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Abstract
The problem of recovering speech articulation from the speech acoustic signal, the

* speech inverse problem, has seen much progress in the last forty years. Much of this

progress has resulted from increased knowledge of speech motor control, which may
allow the mapping from acoustics to articulation to be constrained sufficiently to be
unique and robust. The task-dynamic model of speech production, developed at
Haskins Laboratories by Saltzman and his colleagues, incorporates knowledge of
speech motor control into a computational model. Task-dynamics is used in the method
proposed here as a means to constrain the inverse mapping.

A brief description of the proposed method is given, including task-dynamics
and the genetic algorithm that is used in the optimization. Then some results from
computer experiments are given. The method is analysis-by-synthesis, where the speech
of a proposed articulation is compared to the speech data. The proposed articulations
are specified by task-dynamic parameters as coded into chromosomes strings. A genetic
algorithm is applied to a population of these strings, so that the speech of the proposed
articulations approaches that of the data.

 Articulatory recovery, or at least articulatory constraint, has been proposed as a
way to perform bit-rate reduction and as part of the way to do automatic speech
recognition. Future uses of this method in automatic speech recognition are proposed.
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1. Introduction

Research into methods for recovering vocal tract articulation from speech acoustics has
largely been driven by technological applications. The problems of low bit-rate coding
and automatic speech recognition are two examples (see e.g. [1,2]). Because changes in
articualtory positions occur at a much lower rate than changes in the acoustic pressure

" wave, the transmission of articulatory information could occur at a much lower rate

than the transmission of the wave itself. The utility of vocal tract recovery and
constraint in automatic speech recognition will be considered at the end of this paper.

In proposed solutions to the speech inverse problem, there has been a trend of including
afiore articulatory constraints to reduce the number of degrees of freedom in the
articulatory space (see e.g., [2,3]). The reason for this trend is to make the mapping
from acoustic data to the articulatory domain less ambiguous and less sensitive to noise
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in the acoustic data. In the recent history of the problem, the articulatory domain (the
range space of the inverse mapping) has progressed from the area function of a tube to
computational models of articulation. The schematic midsaggital outline of the
articualtory model used in the Haskins articualtory synthesizer, ASY, is shown in
Figure 1[4,5]. Further constraints on the manner that the articulators inove have been
applied in solutions to the inverse problem. The movements of articulators have been
constrained to move smoothly [3] or to move according to some parametric
representation [2], so that sequential acoustic data are assumed to specify articulatory
sequences that do not change too abruptly.

2. Task-dynamics

The trend of increasing articulatory constraint has been continued in the articulatory
recovery method to be described here [6]. Not only is a computational model of
articulation used to constrain the articulatory space here, but a model for coordination
of the articulators is used: Task-dynamics [7]. Task dynamics models the formation of
constrictions with vocal tract articulators. For instance, the tongue tip forms
constrictions behind the teeth for /t/, /d/, and /s/, while the constriction for /b/ and /p/ is
at the lips. Note that the degrees of constriction are different for the /d/ and the /s/,
_ despite very similar constriction locations. Thus, task dynamics allows the specification
of both where and to what degree a constriction is made. Even vowels are described
using constriction location and degree, although the degree of constriction for the
vowels are less than those for the obstruent consonants. The locations of constrictions
and degrees of constriction are specified by tracr variables. A partial list of tract
variables is: tongue body constriction location and degree (TBCL and TBCD), tongue
tip constriction and degree (TTCL and TTCD), and lip protrusion (location) and
aperture (degree) (LP and LA) (Figure 2).

Towgue Sody
semzer

Figuré 1. The ASY vocal tract. Figure 2. The tract variables
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The task-dynamic model assumes that the each tract variables possesses 2 linear
second-order dynamics, so that when a tract variable is activated it has a damping ratio,
natural frequency, and a target position that need to be specified.

Mi + Bz + K(z-20)=0 T (1)

where z is the vector of tract variables, M is the diagonal mass matrix, assumed to be
identity, B is the diagonal damping matrix, K is the diagonal stiffness matrix, and zg is
the vector of target positions. For example, to form a bilabial closure for a /b/ one might
specify a critically damped LA with a natural frequency of 10 Hz and a zero or negative
target. The interval over which this specification is active, the activation interval, must
also be given. For the case of the bilabial closure that might be from zero to 90 ms.
Such a closure has been illustrated in Figure 3. Following the trajectory for LA, it can
be seen that the lips close, i.e. LA <0. Figure 3 is a graphical representation of a
gestural score. The heights of the shaded boxes correspond to target positions, and the
horizontal dimensions of the boxes correspond to activation intervals. The irajectories
of the tract variables resulting from the task-dynamic specification are shown in each of
the panels.
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Figure 3. Tract variables trajectories and activations for /abz/. The activation
times are shown by the length of the shaded boxes and the targets by the heights. The
maximum possible value for TBCL is 3.49 radians. The maximum possible value for
TTCL is 1.22 radians. The minimum possible value for both TBCL and TTCL is -0.18
radians. All other tract variables, TTCD, TBCD, LA, and LP have -1.0 cm for a minimum .
possible value and 2.5 cm for a maximum possible value.
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Note that frequencies and dampings are not shown in this representation. After the lip
closure in Figure 3, the tongue body is activated so that it forms a low (TBCL) and
relatively front vowel (TBCD). Because some tract variables depend on common
articulators some tract variables move despite the fact that they are not activated. Thus,
despite the fact that TTCL and TTCD are not activated, they move because they use the
tongue body, as do the activated TBCL and TBCD.

Task dynamics provides an abstract, mathematical description of how constrictions are
formed and broken during speech. However, for this description to be of any use for our
purposes, it must be instantiated into an articulatory synthesizer, such as the one shown
in Figure 1. That is, the task dynamics must be mapped to a dynamics of the articulators
of the synthesizer. This is accomplished by specifying a geometric mapping from the
articulators to the tract variables.

2= 2(¢) | )

where ¢ is the vector of articulator coordinates. For instance, the tract variable LA in
Figure 2 is specified by the articulators jaw angle (JA), upper lip vertical position .
(ULYV), and lower lip vertical position (LLV) in Figure 1. Substituting equation (2) into
equation (1), and after some manipulation, a dynamical description in terms of
articulatory variables is obtained. :

5 =7 (M -B36 - Raz{o]) - 36) ok

where Az =z - 2y, J is the Jacobian of the mapping in equation (2), and the star denotes a
weighted pseudoinverse. Note that the set of dynamic equations (3) in the articulator
space is a set of nonlinear, coupled differential equations. Assuming that the rows of J are
linearly independent: ’

I =wTgw-gTyt o @)

where W is the weighting matrix and the superscript T denotes transpose. W is
assumed to be diagonal, and, hence, W-! is diagonal. The matrix W-! multiplying JT
has the effect of multiplying the partial derivatives in row j of JT with the same
number, wj;-!. Thus, the factor used to multiply partial derivatives is the same for a
given articulator no matter which tract variable is involved. Note that the larger the
weight, wjj, the smaller the weighted derivative of any tract variable with respect to the
j® articulator. The larger the weight of the jth articulator the less likely it is to move to
attain tract variable goals. : _ :

In sum, not only have we constrained the articulator space to have human-like
articulators that move continuously in time, but the dynamics of the articulation has
been parameterized. In the recovery method proposed here, it is the set of task-dynamic
parameters: damping, natural frequency, target, and activation intervals that are to be
recovered from the speech acoustics.

There is an extra bonus in mapping from acoustics to task dynamics because the
acoustics are more sensitive to constriction degree and location than to any other part of
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the area function. This follows by a consideration of the Webster horn equation, where
there is a logarithm of area dependence for the coefficient of the spatial derivative term,
and by the experimental results of others [8,9]. -

To reduce the number of degrees of freedom in the work described here, there were
constraints imposed on the task-dynamic parameters. First, all second-order dynamics
were assumed critically damped. Further, the natural frequency of any activation was

assumed to be the inverse of the duration of the activation interval. Also, constriction
location and degree pairs: LA and LP, TBCL and TBCD, and TTCL and TTCD were

constrained to have the same activation intervals. 4

3. ASYINV- a program for task dynamic recovery

A computer program, ASYINV, has been written to test the possibility of recovering
the task dynamics of a talker from his or her speech acoustics. The data input are the
frequencies of the first three resonances (formant frequencies) of the vocal tract.
Because task-dynamic parameters are to be recovered, and the effects of these
parameters are over finite durations, the data is also given over finite durations. Each of
the three formant frequencies are sampled at 100 Hz for as long as the utterances lasts.
(In the initial testing to be reported here this is over the duration of a vowel-consonant-
vowel sequence, or about 400 ms.)

The proposed solutions were provided by an optimization procedure that falls under the
general heading of analysis-by-synthesis or hypothesis testing. A genetic algorithm,
which is more generally an adaptive procedure, was used for optimization [10]. In this
procedure, task-dynamic parameters were coded into binary strings called
chromosomes. The choice of an initial population of chromosomes is random, and each

string, representing a model solution, is assigned a fitness based on the fitness function:

- < < nodel _ ¢data)? 3 '
fitness = z] zl (f‘J . - fU ) . (5)
. i=1j=

where the i subscript denotes formant number and j denotes time step. The population
of chromosomes is run through a series of generations of fitness weighted selection,
mating, and mutation. The population of chromosomes becomes more homogeneous,
while increasing the average fitness of the population. At the end of a prespecified
generation, the chromosome with the highest fitness is chosen to represent the '
recovered task dynamics.

The genetic algorithm has properties that make it particularly attractive in solving the
inverse problem. One important property for implementation is that it is very easy t0
bound the search space and to change the resolution of the parameter search. Also, this
procedure is not derivative based. which is important here as analytic derivatives are
not available, and function evaluation for numerical evaluation of partial derivatives is
expensive. Further, the genetic algorithms have been used in classifier systems, so that

the work here can be extended to machine learning.
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4. Some computer experiments

The initial tests have been done using speech created by the Haskins articulatory

synthesizer, ASY, using task dynamics. In the first series of experiments the conditions

of the model used in ASYINV were exactly the same as those that produced the data.
Not only was the synthesizer the same, but the details of the task dynamic parameters
that were not being recovered were the same, including the articulatory weights
[equation (4)] that are a factor in the pseudoinverse calculation. The recovered and
original task dynamics are exhibited in Figure 4, in the case when noise with a flat
distribution of amplitudes between +- 10 Hz was added to the formant data. This
recovery was the best of eight runs of ASYINV, each with an initial population of 100
randomly chosen chromosomes run for 60 generations. Because protruding the lips is
has an equivalent effect on the formant frequencies as closing the lips, it was assumed
that the lip protrusion target was known. Also, it was assumed that the lips had closed.
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Figure 4: Tract variable trajectories, activation times, and targets for utterance /obz/.
See Figure 3 for the quantitative limits for each panel.
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This was the first attempt at recovery. It can be seen that it did well in recovering the
trajectories of the tract variables. That there were substantial errors in the activation
intervals did not appear to affect the success in recovering trajectories. While these
results were encouraging much more testing was needed, and still needs, to be done. In

particular, issues of robustness and efficiency needed to be addressed.

The effect of mismatching the vocal tract that produced the speech data with the one
used to recover the task dynamics was tested in further experiments. While the same
articulatory synthesizer was used for production and recovery, the articulator weights
used in the Jacobian pseudoinverse [equation (4)] were altered from those that produced
the data. In these numerical experiments, the utterance that produced the data was a
bilabial approximation (LA), which involved the upper lip (ULV), lower lip (LLV), and
jaw (JA). Some of the testing involved adding substantially more weight to one of these
articulators one at a time. The result was that the recovered articulations produced
nearly the same lip aperture (LA) trajectory using the free articulators to compensate for
the one that was given extra weight. Thus, for example, with extra weight added to the
upper lip, this articulator moved very little, but the lower lip and jaw moved more than
in the original, data-producing utterance so that the same total lip aperture trajectory
could be achieved. Further work on this can be found in [11]. :

The function evaluations that are required for the analysis-by-synthesis procedure
proposed here is computationally intensive. Something on the order of 1.5 sec. of CPU
on a DEC 3000 workstation (Alpha machine) is necessary for one function evaluation
for 400 ms of speech. The evolution of a single population of 100 individuals for sixty
generations, say for both lips and tongue body involved, can require as many as 2000
function evaluations, for a total CPU time of 50 minutes. For this reason alone, it would
be wise to save function evaluations for future use. The saved individuals would specify
both the task dynamics and the formant trajectories that go with them. This kind of data
base is similar in the field what is known as a codebook [12].

In the one attempt at using a codebook, the computer was allowed to “babble” to create
an indexed file of 111,596 task dynamic—acoustic pairs. Each individual had a key
associated with it denoting the direction and amount of formant transition over a
specified interval. (This interval was chosen to be between the release and central
portion of the vowel in the data utterances tested.) The amount of formant transition
was specified within 10% and, thus, for example, the key 115201010 denoted an
individual with a first formant that increased between 20% and 30%, a second formant
that increased between 10 and 20%, and a third formant that was steady within 10%. It
was possible to access the individuals based just on the direction of the formants
(qualitative match condition), or based both on direction and quantity of change
(quantitative matching condition). Given a data utterance, the initial population of
individuals used to start the genetic algorithm was chosen in three different ways:
randomly, from the indexed data file with qualitative matching, and from the indexed
file based on quantitative matching. In the latter two cases individuals were included in
the initial population depending whether there was sufficient match between their key
and that of the data. If there were more than enough candidates to fill the initial
population, then the fittest individuals were chosen to fill the initial population.

Tests were run with initial populations of 100 individuals, run for 60 generations. Each
condition was run 8 times. The results for one test utterance, /=d/, are shown in Figure
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5, where the average maximum fitness for each condition is plotted against generation

number.
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Figure 5: Average maximum fitness plotted against generation number.

This shows that it can help to seed the initial population with likely candidate solutions.
However, in comparing the results for populations initialized using quantitative
matching versus the results using qualitative matching, it can be seen that being too
specific in initializing the population can be detrimental. This is an illustration of the
balance that must be struck between search and selection in genetic algorithms. Too
much emphasis on taking the fittest individuals initially can mean that the parameter
space is not searched thoroughly enough for good optimization. More details on this
kind of experiment can be found in [13].

5. Using articulatory context as a constraint in automatic speech recognition

Assume that it is a good thing to use knowledge to reduce variability in the recognition
of phonemic (or /CV/ and /VC/) categories. (Without specifying whether phonemes or
/CV/s and /VC/s are used as categories, the term category exemplar is used to denote a
member of a category.) For instance, in deciding the category of a particular vowel
sound it is helpful to know whether the speaker is an adult male or a child [e.g. 14].
This knowledge essentially shrinks the category extents defined in an acoustic
parameter space, say the first formant versus second formant parameter space. Thus, it
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is at least plausible that certain knowledge is useful in reducing variability. We will
argue that variability is inherent in speech production, and that some of this variability
is the result of context such as that provided by physical mechanisms used to produce
speech: the human vocal tracts. Further, it is only through, at least, partial detection and

characterization of lawful, contextual covariation that it is possible to form categories
and to detect the category exemplars for automatic speech recognition. .

Context is always present in speech and it is never possible to factor out context in the
sense of producing a prototypical exemplar of a category. Rather, it is necessary each
 time to find the context and the exemplar of a category simultaneously. Only in this
process can one be said to form categories or detect exemplars of categories. Categories
exist only in the process of understanding the context. This is the general view that is

taken in any methods for automatic speech recognition that are proposed here.

‘One source of variability for a given speaker is coarticulation. Coarticulation occurs
when the production of a category exemplar is affected by the production of '

. neighboring category exemplars. This is always the case in speech, as category
exemplars are not produced in isolation in running speech. Thus, a category exemplar
can only be defined from samples which are never pure, and is therefore an abstraction
from the many instances of occurrence. Further, the problem of coarticulation must be
solved (to some extent) simultaneously with the recognition of category exemplars as
members of categories: there is no other way. There may be controversy as to which
domain to solve the problem, either in the articulatory space or the acoustic parameter
space, but reasons for using the articulatory domain will be given later. Ellman and
McClellend [15] recognized the importance of exploiting lawful variability caused by
coarticulation. They worked with phonetic features and used a neural net that accounted
for context to map into the space of phonemes. Shirai and Kobayashi [2,16] have used
articulatory recovery as a means o take account of coarticulation, and, thus, proposed
to do speech recognition in the articulatory domain.

There are other contextual factors, besides coarticulation, that are provided by the
human vocal tract. These include the length of the vocal tract, the wall compliances of
the tract, the shape of the hard palate and so forth. While coarticulation affects the
physical realization of phonemes produced by an :ndividual according to the context of
other phonemes, these other factors depend more on the particular person producing the
speech. (Some quantities, such as vocal tract length, are dependent on the speech
utterance, so it assumed that default values can be assigned to each individual and
deviations from the default can be predicted by context or recovered algorithmically
from the speech. For instance, length can refer to the distance along the vocal tract
center line from the perpendicular plane containing the teeth to the perpendicular plane
containing the cervical vertebra nine.) To recognize category exemplars in a speaker
independent way, these other factors must be found.

The use of contextual knowledge is certainly not new to automatic speech recognition.
It is usually in the form of “higher-level” syntactic and semantic knowledge that is used
to test possibilities that come from the lower level phoneme recognizer [e.g. 17]. We
are proposing the serious use of “lower-level” knowledge in the form of articulatory
constraint, as have others, most recently in [e.g. 18,19.20]. Both higher and lower level
knowledge are intended to remove apparent variability and ambiguity in the category,
or symbolic space. All these forms of knowledge use context to do this; the context
provided by words, by parts of speech, by phonemes. and by vocal tract anatomy,

physiology and physics.
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Some have argued that the articualtory domain is the domain to reduce variability
caused by intraspeaker context such as that caused by coarticulation and rate. It is now
argued that an articulatory domain is the domain that should be used. to reduce
interspeaker variability context, such as vocal tract size and wall compliance. Working
in the acoustic domain may be possible, but it entails implicitly learning rules that are
already provided by the physics of the sound production and propagation in the vocal
tract. To short circuit this implicit learning, the algorithms that take vocal tract
configuration to speech acoustics can be used as an expert system. Further, if there are
models of motor control these can also be incorporated as part of the expert system, as
with task-dynamics. These physical rules help to constrain the “lower-level” physical
system analogous to the way that syntax constrains the “higher-level”, linguistic
system. ‘ :

How would the system of articulatory recovery described earlier be used a speech
recognition system? One of the first applications that could be considered is speaker
adaptation in speech recognition [21]. Before discussing speaker adaptation, simple
classifier systems will be discussed.

Task-dynamic parameter recovery was discussed earlier in the paper. Rather than
recovering task dynamics on-line, we would propose an off-line, or codebook,

- technique, where acoustic—task dynamic pairs are stored from previous learning. This.
would be similar to a stimulus—response classifier systems discussed in the genetic
algorithms literature [22,23]. The stimuli would be acoustic parameters derived from

* the speech signal and the responses would be task-dynamic parameters. Different
groups of these stimulus—response pairs would be found for different vocal tract
anatomy parameters, so that each group would have a tag specifying such things as
vocal tract length and vocal tract wall compliance associated with it. Further,
differentiation of the groups could be according to dialect and speaking rate, but these
will not be considered here.

Thus, there are two major suppositions that are made here. The first is that an
articulatory synthesizer who's dimensions and other physical characteristics can be
varied to produce speech of good quality, so that an individual’s vocal tract may be
mimicked using the synthesizer. Secondly, it will be assumed that for each group of
these stimulus—response pairs (a group corresponding to a single vocal tract anatomical
specifications), there would be a mapping from the task-dynamic specifications to the
symbolic space of category names. This mapping would either be done with expert
knowledge (e.g. gestural phonology of Browman and Goldstein[24]) or it would be
evolved as a classifier system, just as the acoustic—task dynamic classifiers are evolved.
In the latter case the stimulus would be the acoustic—task dynamic specification and the
response would be the symbolic representation. The process of training is analogous to
the training of a hidden Markov model, i.e. model parameter estimation [25]. Because
the mapping from task dynamic—-acoustic pairs to the symbolic space is done for each
vocal tract type, there would be less variability within sets of such pairs corresponding
to a symbol and less overlap between sets corresponding to different symbols.

The procedure for a speaker adaptive speech recognition system would be as follows.
The computer itself would generate the acoustic—task dynamic codebook. A standard
set of exemplars would be used for different vocal tract dimension settings, with each
group of such exemplars representing the utterances spoken by an individual. When the
speech of a human user is to be recognized, supervised, test-dependent training might
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be used to fit one of these groups to the user [21]. Only a limited set of utterances
should be necessary for this, because of the expert knowledge provided by the anatomy
of the vocal tract. There are two practical advantages to such a procedure. The first is
that training does not have to be done with human speech. Secondly, and also because
knowledge of the vocal tract is being used, generalization is relatively easy so that the
adaptation phase is brief: A few key utterances should fit a group (i.e. a model vocal
tract) to a speaker.

The speech inverse problem continues to be a lively area of research because of its
many technical applications [26]. The work here offers a new approach to the inverse
problem made possible by knowledge of speech production and, further, is consistent
with the trend of providing more constraint in the articulatory domain.
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