Qo0

SH,

% SPEECH

COMMUNICATION

ELSEVIER Speech Communication 14 (1994) 19-48

Recovering articulatory movement from formant frequency
trajectories using task dynamics and a genetic algorithm:
Preliminary model tests
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Abstract

Articulatory trajectories of an articulatory model were recovered by means of a genetic algorithm from acoustic
information using a task-dynamic model of speech articulation. Tests on simulated utterances /oba/ and /odx/
show that the method can recover most of parts of an original trajectory, but it has trouble in obtaining precise
timing. For the recovery of articulation, formant frequency trajectories should be supplemented by additional
acoustic information, such as RMS amplitude.

Zusammenfassung

Auf der Grundlage eines aufgaben-dynamischen Modells wurde mit Hilfe eines genetischen Algorithmus die
Artikulationstrajektorien eines Artikulationsmodells aus akustischer Information rekonstruiert. Tests mit einer
simulierten AuBerung /ebxe/ und /adzx/ zeigen, daB die Methode einen GroBteil der urspriinglichen Trajektorien
rekonstruieren kann. Schwierigkeiten treten jedoch in der exakten zeitlichen Koordination auf. Zur Rekonstruktion
von Artikulation sollte zusatzliche akustische Information, wie zum Beispiel die RMS Amplitude, die Trajektorien
der Formantenfrequenzen erganzen.

Résumé

A partir de P'information acoustique, il a été possible, avec un algorithme génétique, de retrouver des trajectoires
articulatoires, en se servant d’un modéle dynamique de production de la parole. Des tests sur des logatomes simulés
/abx/ et /adx/ montrent que cette méthode peut recouvrir la pliipart des trajectoires originales; cependant le
traitement du timing précis pose des problémes. Pour récupérer l'articulation, il est nécessaire de rajouter, aux
trajectoires de fréquences formantiques, de I'information acoustique supplémentaire, comme I'amplitude RMS.
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1. Introduction

“We suggest, however, that a recognizer using
the anatomical or neurophysiological rather than
the acoustical level of representation at this stage
would more nearly simulate the process of human
speech reception.” (Stevens, 1960.)

Since this statement was written, many tools
have been developed so that the goal of mapping
from acoustic information to articulation may now
_ be practical. Articulatory synthesis has slowly de-
veloped over the last forty years producing more
realistic articulatory models and speech output
(Dunn, 1950; Stevens and House, 1955, Mermel-
stein, 1973; Coker, 1976; Maeda, 1982; Liljen-
crants, 1985; Sondhi and Schroeter, 1987; Lin,
1990). The study of skilled activity has developed
concepts and models, such as the task-dynamic
model of speech articulation, that allow an ac-
count of how individual articulatory movements
are organized for speech tasks (Saltzman and
Munbhall, 1989). Linguists have developed phono-
logical systems based on articulatory movement
that use task dynamics in their computational
implementation (Browman and Goldstein, 1990).
Finally, the advances in computer technology,
even in the last couple of years, have allowed the
solution of optimization problems that require
large numbers of complicated function evalua-
tions on relatively inexpensive machines in a rea-
sonable time. Thus, stochastic methods, such as
genetic algorithms (Goldberg, 1989), can be tested
on the problem of finding optimal maps from
acoustics to articulation.

The recovery of articulatory movement from
speech acoustics, that is the solution of the speech
inverse problem, has been a subject of research
for technological applications: automatic speech
recognition, low bit-rate coding and text-to-speech
synthesis (see (Schroeter and Sondhi, 1992) for a
review, particularly for low bit-rate coding). Some
early work on articulatory recovery used linear
predictive coding to map from the acoustic do-
main to area functions, e.g. (Atal and Hanauer,
1971, Appendix F; Wakita, 1973). Attempts to
map from limited acoustic information, such as
the first three formant frequencies, to the area

function of a vocal tract are not always successful
because many area functions can produce identi-
cal, or nearly identical acoustic data (Mermel-
stein, 1967; Schroeder, 1967). An articulatory
model that constrains the area function in ways
that the human vocal tract constrains the area
function may help to simplify this one-to-many
problem. Also, the use of an articulatory model
can be helpful for low bit-rate coding and text-
to-speech synthesis because of the relatively low
speed with which the vocal tract articulators move.
For speech recognition problems there is the
possibility of factoring out coarticulatory effects
with the further addition of a good model of
articulatory control. However, even with a low-di-
mensional articulatory model, Atal et al. (1978)
found that the logarithms of the first three for-
mant frequencies were not enough to specify the
model’s articulatory settings. Flanagan et al.
(1980) used an articulatory model and the squared
difference of log amplitude spectra as an error
measure in their optimization for vocal tract shape
recovery. They mentioned the use of temporal
continuity constraints applied to the articulators
during a series of optimizations of continuous
speech as a means to avoid ambiguity in the
acoustic-to-articulatory map. Interestingly, they
reduced the number of articulatory parameters to
be recovered from the acoustic signal by measur-
ing the mouth opening directly. However, it was
necessary to include subglottal pressure as an
articulator because of its effect on the output
speech amplitude. Levinson and Schmidt (1983)
used the articulatory model of Coker (1976) and a
spectral difference error to map acoustics into
articulation. They had trouble with the ventrilo-
quist effect (the one-to-many problem), although
it is not clear whether a continuity constraint in
time would have completely addressed the prob-
lem that emerged in their investigation.

Still more constraints have been applied in the
articulatory domain by using models for articula-
tory movement. Shirai and Kobayashi (1986) de-
scribed an optimization method using various
spectral and cepstral error measures. Because
they were interested in speech recognition, they
parameterized the articulators as second-order
systems with step input “commands” that were
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recovered in the optimization. By recovering un-
derlying control they were able to remove coartic-
ulatory effects. Meyer et al. (1989) used a Kalman
filter with articulatory constraints to map from an
ARMA model of the acoustic pressure wave to
an articulatory model. In a text-to-speech appli-
cation, Parthasarthy and Coker (1992) mapped
from the acoustic domain to an articulatory model
at the phone level. For each phone there were
targets, transition times and transition speeds of
a specified functional form for each of the articu-
latory coordinates, whose values were context de-
pendent. These investigators constrained the ar-
ticulatory domain beyond that of continuity in
time to specific functional forms for the articula-
tory movements.

Further developments have been made in the
use of codebook look-up (Schroeter et al., 1987;
Larar et al., 1988) and the use of neural net-
works, e.g. (Shirai and Kobayashi, 1991; Papgun
et al., 1992; Rahim et al., 1993). These advances
are classifiable as off-line techniques, because
articulatory-acoustic correspondences are either
stored explicitly, or they are learned by a neural
net. For codebook look-up, articulatory-acoustic
correspondences are generated to form a data
base. To perform an acoustic-to-articulatory map-
ping, the codebook is accessed for possible start-
ing points for further optimization. This access to
good starting conditions makes it easier to avoid
local minima. Again, an articulatory continuity
constraint in time can be used to avoid ambiguity
in the case of running speech, but improved ac-
cess beyond a simple continuity constraint can be
provided by using dynamic programming
(Schroeter and Sondhi, 1989). This procedure is
more constraining than just continuity in time,
because the entire utterance is considered in the
optimization for recovering the corresponding se-
ries of vocal tract shapes. Random sampling of
the articulatory space, with controlled pruning of
articulatory configurations, provides a means of
covering the acoustic space for codebook genera-
tion (Schroeter et al., 1990). Neural nets have the
potential advantage of reducing computation
times and storage requirements over those of
codebooks. The work of Papgun et al. (1992) used
human movement and acoustic data to train neu-

ral nets. They found that there were critical artic-
ulators depending on the kind of utterance, for
example the tongue tip for an alveolar release.
These critical articulators had less variability in
their movement patterns than did the other artic-
ulators, and as a result the neural nets did a
better job of tracking their movements. Tech-
niques used in codebook access, such as dynamic
programming, have been used to improve the
performance of neural nets (Rahim et al., 1993).

The intent of the present work, a preliminary
part of which is reported here, is to study the
amount of articulatory movement that could con-
ceivably be recovered from acoustic speech data
in a speech physiology and production laboratory
setting. To recover the movement of all the artic-
ulators simultaneously may prove to be impracti-
cal in most real-world conditions. However, in a
laboratory situation, where some movement can
be measured directly, as with photography or
magnetometers (Flanagan et al., 1980; Perkell et
al., 1992), a recovery technique may prove to be
practical and useful. Thus, the goal sought here is
different from the ones cited so far. While the
previous results in these areas bear consideration
for the current task, a means of automatic-speech
recognition, low bit-rate coding and text-to-speech
synthesis is not offered in this work. Also, a
model of human speech recognition, as high-
lighted in the leading quote from Stevens, is not
offered here either, although theories of speech
recognition have taken articulatory recovery as
essential for this process, e.g. (Stevens, 1960;
Liberman and Mattingly, 1985). Among other
laboratory techniques for extracting articulator
configurations from sound, there has been some
previous work involving the use of impedance
tubes with externally generated sound sources
(e.g. (Sondhi and Resnick, 1983; Milenkovic,
1987)), and two-point pressure measurements,
with one point near the glottis, (Milenkovic, 1984).
The goal here is slightly different from the goal of
those studies, however, in that only speech acous-
tic data is to be used. These previous methods
and the one proposed here are not exclusive of
one another and may, in fact, be complementary.

The method envisioned for articulatory recov-
ery is analysis-by-synthesis, much as those of pre-
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vious works cited above. As the articulators move
during speech, pressure waves are recorded, and
acoustic parameters are extracted from these
data. To recover the movements of the articula-
tors an optimization algorithm is used to adjust
the articulator trajectories of an articulatory syn-
thesizer so that the parameters of its acoustic
output match those of the original data.

This report is restricted to the results of model
experiments, where an articulatory synthesizer is
used to produce the data and the same synthe-
sizer is used to recover its own movements. Thus,
since all the generating principles are explicitly
known, this is a best case study of the limitations
that could be encountered in attempting a map-
ping back from acoustics to articulation using the
method proposed. The method includes, among
other things, particular acoustic parameters, a
particular articulatory model and synthesizer, and
an optimization algorithm with an error measure.
These model tests provide a means for tuning the
method with additional acoustic information or
improvements to the articulatory model, and,
perhaps, with modifications to the optimization
procedure and error measure. The difficulties
that could be encountered in progressing from
model studies to actual measurement will be de-
tailed as the method is described.

In brief, the acoustic data are restricted to the
trajectories of the first three formant frequencies
and the optimization technique used for this se-
ries of numerical experiments is provided by a
genetic algorithm (Goldberg, 1989). The task-dy-
namic model developed by Saltzman, Kelso and
others (Saltzman, 1986; Saltzman and Kelso, 1987;
Saltzman and Munhall, 1989) is used to produce
articulatory trajectories. The task-dynamic model
uses a set of dynamic parameters and geometric
transformations to be described in the next sec-
tion to simulate the movements of the articula-
tors. It is the dynamic parameters of the task
dynamics that are varied to produce the optimal
match in the formant trajectories.

2. Method

The articulatory synthesizer used in these ex-
periments was the Haskins Laboratories articula-

Tongue body
center

Fig. 1. Model vocal tract with articulators used in the Haskins
Articulatory Synthesizer: ASY.

tory synthesizer, ASY, as described by Rubin et
al. (1981), which uses Mermelstein’s articulatory
model (Mermelstein, 1973). The articulators,
whose positions can vary and thus change the
shape of the vocal tract, are shown in Fig. 1. The
tongue body center, tongue tip, jaw and lips were
the articulators used in the tests reported here.
The coordinates of the jaw are specified by the
angle of a fixed-length vector, JA, with origin at
the condyle and end at the point marked jaw in
Fig. 1. The position of the tongue body center is
specified by a vector relative to the jaw vector,
with its origin at the condyle and end at the
tongue-body center articulator. This vector has a
length, CL, and an angle, CA, relative to the jaw.
The tongue tip is specified by a vector of length
TL whose origin lies on the outline of the tongue
body and whose angle relative to the jaw and
tongue body is TA. The lips are specified in
Cartesian coordinates, with the vertical dimen-
sion specifying the dimension of lip closure/
opening, and the horizontal specifying protrusion.
The upper lip’s vertical position, ULV, is speci-
fied in relation to the fixed skull, and the lower
lip vertical position, LLV, is specified in relation
to the jaw. The lips are yoked in the horizontal



R.S. McGowan / Speech Communication 14 (1994) 19-48 23

dimension, so this coordinate is specified for both
lips as lip horizontal, LH.

The articulatory positions can be specified by a
table of coordinate values, where each row of the
table corresponds to a time in the movement
trajectory. In the cases reported here, the posi-
tions of the articulators were specified and a
rational transfer function was calculated every 10
ms, according to the Kelly-Lochbaum algorithm
(Kelly and Lochbaum, 1962), see also (Rubin et
al., 1981). Formant frequencies were obtained
from each transfer function by applying a Fourier
transform to the denominator of the transfer
function and using a peak-picking algorithm on
the resulting magnitude spectrum. Thus, formant
frequency trajectories were created with a 10 ms
frame rate for both the data file and the pro-
posed articulatory solutions during the optimiza-
tion. To synthesize the speech was unnecessary
for these model experiments. In actual applica-
tions of this method, speech pressure waves would
have to be analyzed and measured formant values
placed in a data file. Also, synthetic speech gen-
erated from proposed articulatory solutions will
have to be examined as additional parameters,
such as RMS amplitude, become incorporated
into the acoustic parameter list.

The measure of error between the data and
the proposed solution was the sum, taken over 10
ms intervals, of the squares of the difference
between the formant frequencies of a proposed
solution and those of the speech data, for the
first three formant frequencies.

3 N 2
error = Z Z (filjnodel _ i?ata) , (1)
1

i=1j=

where f represents formant frequency, the i sub-
script denotes the formant number, the j sub-
script represents the 10 ms frame number, and N
is the total number of frames. In fact, the inverse
of this error measure was used as a measure of
fitness for the genetic algorithm, as will be de-
scribed later.

fitness = 1 /error. (2)

The error in Eq. (1) is an unsophisticated error
measure, as the more recent literature shows, e.g.

(Shirai and Kobayashi, 1986). This simple choice
of error function allowed an evaluation of how
well the method does with an acoustic data set
known to be impoverished, e.g. (Mermelstein,
1967). This error measure may not be the best
choice in terms of avoiding local minima in an
optimization, but this can be evaluated at a later
date. Further, the choice of error measure should
be guided by the application in question. For
instance, in the applications of low bit-rate cod-
ing and text-to-speech synthesis the error mea-
sure should be sensitive to perceptual mismatches
(Parthasarthy and Coker, 1992; Schroeter and
Sondhi, 1992). Ultimately, the error measure for
the current purpose will have to be guided by
how well articulation is tracked, and more a so-
phisticated error measure will undoubtedly result,
particularly if laryngeal parameters are to be re-
covered (Flanagan et al., 1980; Schroeter et al.,
1987).

Shirai and Kobayashi (1986), Parthasarthy and
Coker (1992) and McGowan (1991) proposed that
articulatory trajectories be recovered as parame-
terized functions over /CV/ or /VC/ intervals.
These procedures help constrain the articulatory
domain enough so that the one-to-many problem
in mapping from acoustics to articulation is allevi-
ated, similar to the way continuity constraints
help. There are two, not necessarily exclusive,
ways that the one-to-many problem could occur.
First, a connected region of acoustic parameters
could correspond to unconnected regions in the
articulatory space, so that there is no path in the
articulatory parameter space that connects these
different regions along which the corresponding
acoustics remains constant, or nearly so. If this is
a problem, it could be handled easily by continu-
ity constraints over time. The other way that
nonuniqueness manifests itself is when a small
region of acoustic parameters corresponds with a
large connected region of the articulatory param-
eter space, e.g (Atal et al., 1978). Linearizing the
articulatory-to-acoustic, or forward, mapping
would result in a mapping with singular values
equal to zero. Practically the problem is close to
the problem of sensitivity, because singular values
near zero in the forward mapping indicate sensi-
tivity in the inverse mapping, in that a small
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change in the acoustic data can produce a large
change in the recovered articulation. Because sin-
gular values are not calculated exactly, sensitivity
could be an indication of a many-to-one problem.
Continuity constraints or constraining the prob-
lem further by assuming that articulatory trajecto-
ries are parameterized functions over time should
diminish these problems.

2.1. Task dynamics

To constrain the articulatory model in the pre-
sent work, the task dynamic model (Saltzman,
1986; Saltzman and Kelso, 1987) was employed.
Rather than parameterizing the articulator posi-
tion trajectories themselves, the task-dynamic
model was allowed to drive what are known as
tract variables. These are variables describing
constriction locations and degrees. Of particular
interest in this work were the tract variables
tongue body constriction location and degree,

ASY ARTICULATOR COORDINATES

(ﬂj ;j=1,2, ...n n=8)
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Fig. 2. Tract variables and their dependence on ASY articula-
tors.

TBCL and TBCD, tongue tip constriction loca-
tion and degree, TTCL and TTCD, lip protru-
sion, LP, and lip aperture, LA. With task dynam-
ics applied to the vocal tract (Saltzman and
Munhall, 1989), tract variables are given a dynam-
ics that will be described below. The two sets of
coordinates, the tract variables and the ASY ar-
ticulator coordinates, are related to each other by
geometric transformations to be discussed below.
Fig. 2 illustrates the tract variables’ relation to
the ASY vocal tract and tabulates some of the
tract variables’ dependence on articulatory vari-
ables of ASY. Thus, with the task-dynamics of
the tract variables specified, and with the geomet-
ric transformations between the tract variables
and the ASY articulators also specified, the artic-
ulator trajectories in time are determined, and
the formant trajectories can be computed.

The geometric transformations between tract
variables and articulators are derived based on
Mermelstein’s articulatory model (Mermelstein,
1973). For instance, the tract variable lip aper-

“ture, LA, depends on the articulatory coordinates

upper lip vertical, ULV, lower lip vertical, LLV,
and jaw angle, JA. The mathematical relation is

LA = (vertical position of upper teeth + ULV)

— (length of jaw vector - sin(JA) + LLV).
(3

The vertical position of the upper teeth and
the length of the jaw vector are fixed parameters.
Recall that ULV is measured relative to the fixed
upper teeth and LLV is measured relative to the
position of the end of the jaw. The tract variable
LP is directly proportional to the articulatory
coordinate, horizontal lip position, LH. The tract
variables TBCL, TBCD, TTCL and TTCD are
measured in a head-centered polar coordinate
system, whose origin is 3.85 cm below the point
on the outline of the palate that has the maxi-
mum vertical value (Fig. 2) (see (Mermelstein,
1973) for details). This puts the origin of the
head-centered system 7.34 cm anterior and 4.56
cm inferior to the condyle (origin of the jaw
vector in Fig. 1), where it also provides the center
for the circular part of the outline of the
upper /rear wall of the model vocal tract. Angles’



R.S. McGowan / Speech Communication 14 (1994) 19-48 25

are measured from the horizontal, with positive
angles counter clockwise in orientation. The tract
variables TBCL and TTCL give the angular posi-
tions of the maximum constriction formed by the
tongue body and tongue tip, respectively. TBCD
and TTCD are the distances from the fixed up-
per /rear vocal tract wall to the tongue body and
tongue tip, respectively, at the positions of maxi-
mum constriction.

In abstract form the transformation from the
articulatory coordinates to the tract variables can
be written as (Saltzman and Munhall, 1989)

=2(4), 4
where z is a vector of the tract variable positions
and ¢ is a vector of articulator positions.

The task dynamics of the tract variables is
described by a set of uncoupled, linear, second-
order equations. With the task-dynamic parame-
ters of mass, damping coefficient and stiffness of
each tract variable specified in the diagonal ma-
trices M, B and K, respectively, and target posi-
tions for the tract variables specified in the vector
zy:

M:i+Bi+K(z-2,)=0. (5

(Here, it will be assumed that M is the identity
matrix. Normalizing each equation by the mass
does not affect the possible solution set because
the coefficient matrices are diagonal.) Further,
the time intervals for which the target position of
a tract variable is other than the default rest
position are specified. These time intervals,
known as activation intervals, are specified by
starting and ending times. The mass, damping
coefficient, stiffness and target position of a tract
variable are constant during each of its activation
intervals.

Tract variables recruit various articulators as
their dynamics are instantiated in the vocal tract.
The set of task dynamics equations transformed
into the articulatory space becomes a coupled set
of equations because the Jacobian of the z trans-
formation of Eq. (4) is not diagonal. From Egs.
(4) and (5):

M(J§ +7$) + Bl + K(z($) — zo(d,)) =0,
(6)

where J is the Jacobian matrix for the z transfor-
mation, i.e. the i— element of J is the partial
derivative of the i-component of z with respect
to the j-component of ¢. Also, z,=z(¢,). Solv-
ing for the acceleration of ¢:

$=1*{(M'[-BIo - KAz(¢)]) T},  (7)

where Az =z -z, and J* is a weighted Jacobian
pseudoinverse. The articulators are recruited at
various weightings to achieve the target as speci-
fied by task dynamics at the tract variable level
and these weightings must be given to complete
the task-dynamic specification. The importance
of each articulator in the activation of a tract
variable is expressed by an articulatory weight in
J* (see (Saltzman and Munhall, 1989, Appendix
2) for details). Also, there are other details about
task dynamics that are discussed in (Saltzman and
Munhall, 1989), including the return to a neutral
target after activation, and how different tract
variables can use the same articulator simultane-
ously.

Eq. (7), which represents a set of coupled,
nonlinear differential equations, is solved by a
numerical extrapolation, in this case, a fourth-
order Runge-Kutta time stepping routine. This
creates articulatory trajectories. Note, however, it
is the set of task-dynamic parameters contained
in M, B, K and z, as well as the activation times
and articulatory weightings, that determine the
evolution of both the tract variables and articula-
tors. Once the task-dynamic parameters are spec-
ified, the articulator position trajectories are
specified by this set of coupled differential equa-
tions. Once the articulators’ movements are ob-
tained, formant trajectories can be computed from
the ASY transfer function.

To recover the articulatory movement in ASY,
the task-dynamic parameters were adjusted so
that the resulting formant trajectories fit the data
trajectories. Without constraints, the task-dy-
namic parameters that would have been needed
to be adjusted were the task-dynamic parameters:
M, B, K and z,, as well as the activation times
and articulatory weightings. Assuming that M
was the identity, the optimization routine would
have needed to find the starting time for each
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activation of each tract variable, when it was
turned off once it was activated, the target, spring
constant and damping coefficient during each
activation, and the weights of the articulators
involved. Here, instead of the spring constant and
damping coefficient, the equivalent natural fre-
quency and damping ratio were specified. See
Table 1 for a list of parameters necessary to
specify each activation of a tract variable. There
is a potentially infinite set of parameters that
needs to be searched, given no limit to possible
activations. The restrictions that were put on this
potential were partly a result of the natural con-
straints provided by the genetic algorithm de-
scribed below. In the present work, it was as-
sumed that the articulators were recruited for
each tract variable with known articulator weight-
ings, so that the weightings were not recovered in
the optimization. Some further constraints im-
posed to reduce the number of unknown parame-
ters in this optimization will be described in Sec-
tion 3.

In contrast to articulatory variables, the tract
variables describe geometric features of the shape
of the vocal tract tube in terms of constriction
degree and location. Boé et al. (1992) have noted
that acoustic output, in terms of formant frequen-
cies, seems to be most sensitive to place and
degree of constriction and emphasized that this
fact should be used in acoustic-to-articulatory
mapping. This is not surprising, as Mermelstein
(1967) and Flanagan et al. (1980) have noted, the
coefficients of the Webster horn equation, which
is a good approximation to sound propagation in
the vocal tract, are functions of the logarithm of
the area function, thus making constriction area
and position important determinants of reso-
nance frequencies. Small changes in constriction
degree and location can have a greater effect on
resonance properties than small changes in the
other parts of the area function. Early con-
strained area function models of the vocal tract
(e.g. (Stevens and House, 1955)) recognized the
importance of the constriction, and the articula-
tory model used by Meyer et al. (1989) is largely
specified with constrictions. The results of Papgun
et al. (1992), in their neural network computa-
tion, showed that the articulator involved with

the formation or breaking of a constriction was
the most consistently tracked articulator. One of
the reasons for optimizing for the transformation
from acoustics to tract variables, rather than for
the transformation from acoustics to articulators,
in this work is that the tract variables specify the
acoustically salient features of the area function
more directly than do the articulators. While it
may be true that there is strictly only one articu-
latory specification for a given area function, there
may be many and disparate sets of articulatory
coordinates that are close by, in the sense of
producing similarly placed vocal tract constric-
tions. For instance, an alveolar constriction can
be specified with varying amounts of jaw, tongue
body and tongue tip displacement, because these
articulators may compensate for each other to
attain the prescribed constriction degree and lo-
cation. While there is not complete compensation
throughout the vocal tract, the constriction de-
gree and location can be preserved using com-
pensation. The importance of compensatory ac-
tivity has been shown experimentally in human
speech, e.g. (Abbs and Gracco, 1984; Kelso et al.,
1984). Future developments involving the inclu-
sion of aerodynamic sound source information in
the articulatory synthesizer and into the acoustic
parameter list for inversion may also make the
importance of degree and place of constriction
more apparent.

In the present case it was correct to assume
known articulatory weights because the model
used to produce the data was the same one used
in the recovery procedure. This assumption would
have to be scrapped when using this recovery
method on actual data. To recover the articulator
weightings and task-dynamic parameters may be
much more difficult than recovering task-dynamic
parameters alone. Not only are more parameters
variable in the optimization, but the reason for
recovering task-dynamic parameters in the first
place was that constrictions are the most acousti-
cally salient geometric feature. The contribution
of each articulator to the formation or breaking
of constrictions is, therefore, more sensitive to
noise in the data. Because the method of recov-
ery presented here can make use of speech physi-
ology and production data, it may be possible to
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ask subjects to perform relatively simple tasks,
where the tract variables and targets are known,
and to optimize first for articulatory weights. Such
a procedure would be preliminary to more full-
scale recovery.

Overall, the method used here was analysis-
by-synthesis with an extra level: task dynamics of
tract variables. Using geometric transformations,
task dynamics was used to compute articulatory
trajectories, which produced acoustic trajectories
using ASY. In turn, the acoustic trajectories were
compared with the formant data trajectories for
improvement using a genetic algorithm for opti-
mization. From the resulting optimum solution in
terms of task-dynamic parameters, articulatory
trajectories could be recovered simply by using
the task-dynamic simulation.

2.2. The genetic algorithm

The relations between the task-dynamic pa-
rameters and the formant frequencies were much
too complicated to write explicitly and to permit
the finding of partial derivatives of the error
function with respect to the task-dynamic param-
eters. Also, given the potentially high dimension-
ality of the space of task-dynamic parameters,
many function evaluations would have had to be
performed to estimate partial derivatives of the
error measure. Function evaluations were very
costly because they involved integrating a coupled
set of nonlinear differential equations over the
time interval of a /CV/ utterance. Therefore,
methods involving derivatives, such as gradient
descent (e.g. (Shirai and Kobayashi, 1986)), were
avoided. The specific properties that made a ge-
netic algorithm useful will be discussed after its
description below.

The particular genetic algorithm employed for
this study was a slightly modified version of an
algorithm described by Goldberg (1989). In the
algorithm used here, the individuals of a popula-
tion were assigned randomly chosen task-dynamic
parameter sets that were coded into binary strings
called “chromosomes”, and each was assigned a
fitness. The fitness used in this study was the
inverse of the error measure already defined (see
Egs. (1) and (2)). Individuals were chosen to

breed with others to form a new population of
chromosomes, with the probability of being cho-
sen made equal to each individual’s fitness di-
vided by the sum of the fitnesses of the other
individuals. When two individuals mated their
chromosomes split at a randomly chosen location
with each of two progeny obtaining one part of
their chromosome from each parent. The chil-
dren’s fitnesses were evaluated based on their
parameter sets as coded in their chromosomes.
That is, the task-dynamic model was run based on
the parameters specified by each child’s chromo-
some, and the resulting fitness was computed
according to Eq. (2) for each child. A small
probability of mutation was allowed. As described
so far, the algorithm was the Simple Genetic
Algorithm given by Goldberg (1989, pp. 59-70).
In a variation of this genetic algorithm, the best
individual of a given generation was always re-
tained into the succeeding generation.

It can be shown that patterns of individuals,
called schemata, that are somewhat above aver-
age in fitness tend to increase in number from
one generation to the next (Goldberg, 1989, pp.
28-33). There is a tendency for genetic algo-
rithms to produce more individuals of higher
fitness in succeeding generations. The power of
the genetic algorithm comes from what John Hol-
land, the originator of genetic algorithms, called
implicit parallelism. Although a population of
chromosomes is finite, say size N, the number of
schemata being processed is on the order of N3
(Goldberg, 1989, pp. 40-41). This implicit paral-
lelism, as well as the probability of mutation,
makes the algorithm much less likely to become
stuck in local fitness maxima. Also, the implicit
parallel processing property makes this algorithm
more efficient than an exhaustive search done
without the benefit of a codebook that provides
reasonable starting values. Parallel processing in
the usual sense of using many processors is also
possible. Given that children have been produced
as the result of mating a generation of individu-
als, the children’s fitnesses can be evaluated on
physically distinct processors. This capability was
not used in the present work.

A genetic algorithm technique was chosen be-
cause it was readily implemented and its evolu-
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tion during the optimization procedure was rela-
tively easy to follow, allowing for tuning of the
algorithm’s specifications, such as population size
and rate of mutation. A genetic algorithm re-
quires that the parameters for optimization be
coded into finite length strings (the chromo-
somes), which limits the range of any parameter
and essentially discretizes the parameter space.
The degree of discretization of each parameter
can be varied to tune the optimization. This was
controlled by varying the range of allowed param-
eters and the number of bits given to code a
specific parameter. Because the ranges of starting
and ending activation times were both limited to
discrete steps and finite range, the potentially
infinite set of parameters was made finite. Fur-
ther, the ease with which one could limit the
ranges of other parameters to constrain the opti-
mization was a very attractive feature because of
the difficulties in running the task-dynamic model
beyond certain limits (e.g. high natural frequen-
cies). Genetic algorithms for optimization might
be classified as stochastic, and, as noted above,
there is some precedence for stochastic tech-
niques in the generation of codebooks of articula-
tory-acoustic correspondences by random sam-
pling of articulation (Schroeter et al., 1990). A
major difference, of course, is that the procedure
described here is performed on-line as opposed
to off-line, as in the case of the codebook tech-
nique. A non-stochastic procedure, such as that
used by Parthasarthy and Coker (1992) was a
possible alternative, and it remains to determine
which optimization procedure is the best.

The coding used here was a simple binary code
for the real number, task-dynamic parameters.
The coded parameters were concatenated to form
a complete chromosome. A better way of forming
the chromosomes might have been to split the
binary representations of the parameters so that
the most significant bits of all the parameters
were grouped together, then the next significant
bits are grouped together, and so on. This may
have been a better method because of the greater
likelihood that the shorter lengths of chromo-
somes would stay together through the mating
process and that the fitness of any individual
depends on how the parameters interact.

3. Procedure

A program, ASYINV, was written to achieve
articulatory recovery using the method described
in the previous section. It was necessary to simu-
late the formant trajectory data. This was accom-
plished by means of a gestural score (Browman
and Goldstein, 1990); a specification of task-dy-
namic parameters, including the activation times,
natural frequency, damping ratio, target position,
and the weights of the various articulators in-
volved for each of the tract variable activations
that compose the utterance. A gestural score
could be written into a computer file to be used
as input to the task-dynamic simulation. This, in
turn, could generate the tables that enabled the
articulatory synthesizer (ASY) to estimate the
formant frequency values.

Constraining relations were used to keep the
number of unknown parameters in B, K and z,
as well as activation times, to a minimum. It was
assumed that all movements were critically
damped, and that the activation intervals were
equal to the period computed from natural fre-
quency. Also, the activation intervals were as-
sumed to be at least 100 ms long to avoid move-
ments that were too stiff for the task-dynamic
simulation. With these constraints, the unknowns
for a given tract-variable activation were the be-
ginning and ending activation times and the tar-
get position (see Table 1). There could have been
more than one activation of any tract variable,
and these could have overlapped in time, al-
though there was never more than one activation
interval for a tract variable with unknown param-
eters in these tests. Also, the actions of the tract
variables were grouped so that some would have
identical activation intervals. The tongue body
tract variables TBCL and TBCD were in one
such group, TTCL and TTCD were in another
group, and LP and LA were in a third group (see
Table 1).

Gestural scores were designed to produce ar-
ticulatory movement for utterances that resem-
bled /obae/ and /odx/. The gestural scores
were generated from the linguistic gestural model
of Browman and Goldstein (1990), and then mod-
ified to meet the constraints noted in the previ-
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ous paragraph. The trajectories of the tract vari-
ables, activation intervals, and target positions
specified by the scores for /obae/ and /adze/
are illustrated in Figs. 3 and 4. In the recovery
process, some parts of the gestural score were
taken as known and fixed. In the case of /abz/,

Table 1

Task-dynamic parameters to specify each activation

29

for the initial movement to lip closure involving
the tract variables LA and LP, the activation
interval and targets were taken as known (see
Table 2). However, the subsequent activation in-
terval for LA and LP was taken as unknown, as
was the target position for LA. Only the target

Tract variable

Variable task-dynamic parameters without con-

straints

Variable task-dynamic parameters with constraints

LA
(lip aperture)

start activation time
end activation time
natural frequency

damping ratio
target position
articulator weights

target position

LP
(lip protrusion)

start activation time
end activation time
natural frequency

damping ratio
target position
articulator weights

target position

start activation time

end activation time

(> 100ms + start time)
(natural frequency and
damping are derived from
start and end activation
time)

TBCL
(tongue body con-
striction location)

start activation time
end activation time
natural frequency

damping ratio
target position
articulator weights

target position

TBCD
(tongue body con-
striction degree)

start activation time
end activation time
natural frequency

damping ratio
target position
articulator weights

target position

start activation time

end activation time

(> 100ms + start time)
(natural frequency and
damping are derived from
start and end activation
time)

TTCL
(tongue tip constric-
tion location)

start activation time
end activation time
natural frequency

damping ratio
target position
articulator weights

target position

TTCD
(tongue tip constric-
tion degree)

start activation time
end activation time
natural frequency

damping ratio
target position
articulator weights

target position

start activation time

end activation time

(> 100ms + start time)
(natural frequency and
damping are derived from
start and end activation
time)

Table 2

Fixed and variable task-dynamic parameters for the recovery of /aba/

Activated tract variable

Task-dynamic parameters

target position
target position

start activation time
end activation time

LA} first activati
LP irst activation

target position
target position

start activation time
end activation time

LAY cond st
LP second activation

TBCL
TBCD

target position
target position

start activation time
end activation time

fixed parameters variable pdrameters
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Fig. 3. Tract variable trajectories, activation times and targets for utterance /abz /. The activation times are shown by the length of
the shaded boxes and the targets by the heights. The maximum possible value for TBCL is 3.49 radians. The maximum possible
value for TTCL is 1.22 radians. The minimum possible value for both TBCL and TTCL is —0.18 radians. All other tract variables,
TTCD, TBCD, LA and LP have —1.0 cm for a minimum possible value and 2.5 cm for a maximum possible value.
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position for LP was assumed known in its second
activation. (It was not possible to recover LP and
LA simultaneously with information only from
the first three formants.) Tongue body movement
was taken as unknown, so that the activation
interval and the target positions for TBCL and
TBCD were varied for the optimum fit. The fact
that TTCL and TTCD were not activated for
/obze/ was also assumed to be known. For
/adze/, the activation times and targets of the
tongue-tip tract variables, TTCL and TTCD, for
the alveolar closure were presumed unknown (see
Table 3). The dynamics of LA and LP for the
final vowel, which occurs after the tongue-tip
closure, were taken as completely known. The
parameters of the tongue body tract variables in
the transition to final vowel, TBCL and TBCD,
were taken as unknown in this instance. Thus, the
tests on /oba/ differed from those on /adee/ in
that unknown activations were allowed in se-
quence in the latter case, but not in the former.

Given the synthetic acoustic data, the program
ASYINV was used for articulatory recovery un-

Table 3

der two conditions; one where no noise was added
to the formant frequency data, and another where
random noise with a flat distribution between
—10 and +10 Hz was added to each formant
frequency at each time frame. For each test an
initial population of chromosomes for 60 individ-
uals was generated using a random number gen-
erator. As described in Section 2, their fitnesses
were evaluated by using the task-dynamics pa-
rameters specified by each individual to produce
a kinematic description for driving the articula-
tory synthesizer, ASY, which, in turn, created
formant trajectories. The fitness of an individual
was the inverse of the sum of squares of the
differences of each of the lowest three formant
frequencies produced by the individual and that
of the data in 10 ms steps (see Egs. (1) and (2)).
Table 4 indicates the range of the target values
for each tract variable, the number of bits used in
the coding of that parameter into the chromo-
somes, and the resulting resolution of that target.
Beginning and ending times for the activation
intervals were resolved within the data frame rate

Fixed and variable task-dynamic parameters for the recovery of /ade/

Activated
tract variable

Task-dynamic parameters

LA target position start activation time
LP target position end activation time
TBCL target position start activation time
TBCD target position end activation time
TTCL target position start activation time
TTCD ) target position end activation time

fixed parameters

variable parameters

‘Table 4

Target value specifications

Tract variable Maximum /minimum Number of bits Resolution

target value in chromosome

LA 1.80/—- 03 cm 6 0.033 cm

TBCL 3.16/0.51 rad 6 0.042 rad
/abe/ { 1.80/—-0.30 cm 0.033 cm

TBCD { Jadz/ 1.63/—0.13 cm 6 { 0.028 cm
without noise 1.27/0.31 rad 0.015 rad

TICL { with noise { 1.16,/0.40 rad 6 {0.012 rad

TTCD 2.15/—0.65 cm 6 0.044 cm
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of 10 ms. Thirty pairs of individuals were chosen
with probability proportional to each of their
fitnesses. There was a 0.6 chance of each of these
pairs to mate. There was also a 0.001 chance of
mutation to a single position in any of the chil-
dren’s chromosomes. If mating did occur, the
fitnesses of the children strings would then be
evaluated. The choice of pairs and possible mat-
ing was allowed to continue for 60 generations.
At the end of 60 generations the individual with
the greatest fitness had its string decoded into
task-dynamic parameters, which were stored for
later comparison. This procedure was repeated 8
times, and the fittest individual of all the runs
was taken as the best approximation to the task-
dynamic parameters. These parameters could be

used to drive ASY and the articulator trajectories
of the best individual could be compared to those
that generated the original data.

4. Results and discussion

The results are shown here in three domains:
the articulatory, the tract variable and the acous-
tic. While the purpose of these experiments on a
model was to find how well the proposed method
could recover articulation under ideal conditions,
the other domains can be studied to help evalu-
ate the results. A sampling of the results is shown
in Figs. 5-17, for both no-noise and noise condi-
tions.
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Fig. 5. Original and recovered jaw vector angle (JA) trajectories for utterance /abxe/.
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Fig. 6. Original and recovered tongue body center vector length (CL) trajectories for utterance /abz/.

The recovered and original trajectories for the
utterance /oba/ (Figs. 5-10) were identical for
the first 90 ms, or so, because the task dynamics
were presumed known for that interval. Also, it
can be seen in these figures that the recovery
using noisy data was as good as that for perfect
data. The mean (over time) square error in the
sum of the differences of the recovered and origi-
nal formant frequencies was 1120 for recovery
without noise and 1320 for recovery in noise. This
corresponds to an average error of about 19 Hz
for each formant frequency at each time frame in
the no-noise condition and of about 21 Hz in the
noise condition. Note that the standard deviation
of the noise distribution was 5.8 Hz.

In the tests on /adze/ there was no part of the
utterance where the task-dynamic parameters
were presumed to be completely known, which
explains why the recovered trajectories did not
match the originals perfectly from the beginning.
Figs. 11-17 show that the recovery was not af-

fected much by the noise added to the formant
frequency data. The average error per formant
frequency data point was about 20 Hz for recov-
ery without noise and it was 28 Hz for recovery in
noise.

A more complete, quantitative description of
the results is given for the utterances /2baz/ and
/ade/ in Tables 5 and 6, with the root mean
square and maximum absolute errors in the artic-
ulator trajectories. All maximum errors were less
than 2 mm for length measures and less than 0.1
radians for angle measures. A detailed descrip-
tion of the results shown in Figs. 5-17 will com-
plete the discussion.

Jaw angle for /obz/ was recovered almost
perfectly in both the no-noise and noise condition
(Fig. 5). The errors made in the recovery of
tongue body center vector length, CL, (Fig. 6)
and tongue body center vector angle, CA, (Fig. 7)
for the utterance /obx/ were due to errors
made in recovering the task-dynamic parameters.
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This is illustrated by considering the recovery in
the no-noise condition as an example. A review
of the recovered gestural score shows that the
recovered tongue body constriction location
(TBCL) target was slightly higher and more for-
ward than the target of TBCL in the original data
producing gesture, and that the recovered tongue
body constriction degree (TBCD) was more closed
in the recovered than in the original gesture (Fig.
8). Further, the activation intervals for these tract
variables started later and were of shorter dura-
tion than the original. Thus, there was less time
to move the tongue body constriction into the
pharynx and to open the tongue body constriction
after the lip opening in the recovered utterance.
Given that jaw angle, JA, was recovered almost

perfectly, all of these facts would indicate a
shorter tongue body center vector length, CL,
and smaller tongue body center vector angle, CA,
as the final vowel gesture progressed than in the
original utterance, because TBCL and TBCD de-
pend on the articulators JA, CL and CA (see Fig.
2). Figs. 8 and 9 indicate that the task-dynamics
for the lip aperture was not recovered as well in
the noise condition as it was in the no-noise
condition. There is no appreciable difference in
how well the recovered formant trajectories fit
the original in the no-noise and noise conditions
(Fig. 10).

As the numerical testing progressed, it became
clear that simultaneously attempting to obtain lip
protrusion (LP) target and lip aperture (LA) tar-
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Fig. 7. Original and recovered tongue body center vector angle (CA) trajectories for utterance /aobx/.
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get was too difficult given three formant fre-
quency trajectories, because protruding the lips
was equivalent to decreasing lip aperture given
this limited set of acoustic parameters. However,
even after the protrusion target was specified,
there was still trouble in obtaining LLV and ULV
articulations. The reason for this can be seen in
the utterance /oda/. Here the task-dynamics of
the lip aperture, LA, was assumed known, so that
any error in the jaw angle (JA), perhaps due to
errors in the recovery of the task dynamics of
another tract variable, should have caused errors
in the upper and lower lip vertical positions (ULV
and LLV) positions, because these are the three
articulators involved with LA (Fig. 2). Because
the jaw in the recovered movement did not open
enough (Fig. 11), the compensatory activity of the

-0.2

LLV can be seen in Fig. 12. The lower lip opens
further in the recovered trajectory than in the
original movement to make up for the lack of jaw
movement.

The gestural score recovered for /oda/ for
the no-noise condition is shown in Fig. 15 and for
the noise condition in Fig. 16. In both conditions,
it is apparent that the target tongue tip constric-
tion degree, TTCD, was not as tight as the origi-
nal, with the recovery in noise furthest from the
original. The consequences of this on the tongue
tip angle articulator, TA, can be seen in Fig. 13,
where the maximum angle in the closure region
was underestimated, again with the recovery in
noise being furthest from the original. The under-
estimate in TTCD target may have allowed the
tongue body activation to be delayed relative to
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Fig. 11. Original and recovered jaw vector angle trajectories (JA) for utterance /oda /.
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Fig. 12. Original and recovered lower lip vertical position (LLV) trajectories for utterance / ade/.

the tongue-tip release, because the underestimate
in TTCD target meant that the formant trajecto-
ries did not have as far to go to reach the steady
state in the second vowel. This delay can be seen
at the articulatory level in the recovered jaw
angle, JA, (Fig. 11), recovered tongue body center
vector length, CL, (Fig. 14) and the recovered
third formant (Fig. 17). Compensation at the tract
variable level, where a spatial error in one ges-
ture is coupled with a temporal error in another
gesture, may be alleviated using more acoustic
information. In particular, inclusion of aerody-
namic sound sources may alleviate ambiguities in
the degree and timing of gestures involving tight
degrees of constriction because of the sensitivities
of aerodynamic sources to small variations in
constriction degree. This information would allow

the algorithm to determine the time when a tight
constriction has been released. Timing being more
precisely determined may force a better determi-
nation of the target.

5. Conclusion

The results indicate that the proposed method
of articulatory recovery is worth pursuing with
further model testing and also testing using real
speech. There has been some success in obtaining
articulatory trajectories with just the first three
formant frequency trajectories, but it is apparent
that other acoustic information must necessarily
be added for later use, for instance to obtain lip
aperture and lip protrusion simultaneously. There
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has been no particular one-to-many problem here,
and it can be tentatively concluded that this
method is highly enough constrained to avoid
such problems, as with previous work, see
(Schroeter and Sondhi, 1992; Parthasarthy and
Coker, 1992). The constraints in the present work
were provided by a model vocal-tract and task-dy-
namics. Task-dynamics has the further advantage
of controlling the acoustically salient geometric
features of constriction degree and location. A
genetic algorithm was relatively easy to imple-
ment as an optimization procedure. Genetic algo-
rithms are stochastic procedures that do not re-
quire derivatives, and they provide a natural
means of performing a bounded optimization
through the coding of parameters.

As can be expected, there will be complica-
tions in moving from model tests to actual human
speech. One problem is that of removing the
assumption of known weightings of the articula-

tors used by a tract variable. Acoustic data will
have to be derived from a real speech wave,
instead of from a computed transfer function.
Further, such constraints as critical damping and
activation intervals equal to the period based on
natural frequency may also be removed. Further,
the model vocal tract will need to be customized
in terms of length and shape for each subject for
later recovery. These are large problems, but a
step-by-step approach will lead to the best possi-
ble solution. In the following, proposed solutions
to problems encountered in the model tests and
methods for moving to human speech will be
outlined.

In the model tests, there were particular prob-
lems in recovering the relative timing of activa-
tion intervals in the task dynamics. However,
using acoustical information other than the three
formant frequency trajectories may help in recov-
ering the critical timing information, because re-
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Fig. 13. Original and recovered tongue tip vector angle (TA) trajectories for utterance /ada /.
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jeases and closures are often marked by abrupt
changes in source amplitude and type. In other
words, source information may be a good addi-
tion to the formant frequency information be-
cause it may be the least redundant addition to
formant information for the purposes of articula-
tory recovery. This will require that aerodynamic
quantities be included into task dynamics, and
that a pressure wave be synthesized so that such
quantities as RMS amplitude can be computed.
This will also mean that the fitness function will
incorporate information of a different physical
dimension than frequency, or inverse time.

As far as modifications for human subjects are
concerned, initially, it is proposed to use a cus-
tomized model vocal tract. This vocal tract model
would be molded to the dimensions of an individ-
ual based on data derived from the various static

means of measurement. An example of a direct
measure would be one obtained from an MRI
scan (Baer et al., 1991), and an indirect method
would be one in which the impedance tube tech-
nigue of Sondhi and Resnick (1983) or of
Milenkovic (1987) is used. An unknown in the
current research is how to process the acoustic
data for robust estimation, although the findings
of others may be of help here (Shirai and
Kobayashi, 1986; Meyer et al., 1991). Perhaps the
most difficult problems will be encountered when
obtaining the weightings of the articulators for
the tract variables and modifications of task-dy-
namics for fast movements near obstruents
(Stevens, 1993). To obtain the weightings, some
simple movements of the tongue or lips may be
required, so that only selected tract variables are
activated. The issue of the adequacy of task-dy-
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Fig. 14. Original and recovered tongue body vector length (TL) trajectories for utterance Jadz/.
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Table 5

Comparison of original and recovered articulator trajectories for utterance /aba/

Articulator RMS difference RMS difference Maximum absolute difference Maximum absolute difference
coordinate (without noise) (with noise) (without noise) (with noise)

CL 0.021 cm 0.013 cm 0.27 cm 0.18 cm

CA 0.00086 rad 0.00061 rad 0.0080 rad 0.0060 rad

JA 0.00024 rad 0.00075 rad 0.0050 rad 0.012 rad

LP 0.00019 cm 0.00088 cm 0.0027 cm 0.0012 cm

LLV 0.0064 cm 0.014 cm 0.064 cm 0.16 cm

ULV 0.0063 cm 0.014 cm 0.064 cm 0.16 cm

Table 6

Comparison of original and recovered articulator trajectories for utterance /adz/

Articulator RMS difference RMS difference Maximum absolute difference Maximum absolute difference
coordinate (without noise) (with noise) (without noise) (with noise)

CL 0.020 cm 0.018 cm 0.19 cm 0.18 cm

CA 0.0034 rad 0.0027 rad 0.031 rad 0.025 rad

TL 0.031 cm 0.0081 cm 0.18 cm 0.12cm

TA 0.0027 rad 0.0031 rad 0.049 rad 0.072 rad

JA 0.0030 rad 0.0036 rad 0.028 rad 0.037 rad

LLV 0.013 cm 0.016 cm 0.13cm 0.14 cm

ULV 0.13cm 0.016 cm 0.13cm 0.14 cm

namics to describe the movement of articulators
over an entire obstruent-sonorant interval re-
mains a research question.

Finally, the connection between this method
and off-line techniques may be made a little
closer. To save computation time it would make
sense to convert the present technique to one
that functions off-line such as the codebook or
neural net techniques, e.g. (Schroeter et al., 1987,
Papqun et al, 1992). Within the framework of
genetic algorithms, classifier systems present
themselves as a means of doing this (Goldberg,
1989). It remains a research question as to
whether using a classifier framework is the best
means to convert the procedure presented here
to an off-line technique.
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