Puisque les sons qui se succédent dans le temps sont vraisemblablement produits
& partir de configurations articulatoires similaires, les sons qui ont été produits par des
positions articulatoires similaires devraient se situer a proximité les uns des autres dans
la carte de continuité. Les carte de continuité ont été établies & partir de paramatres (les
trois premigres fréquences formantiques) obtenus par I'analyse de signaux acoustiques
produits par un synthétiseur articulatoire qui peut agir sur la hauteur de la langue et le
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degré d’avancement du corps de la langue. La"procédure a été évaluée sur la base des
erreurs entre les positions articulatoires inférées et celles qui ont été effectivement uti-
lisées pour la synthése. De fortes corrélations (0.95 to 0.99) ont été trouvées entre les
positions des articulateurs estimées et celles qui sont effectivement utilisées lors de la
syntheése. Des estimations satisfaisantes des positions relatives des articulateurs ont été
obtenues en utilisant 32 catégories de son, et la précision de I'estimation croit si plus de
catégories sonores sont utilisées.

1. Introduction

A growing body of research (e.g. Atal, 1975 ; Boé et al., 1992 ; Hogden er al., 1993 ; Jordan &
Rumelhart, 1992 ; Kawato, 1989 ; Kuc et al., 1985 ; Ladefoged er al., 1978 ; McGowan, 1994 ; Papcun
etal, 1992 ; Rahim et al, 1991 ; Schroeter & Sondhi, 1992 ; Shirai & Kobayashi, 1986) supports the
hypothesis that information about articulator positions can be recovered from the acoustic speech
signal. This conclusion is somewhat surprising since, when the acoustic properties of the vocal
tract are modeled by lossless acoustic tubes, radically different vocal tract shapes can have
identical transfer functions (Fant, 1970 ; Flanagan, 1972). Furthermore, although adding a glottal
energy loss to the vocal tract model can make the mapping from acoustics to vocal tract shapes
unique (Markel & Gray, 1976), adding energy losses is not always sufficient to eliminate vocal tract
shape ambiguities (Atal et al., 1978)

Energy losses or not, it is clear that the shape of an acoustic tube cannot be uniquely
determined from information about formant frequencies of a single transfer function without
incorporating additional constraints. This has been shown using articulatory synthesizers, both
with and without energy losses (Atal, er al,, 1978 ; Maeda, 1989 ; Stevens & House, 1955). Linear
prediction theory leads to the same conclusion by showing that formant frequencies and

bandwidths must both be used to determine vocal tract shape. Fmally. bite-block experiments
confirm that people can produce vowels with nearly normal values of the first three formant
frequencies using a « physiologically unnatural position of the mandible » (Lindblom er al,, 1979).
It is difficult to argue that bite block vowels are acoustically identical to normally produced vowels
- perceptual differences between normal and bite-block vowels have been noted (Fowler & Turvey,
1980) - but Lindblom et al,, found that the first three formants of bite block vowels were usually
within 3 standard deviations of normal vowel formants with few systematic deviations.

Nonetheless, there has been some success at recovering articulation from acoustics. For
example, given a training set consisting of acoustic signals generated by an articulatory synthesizer
and the articulator positions used to produce them, Atal (1975) found a non-linear regression
function that calculated seven vocal tract parameters (constriction location, constriction degree,
lip protrusion, etc.) from twelve acoustic parameters (six formant frequencies and six bandwidths).
The importance of using as much acoustic information as possible was reinforced in this study
because Atal was able to determine vocal tract parameters from representations of the acoustic
signal provided the acoustic representation included information about a sufficient number of
formant frequencies and bandwidths.

Atal’s success in the 1975 study was based, at least in part, on the fact that the model vocal tract
used for synthesis had fewer degrees of freedom than the acoustic information used to recover the
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tract shape. Conversely, the finding by Atal et al., (1978) that many different vocal tract shapes can
lead to the same acoustic signal was partly due to the fact that the number of articulatory
parameters to recover was greater than the number of acoustic parameters measured. Clearly,
vocal tract shape can be determined more accurately if the number of acoustic parameters used to
determine vocal tract shape exceeds the number of parameters used to describe vocal tract shape.

Unfortunately, as Sondhi (1979) mentions, only a limited number of acoustic parameters can
be accurately recovered from speech. This poses the serious question of whether the vocal tract
shapes used during speech can be described with fewer parameters than the number of acoustic
parameters that can be accurately recovered from speech. There is support for the contention that
the articulator positions commonly used during vowel production can be described
parsimoniously ; tongue shape can be adequately represented by only 2 or 3 parameters
(Harshman, et al., 1977 ; Morrish et al,, 1985) and vocal tract shapes in general can be represented
by about 7 to 10 factors (Coker, 1976 ; Maeda, 1989 ; Rubin et al., 1981) Evidence that human
articulator positions can be recovered from acoustic information has been presented by Ladefoged
et al,, (1978), who used multiple regression to find a relationship between the first three formants
and two PARAFAC factors representing tongue shape. Tongue positions inferred from the first
three formants of steady state vowels accurately reflected the tongue positions seen in X-ray
tracings for several subjects, although there was some difficulty in estimating the tongue shapes
used to produce the vowel (a]. Similarly, Hogden et al., (1993) recovered articulator positions using
a look-up table.

Some articulatory features can be more easily recovered from speech than others. For example,
Boé et al., (1992) used an articulatory synthesizer based on X-ray data (Maeda, 1979) to show that
the location and area of the oral constriction used in vowel production could be determined from
the first three formants alone, even though the complete shape of the vocal tract could not be
recovered. This research demonstrates that even if the vocal tract shape is not entirely recoverable
from the acoustic signal, aspects of articulation that are important for phonetic identification may
be recoverable. Continued research in this direction may uncover other articulatory features that
can be determined despite ambiguous mappings from acoustics to vocal tract shape.

Most techniques for solving the acoustic-to-articulatory mapping problem have not been
rigorously tested on human articulatory/acoustic data because of the difficulties involved in
measuring the articulator positions. Three exceptions to this rule are the studies by Ladefoged
et al., (1978) and Hogden et al., (1993) that were already discussed, and also a study by Papcun
et al.,, (1992). The latter study found that neural networks, which perform a type of non-linear
regression, can calculate X-ray microbeam pellet positions from spectral information. As in Atal’s
nonlinear regression study, Papcun et al, supplied their recognition algorithm with more acoustic
information than simple measurements of formant frequency. One difference between Atal’s
study and the study by Papcun et al, is that Atal used acoustic signals from static vocal tracts while
Papcun et al., gave the neural network spectral information from successive short-time windows of
speech, essentially providing acoustic information from successive vocal tract shapes. This
difference is important because using information from several spectral slices can help overcome
one-to-many mapping problems (Kuc, et al., 1985 ; Rahim, et al., 1991).

We will describe a novel method, the continuity mapping technique (Hogden, 1991 ; Hogden et
al,, 1992a), for computing articulator information from the speech wave. The goal of the continuity
mapping algorithm is to produce a map, called a continuity map (CM), in which acoustic signals
that are produced close together in time are represented by points that are close to each other in
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the continuity map. The reasoning behind this is that speech sounds mapped to nearby locations
in the continuity map (those produced close together in time) must have been produced by similar
articulator configurations. We know that temporally proximate acoustic signals were produced by
similar articulator configurations because the articulators move continuously, i.e. they do not
move from one position to another without occupying intermediate positions. Since sounds
produced by similar articulator configurations are mapped close together in the continuity map,
the continuity map should give topologically accurate information about articulator positions.

"CMs differ from other topological maps of acoustic signals (Kohonen, 1988) in that for CMs
acoustic signals are not placed close together on the basis of acoustic similarity. Unlike other -
topological mapping procedures, the CM algorithm is trying to recover information about
articulator positions, and acoustic signals which are completely different can be produced from
very similar articulator configurations. For example, the tongue only needs to move a small
distance to change from producing a non-fricative to a fricative — drastically different sounds. To
recover articulatory information, acoustically dissimilar sounds need to be able to be placed close
to each other in the map. By placing acoustics signals close to each other in the CM if they were
produced close to each other in time, drastically different acoustic signals can be represented next
to each other, something that is not possible when using an acoustic distance measure.

Unlike previous techniques for recovering articulator positions, which determine the absolute
pc;sitions of the articulators, continuity mapping only determines their relative positions. -
However, the relative articulator positions are estimated by an unsupervised algorithm, i.e.
without giving the algorithm access to explicit information about the articulator positions used to
generate the acoustic signals in the training set. Understanding the difference between a
supervised and an unsupervised learning algorithm is essential for evaluating the advantages and
disadvantages of the continuity mapping algorithm, thus we will discuss it in a little more detail.

Regression can be thought of as a supervised learning technique for estimating y values from
x values. To estimate values of y from values of x we find the regression line relating y and x. To
calculate the regression line, examples of (x, ) pairs are needed. The best fitting line cannot be
found from x values alone. That is the defining characteristic of a supervised algorithm : examples
of both the inputs and outputs are needed for learning. Being supervised algorithms, previous
methods for determining articulator positions from acoustics require simultaneous measurements
of articulator positions and the resulting acoustics.

The continuity mapping algorithm is an unsupervised algorithm. To continue the analogy to
regression, using the continuity mapping technique is somewhat like finding the regression line
relating x and y when given only the x values. An unsupervised algorithm is not given the desired
output values - even during training. If the continuity mapping procedure is successful, it could
learn to relate acoustics to articulation from a tape recording of an individual's speech - without
any articulatory measurements. In the present work note that, although we do have simultaneous
measurements of acoustics and articulation, the continuity maps are made from the acoustic data
alone. The articulatory data is only needed to compare estimated articulator positions to the actual
articulator positions.

From the above discussion, it should be clear that supervised learning algorithms will be
difficult to .apply to the problem of recovering articulator positions from acoustics. The difﬁculty
lies in the fact that, to use a supervised learning algorithm to recover articulator positions, we need
to gather a huge set of simultaneous articulatory and acoustics data. Without the simultaneous
data, the supervised algorithms can not learn to relate acoustic to articulation. Needless to say, it is
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still very difficult to gather such data, so supervised algorithms are not yet practical solutions to
real world problems.

Supervised algorithms are also problematic if you believe that perceiving speech is tantamount
to perceiving articulator gestures (Liberman et al., 1967 ; Liberman & Mattingly, 1985). After all,
when children perceive speech produced by others, the children are not told what articulator
positions the other speakers are using. While the children do have access to information about
their own articulations, a child’s speech is acoustically different from adult speech, so it is difficult
to imagine how the child could learn to relate adult acoustics to articulator positions given only
examples of child speech (aithough innate knowledge, or possibly some kind of normalization,
could be used to get around this problem). Similarly, it is difficult to understand how people could
learn to perceive sounds which they cannot produce, as in sounds from foreign languages, or
sounds that a child has not yet learned to produce (Smith, 1973).

Being an unsupervised algorithm, continuity mapping avoids the previously mentioned
problems inherent in supervised algorithms ; however, some information is lost to gain the
advantages of unsupervised learning. Unlike supervised algorithms, the continuity mapping
algorithm is not able to recover the absolute positions of the articulators - only the relative
positions of the articulators can be estimated. Any rotation, reflection, translation, scaling or other
topological transformation of the estimated positions will be an equally acceptable solution as far
as the continuity mapping algorithm is concerned.

The continuity mapping algorithm also faces normalization problems, i.e. a map relating
acoustics to articulation created for one speaker may not be accurate for a different speaker. So, for
the continuity mapping algorithm to be useful, we will either need to determine some way to
normalize speech signals from different speakers (as is also the case for supervised algorithms), or
we will need to make a variety of continuity maps to accommodate different speakers.

Because of the potential advantages of continuity mapping, several continuity maps were
created and tested on acoustic data generated by an articulatory synthesizer. The following
discussion describes these experiments.

2. Generating an articulator map

Since gathering simultaneous information about the entire set of articulator positions (especially
the tongue) and speech acoustics is quite difficult, the articulatory speech synthesizer at Haskins
Laboratories (Mermelstein, 1973 ; Rubin, et al, 1981) was used to generate acoustic signals from
static vocal tract configurations. Only the two-dimensional articulator space defined by the
synthesizer’s degrees of freedom for tongue body motion was investigated. The rest of the
articulators were fixed at their neutral positions. .

We chose to use two degrees of freedom purely for purposes of illustration. As Iong as the
mapping from acoustics to articulation is not one-to-many, it should be possible to recover
information about more than two degrees of freedom as well. However, with articulatory
synthesizers, there are typically one-to-many mappings from acoustics to articulation in static
synthesis. To stick to our main objective - illustrating the continuity mapping algorithm - our
initial work has been limited to recovering two degrees of freedom.

To cover the full range of tongue body positions, the tongue body center was placed at each of
2500 equidistant points in a square grid. Excluding tongue positions that completely closed the
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vocal tract left 2011 viable tongue positions. Fig. 1 gives a flavor of the range of tongue positions by
showing some of the more extreme positions. A véctor composed of the first three formants of the
resulting acoustic signal was calculated for each tongue position.

TONGUE POSITION EXTREMA

N A

HIGH BACK HIGH FRONT
(CL=790.4, CA=-0.155) (CL=1013.7, CA=-0.086)

-/

A

LOW BACK LOW FRONT
(CL=826.3, CA=-0.372) (CL=1027.8, CA=-0.228)

Figure 1 : Examples of vocal tract shapes created using extreme tongue positions. The articulatory synthesizer.
parameters used to make these tongue positions are given in parentheses below the shapes.
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Each formant vector was replaced by a scalar code using a nearest neighbor coding technique.
In nearest neighbor coding, the acoustic similarity between each formant vector and each of a set
of prototypical formant vectors is calculated (by finding the Euclidean distance between formant
vectors, for example), and the formant vector is replaced by the code representing the most similar
prototype. We used a weighted Euclidean distance in formant space as the measure of acoustic
similarity. The weight on any formant was the inverse of the standard deviation of the formant,
calculated over all tongue positions. The weighted Euclidean distance measure is only one of a
variety of distance measures that would all be reasonable. The appropriate distance measure to
use for natural speech will likely be more complex (Schroeter et al,, 1990), but our goal is to
illustrate the continuity mapping procedure, so a more complete discussion of possible distance
measures is beyond the scope of this paper.

The set of prototypical acoustic signals used in the nearest neighbor coding scheme were
derived using a K-means vector quantization (VQ) algorithm (Gray, 1984 ; O’Shaughnessy, 1987).
The VQ algorithm starts with some initial set of acoustic prototypes and moves them around in
formant space to minimize the sum of the acoustic distances between the sounds being
categorized and the prototypes they are closest to. Since the VQ minimization technique can run
into local minima, it needs to be used with different sets of initial prototype positions. We
generated three sets of 32 prototypes (each set is called a codebook because the prototypes are
referred to by a number called a code) and used for further study the codebook which best
minimized the error function.

- 32-CODE ARTICULATOR MAP
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Figure 2 : Articulator map constructed using 32 codes. Each position in the map represents a tongue position.
The numbers plotted are codes indicating which acoustic parameters are produced within the isocode
regions.
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The effect of quantizing the acoustic parameters can be seen in what we call an articulator map
(AM), like that in Fig. 2. Fig. 2 shows which vector quantization prototype was most similar to the
formant vector produced with each tongue position. The axes of the plot represent tongue body
height and frontness and the numbers plotted in the figure are the codes representing the closest
prototype. Each code is plotted near the center of a small region which we call an isocode region. As
the name implies, all the acoustic signals produced with the tongue body positioned within a
single isocode region are represented by the same code. It is important to realize that the VQ
algorithm generates categories based on acoustics alone. We are able to make the map shown in
Fig. 2 because, in this experiment, we know the both articulator positions and the resulting derived
acoustic values. However, the articulator positions are not needed to perform VQ, and being able
to draw the articulator map is not essential for creating a continuity map ~ the articulator map
merely helps to visualize how the continuity mapping algorithm works.

Notice that some of the codes are produced in two or more distinct regions. Code 16 is one
example. As in other studies (Stevens & House, 1955), the codes that occur in disjoint regions are
found mostly when the tongue body center is low and back. When a code is found in more than
one distinct region, the regions are fairly close together, so the first three formant frequencies are
sufficient to determine two tongue position parameters with a relatively small error. As has already
been discussed, for synthesized speech the extent of the one-to-many mapping problem depends
on the relative number of articulatory and acoustic parameters. Thus, if the first three formants
were used to recover more than two articulator parameters, there would probably be more cases
where different articulator positions created similar acoustic signals. While we do not want to draw
conclusions about the human acoustic to articulatory mapping from this example of synthesized
add dashes speech, it will be seen that one-to-many mappings do not always prevent good
articulator position estimates.

3. Generating a continuity map

To allow the continuity mapping algorithm to use information about which signals can be
produced close together in time, sequences of codes were produced by taking random walks
among the 2011 viable articulator positions. These walks were intended to provide examples of the
sounds which could be produced by varying the tongue position in a continuous fashion, so the
steps were made short enough to insure that transitions only occurred between adjacent regions.
At each time step, the code produced using the current tongue position was output and the tongue
was moved a short distance in some random direction. The random walk continued until at least N
transitions were made to each code, with N taking on the value of 1, 2, 3, 4, 5, 10, or 50. Three
random walks were made for each value of N, for a total of 21 random walks. As discussed below,
random walks provide relatively poor information about the distances between isocode regions,
and so give us a conservative means for determining how well the continuity maps will be able to
estimate articulator positions. ‘

A set of intercode distance estimates was made for each random walk by calculating the
average number of transitions between codes. The average number of transitions is calculated
after first eliminating adjacent repetitions of codes, e.g., a sequence like « 25, 25, 25, 13, 13,13, 5,
21,21, 25,29, 13, 29, 9 » is reduced to « 25, 13, 5, 21, 25, 29, 13, 29, 9 ». The next step is to count the
number of transitions between each pair of codes in the sequence. To do this, we start wfth the
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first code in the sequence and count the number of transitions to codes occurﬁng later in the
sequence. Then we start from the second code in the sequence and count the transitions from
there, etc.

Counting from a particular starting code continues until any of the codes in this counting
sequence is encountered twice. The justification for restarting at code repetitions is that, without
restarting, intercode distance estimates would be overestimates. In the example given, the
distance between code 25 and code 29 is overestimated by counting the number of transitions
from the initial 25 to the 29 because the second occurrence of code 25 is adjacent to code 29. So,
starting from the initial 25, we only count until we get to the occurrence of code 21, three
transitions away. Similarly, counting from the second occurrence of code 25, we avoid a repetition
of code 29 by only counting until we reach code 13, two transitions away. Thus, in the example
sequence given above, we find that code 25 is one transition from code 13, then find that code 25 is
two transitions from code 5 and three transitions from code 21. Next we count from code 13 (the
second code in the sequence) and find that code 13 is one transition from code 5, two transitions
from code 21, etc.

Notice that three estimates of the distance between code 25 and code 13 are obtained, since we
count from the first example of code 25, then from the second example of code 25, and finally from
the first example of code 13. All three estimates are averaged to get the mean number of transitions
between code 25 and code 13. Note also, however, that this counting scheme gives no estimate of
the distance between code 25 and code 9. This is because when counting from the first example of
code 25, we see that code 25 is repeated before getting to code 9. Counting from the second 25 in
the sequence, code 29 is repeated before code 9 is encountered. When the counting scheme does
not give any estimates of the distance between two codes, a distance estimate equal to the number
of codes in the codebook is used, effectively giving a maximum estimate of the distance.

Now that the method used to estimate the distances between isocode regions has been
discussed, we can explain why code sequences were generated by random walks. Suppose we are
trying to estimate the distance between isocode region 26 and region 22 from the sequence of VQ
codes. If the tongue‘makes a relatively smooth downward motion from region 26 to region 22, we
expect to see the VQ code sequence : 26, 10, 22. Notice that this code sequence gives a good
estimate of the number of regions between region 26 and region 22. In contrast, if the tongue takes
a random walk, it is fairly likely to travel to code 18, 23, 4, 28, 12 or even code 13 for that matter,
before it gets to code 22. Typically, a random path is a longer than necessary way to get from one
point to another. It is only by averaging the information from such random paths that we get
distance estimates that should be monotonically related to actual distance estimates. Presumably
the continuity mapping algorithm will work better given smoother tongue motions, as long as the
tongue motions still travel through each of the isocode regions. 4

The relative positions of the isocode regions were estimated from the average intercode
transition distances using non-metric multidimensional scaling (MDS). Multidimensional scaling
calculates relative point positions from interpoint distances by starting with some initial
configuration of points in space, and then moving the points until the distances between the
points are nearly monotonically related to the desired interpoint distances (Dillon and Goldstein,
1984, provide more information about MDS). The MDS algorithm moves the points using gradient
descent on an error measure, stress, which is a measure of the departure from a monotonic
relationship between the interpoint distance as determined by MDS and desired interpoint
distances.



110 John Hogden, Philip Rubin & Elliot Salzman

rd

While MDS is capable of producing solutions with different numbers of dimensions, the
interpoint distances were generated from two-dimensional data, so solutions of more than two
dimensions will only be fitting the noise in the intercode distance estimates. Because we know that
the correct MDS solution is two-dimensional (i.e. the articulator map is two-dimensional), all the
continuity maps have two dimensions.

The gradient descent minimizations performed by MDS can find local minima as well as global
minima, where local minima are solutions that minimize stress in a local region, but which are not
the best solution. The best way to avoid using a solution that is merely a local minimum is to run
the MDS algorithm from a variety of different random starting configurations. So, to avoid local
minima, five two-dimensional solutions were found for each set of interpoint distances, using a
different initial configuration of points to get each solution. Since there were 21 random walks, 105
different solutions were found. For each random walk, the solution with the lowest stress value
was used for further analysis, giving one best solution for each random walk. The resulting maps
are called continuity maps (CMs) because they are made based on the fact that articulators move
in a continuous fashion.

To show that different random walks lead to very similar CMs, CMs made from different
random walks were compared using generalized Procrustes analysis (Gower, 1975), a technique for
rotating, translating, reflecting, and scaling (only uniform scaling is allowed) configurations to
make them maximally similar, and then calculating a measure of how similar the different
configurations are. Fig. 3 illustrates Procrustes analysis (Lederman, 1984), the basic component of
generalized Procrustes analysis. Two configurations of three points each are shown in Fig. 3a. As
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you can see, the configurations are not aligned and would not be identical even if they were better
aligned. Fig. 3b shows the result of using Procrustes analysis to rotate, reflect, scale, and translate
configuration B to best fit configuration A. In a perfect fit, point Al would be directly over point Bl,
A2 would be directly over B2, and A3 would be directly over B3, which is not the case for these two
configurations. To calculate the deviation from a perfect fit, the configurations are compared to
the mean configuration, also shown in Fig. 3b, by finding the square root of the mean squared
distance between each point and the corresponding mean position. The mean configuration can
also be used as the estimate of the true configuration. For the extension of this procedure to more
than two configurations (the extension is called generalized Procrustes analysis), refer to Gower
(1975).

The results of generalized Procrustes analyses of the CMs generated by random walks of the
same length are shown in Fig. 4. The error in Fig. 4 is given in the same units that are used on the
axes of Fig. 5A. These errors are extremely small - for example, when there are at least
10 repetitions of each code, an error bar representing the standard deviation between a point in a
CM and the corresponding point in the mean CM would be approximately the size of the
characters used to label the codes in Fig. 5A. Clearly, by the time there have been fifty repetitions
of each code, CMs generated from different random walks are nearly identical.
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continuity maps made from
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4. Evaluating the continuity map

The crucial comparison to be made is between the relative positions of the codes shown in the CM
in Fig. 5A and the corresponding positions in the known AM shown in Fig. 5B. The position of a
code, code 7 for example, in Fig. 5B is the mean of all the tongue positions (from the articulator
map in Fig. 2) that produced a sound encoded as 7. The CM has been rotated and scaled to best fit
the mean tongue positions, but the relative positions of the codes in the CM were not changed.
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While the CM does show signs of non-uniform stretching relative to the plot of mean tongue
positions, the relative positions of the codes are clearly similar in the two plots. The stretching can
be attributed mostly to the thinness of the isocode regions when the tongue is extremely far
forward. Since each isocode region is one transition away from its nearest neighbors, MDS tries to
make the distances between neighboring isocode regions approximately equal. This means that
the distance between neighboring large isocode regions should be about the same as between
neighboring small isocode regions. Thus, the thin isocode regions that occur when the tongue is
fronted are represented as taking up relatively larger regions in the CM than in the AM, distorting
the CM relative to the AM.

Despite the distortions, the x-axis of the CM correlates well with the fronting axis of Fig. 5B as
seen in Fig. 6A, which plots the position of the codes on the x-axis of the CM versus the fronting
axis of Fig. 5B. The rank-order correlation between the positions is 0.98, showing that the position
of a code in the CM can give us information about the relative fronting of the tongue. Similarly, the
y-axis of the CM is compared to the height axis of Fig. 5B in Fig. 6B. The rank order correlation
between the height given by the CM and the actual height is 0.97. ‘
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Similar results were found for three different codebooks with 64 codes and one codebook with
128 codes. Both the 64- and 128-code books had disjoint isocode regions when the tongue was low
and very far back, in nearly the same areas as in the 32-code book. In the cases where disjoint
isocode regions did occur, they were still relatively close together. As before, the correlations
between estimated and actual articulator positions were high (0.95 or above, median correlation =
0.98) and the particular random walk used to make the continuity maps made very little difference
as long as the random walk contained at least 10 repetitions of each code.
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ESTIMATED POSITION map. B) The continuity map height
positions are compared to'the mean
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5. Discussion

All thirty of the continuity maps created from random walks with at least 10 repetitions of each
code (this includes those with at least 50 repetitions of each code) gave good estimates of the
relative locations of the mean articulator positions. The high correlations between the continuity
maps and the average tongue positions clearly show that the continuity maps can be used to
estimate the relative locations of the mean tongue positions for this synthesized data set. Of
course, the ability of the continuity maps to represent the relative tongue positions also depends
on how well the centroids of the isocode regions approximate the actual tongue positions. Since
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the ability to estimate the mean tongue positions stays approximately constant as the number of
codes increases, but the mean tongue positions become better estimates of the actual tongue
positions, the accuracy of the estimates of relative tongue positions increases as the number of
codes increases. '

The consistently high correlations found with different VQ codebooks were surprising because,
although the positions of codes in the continuity maps should be topologically similar to the
positions of the centers of gravity of the isocode regions, the positions can be uncorrelated even if
the two maps are topologically identical. Non-uniform stretching of one map relative to the other
can decrease the correlation while maintaining topological similarity. In this study, some non-
uniform stretching was found, particularly for front tongue positions, but the effect on the overall
relative positions was small. The non-uniform stretching may be more prominent in continuity
maps of natural speech.

Once a continuity map (CM) is created from training data, it can be used to give relative
articulator position estimates for subsequent speech, without the algorithm ever getting any
information about the absolute positions of the articulators. One possible use for the continuity
mapping technique would be training the deaf to speak. For example, the algorithm could be used
to create a continuity map from recordings of an instructor’s voice. Once the continuity map is
made, new speech sounds made by the instructor could be vector quantized, and the position of
the vector quantization code in the CM could be used as an estimate of the instructor’s articulator
configuration. The instructor’s articulation could then be displayed on a computer screen for the
students to imitate. While only the relative positions are recovered from the technique described
here, the absolute positions of the articulators can presumably be determined from only a few
examples of acoustic signals created from known articulator positions, because only rotation and
scaling information is needed to get the absolute positions from the relative positions.

A weakness of continuity mapping is that it only uses information from one short-time window
of speech to determine articulator positions. This will make the technique less robust under noisy
conditions. By treating the CM as a hidden Markov model (Huang et al., 1990), it should be
possible to use information from several windows of speech. One way to do so would be to treat
the VQ codes as hidden Markov model states, then estimate transition probabilities between each
of the codes in the CM and find the probability distributions of the observed acoustic vectors
around the VQ reference vectors (the prototype vectors used in the nearest neighbor
categorization). After making these extensions, it should be possible to calculate the path through
the CM with the highest probability of creating an observed acoustic sequence. Research in this
direction will have to address the computational problems of learning the transition probabilities
for such a large network (normal hidden Markov models have many fewer possible transitions).

There are two main conclusions to draw from these results. The first is that, even though the
data set contained a few cases where different articulator positions created the same derived
acoustic parameters, there was enough information in the data set to find a rough mapping from
acoustic information to the simulated articulator positions. If this were not the case, the continuity
mapping procedure could not have found the mapping. The second conclusion is about the
technique itself : using only unsupervised learning, the continuity mapping technique was able to
recover information about the positions of moving objects. This suggests that continuity mapping
may have applications beyond speech (Hogden et al., 1992b give an example), since objects in the
world move continuously and we often need to obtain knowledge about their physical positions
from sensory information. -
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