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In 1:1 frequency locking, the interlimb phase difference @ is an order parameter quantifying the
spatial-temporal organization of 2 rhythmic subsystems. Dynamical modeling and experimental
analyses indicate that an intentional parameter @y (intended coordination mode, ® = 0° or @ =

180°) and 2 control parameters w, (coupled frequency) and Aw (difference between uncoupled

cigenfrequencies) affect ®. An experiment was conducted on 1:1 frequcncy locking in which Py,
w,, and Aw were manipulated using a paradigm in which a person swings hand-held pendulums
As Aw deviated from 0, the observed @ deviated from the ®y, indicating a displacement in the
® attractor point. The displacements were exaggerated by increasing w,. The displacements were
coordinated with a decrease in the stability of ® and with higher harmonics in power spectrum

of ¢. Implications of the results for modeling interlimb coordination are discussed.

Of gen_efal interest to the psychologist is how an animal or
person can effortlessly coordinate their limbs in order to

produce goal-directed actions. Everyday activity contains .

many complicated tasks that people perform with minimal
attention and without being able to say explicitly how they
perform the task. They can coordinate their lower limbs and
postural system to comfortably locomote across even the
most rough terrains. They can coordinate their upper limbs
to reach for objects or throw them. They can coordinate their
movements in synchrony with another person’s in dancing
or exercising. How are these often very complicated behav-
jors performed? What does it mean to have the knowledge
for producing them?

The ecological perspective on the coordination and con-
trol of action suggests that people have tacit knowledge for
producing coordinated activities in that they develop rela-
tively autonomous control structres (i.e., coordinative
structures) in the acquisition of skilled behavior that require
minimal attentional intervention. It has been proposed that
the autonomy of these control structures is a consequence of
their being intrinsically dynamical: The functioning of these
subsystems is based upon strategies of self-organization
found at many scales of nature that are characterized by the
components of the control structure tending toward equilib-
rium or steady states through mutual influence (Kugler,
Kelso, & Turvey, 1980). The present manuscript reports an

R. C. Schmidt, Tulane University and Center for the Ecological
Study of Perception and Action, University of Connecticut; B. K.
Shaw, Center for the Ecological Study of Perception and Action,
University of Connecticut; M. T. Turvey, Center for the Ecological
Study of Perception and Action, University of Connecticut, and
Haskins Laboratories, New Haven, Connecticut.

This research was supported by National Science Foundanon
grants BNS 8811510 and BNS 9109880. B. K. Shaw was sup-
ported by a National Science Foundation Predoctoral Fellowship.

We thank Bruce Kay, Yves Guiard, Richard Rand and an anon-
ymous reviewer for their helpful comments on an earlier version of
this article. We also thank Paula Fitzpatrick for her help with the
data analysis.

Correspondence concerning this article should be addressed to
R. C. Schmidt, Department of Psychology, 2007 Percival Stern
Hall, Tulane University, New Orleans, Louisiana 70118.

" 397

experiment that investigates the control structure governing
a basic property of coordinated rhythmic acts, namely, the
relative phasing of two rhythmic movements. In the follow-
ing introductory remarks, previously proposed dynamical
models of interlimb phasing are presented followed by a
review of past studies that have demonstrated the dynamical
nature of the conwol structure that governs interlimb
phasing.

Dynamical Models of Interlimb Phasing

Studies of coordinated rhythmic movements have dem-
onstrated that the relative phase angle (P) between two
oscillating limbs is a perspicuous variable that can be used
to measure interlimb rhythmic coordination (Haken, Kelso,
& Bunz, 1985; Kelso, 1984; Turvey, Rosenblum, Schmidt,
& Kugler, 1986). Technically, this coordination measure can
be considered an order parameter in that (2) it captures the
spatio-temporal organization of the component subsystems,
and (b) it changes more slowly than the properties that
characterize the states of the component subsystems. This
concept plays a major role in synergetics (Haken, 1983)—~a
branch of physics that studies self-organizing systems at
many scales of nawure. In the investigation of complex
(chemical, biological, social) systems, synergetics uses
scale-independent physical principles to model the qualita-
tive changes in the macroscopic patternings of these sys-
tems, that is, in their order parameters, as they are affected
by changes in other properties referred to as control param-
eters. In the coordination cf rhythmic movements, the be-
havior of the coordination measure & has been studied
under the scaling of two control parameters, specifically, the
coupled frequency of oscillation w, (Kelso, 1989; Schmidt,
Carello, & Turvey, 1990) and the difference in the eigen- or
inherent frequency of the component oscillators Aw = w, —
w, (Rosenblum & Turvey, 1988) or their ratio ) = w)/w;
(Schmidt, Beek, Treffner, & Turvey, 1991).

The changes in the behavior of & that occur under the
scaling of these control parameters have been modeled dy-
namically. The dynamical principles that have been used in
the modeling are those of coupled physical oscillators. The
strategy of the modeling is as follows. Consider the equa-

-



398 R. SCHMIDT, B. SHAW, AND M. TURVEY

tions of motion of two limit cycle oscillators that are mu-
tually coupled,

xl = Fl(xl) + Gl(xhx:) (1)
and
X.Z = Fz(xz) + Gz(xzt x[)' (2)

where x; are vectors of variables of any dimension for os-
cillator i, F; is the limit cycle component of oscillator i, and
G, is the coupling function that bidirectionally links the two
oscillators. Under the assumptions that the coupling func-
tions G; are “weak” and the oscillatory dynamics are simply
harmonic (an important and, perhaps, erroneous assump-
tion), the effects of the coupling over each cycle can be
averaged to reduce the above set of equations to a simpler
set written in terms of the oscillator’s phase angles (6;),

91 = + H(6,—8) 3
and
b, = w, + H,(6, — 6.), 4)

where w; is the eigenfrequency of the oscillator and H; is a
coupling/forcing function that depends upon the difference
between the component oscillators’ phase angles 6; and 6.
If 6, — 8; = ® and we subtract Equation 4 from Equation
3, then the equation for the rate of change in @ is

b =0, ~ w, + H(—D) — Hy(®). (5)

The equation can be simplified further if the same coupling
function H = H, , is assumed isotropic (operates identically
in both directions):

& = Aw — 2H(D). ©)

This equation represents the behavior of the relative phase
@ as a function of the difference of the eigenfrequencies Aw
and the coupling function H.

In the literature on coordinated rhythmic movements two
candidate coupling functions H have been proposed to
mode! the patterning of ¢ with changes in the control pa-
rameters w. and Aw. Haken et al. (1985) used

& = Aw + asin(P) — b sin(2d) )]

(assuming that Aw = 0) to model the changes in ¢ that
occur through the scaling of the control parameter w. in
bimanual index finger coordination. Rand, Cohen, and
Holmes (1988) used

b =Aw+ k_sin((b) (8)

to model the changes in & that occur by scaling the control
parameter Aw in the neural coupling of central pattern gen-
erators. Furthermore, Schmidt et al. (1991) have used a
discretized version of Equation 8 that captures the effect on
one oscillator’s phase angle (8,) of the sinusoidal forcing of
another oscillator,

8,., = 6, + Q — ksin(6,). ©)

This equation, known as a circle map, was used to explain

changes observed in the spectrum of ¢ with changes in a
control parameter that is analogous to Aw, namely, the ratio
of wy/w, = ). As can be seen from the above derivation, the
three relative phase models have a common theoretical basis
in the dynamics of coupled oscillators. In the following, a
summary of the findings upon which these three models are
based is presented.

Changes in Mean @ and Variance of ® as a
Function of w

A basic fact of the relative phasing of limbs is that two
coordinative patterns are found most prevalently, namely,
the symmetric and alternate modes.! In the symmetric
mode, the rhythmically moving limbs are at the same place
in their cycles at the same time or at & = 0°; whereas, in the
alternate mode, the limbs are at opposite places in their
cycles at the same time or at ©® = 180°. Another basic fact
is that these two relative phase modes are differentially
stable—the alternate mode is less stable than the symmetric
mode (Kelso, 1984; Turvey et al., 1986). One indication of
this differential stability is the fact that the alternate mode
becomes less and less stable as the frequency of oscillation
@, is increased until it can no longer be maintained and a
transition occurs from the alternate to the symmetric mode
of phasing (Kelso, 1984). However, an identical scaling of
o, starting in the symmetric mode yields no breakdown.

Haken et al. (1985) modeled the above properties of rel-
ative phase using Equation 7, where Aw = 0. Assuming that
& = 9V/a®, the integration of this equation produces a
potential function (V(®)) that has a dynamical “landscape”
with stable states or point attractors at ® = 0° and 180°
(Figure 1). The state of the coordinated limb system can be
represented by the position of a ball in this landscape. The
positioning of the ball on any sloped part of the potential
function will result in the system’s “relaxation” to one of
these stable points. Furthermore, Haken et al. demonstrate
that the topology of this attractor landscape changes as a
function of the relation of the coupling strengths g and b in
Equation 7. For the initial state of the system of equal
strengths (a = b), the two attractors are present. As the ratio
of b/a = 1 approaches b/a = .25, however, the attractor well
at ¢ = 180° disappears and only the well at ® = 0°
remains. If the system state was initially at & = 180°, then
this state would become increasingly unstable until, upon
the complete annihilation of the 180° attractor, the system’s
state would switch to the & = 0° (Figure 1). Under the
condition that the magnitudes of a and b are a function of
w,, this dynamical equation can model the switch from ¢ =
180° to @ = 0° as w, is scaled.?

! Zanone and Kelso (1992) have demonstrated the possibility
of learning other relative phase modes, however (e.g., one at
d = 90°).

2 It should be pointed out that the transition from aiternate to
symmetric mode occurs both when the subject determines or when
a metronome determines the frequency of oscillation. Modeling
the metronome as an external forcing function. and thus making
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sa
-180

increasing @),

annihilation of @ = 180°

V(®) = -a cos(P) — b cos(2D)
where g and b are a function of .

Figure 1. Haken, Kelso, and Bunz’s (1985) dynamical model of the changes in the coordination
variable ¢ with the scaling of control parameter w.. (The topology of the dynamical landscape of
the order parameter P changes as the control parameter . is increased. At a critical value of w, the
stable point at & = 180° is annihilated, and a transition to relative phase angles near ® = 0° occurs.)

This kind of nonlinear change of state that results from the
scaling of a control parameter is known in physics as a
bifurcation or a catastrophe (Gilmore, 1981; Haken, 1983).
Much empirical work done by Kelso and colleagues has
demonstrated that this nonlinear change of coordination
modes indeed has the hallmark properties of a physical
bifurcation: critical fluctuations (a dramatic increase in fluc-
tuations immediately before the transition, Kelso, Scholz, &
Schoner, 1986), critical slowing down (increased time to
return from" a perturbation, Scholz, Kelso, & Schdner,
1987), and hysteresis (decreasing the w. does not lead to a
reverse jump back into the alternate mode after the transi-
tion to the symmetric mode had occurred, Kelso & Kay,
1987). In short, these studies have verified that the empirical
properties of the breakdown in alternate interlimb phasing
has properties that are predicted by Equation 7 under a
scaling of the frequency of oscillation (w,).

Changes in Mean @ as a Function of Aw

In a number of biological systems, if the rhythmic units
involved have different inherent frequencies or eigenfre-
quencies, the relative phase angle & that is observed be-
tween the oscillation of units when coordinated at the same
tempo is not perfectly at 0° or 180° (although the coordi-
nation modes intended were the symmetric and alternate
modes, respectively) but some small deviation AD away
from 0° and 180°. This phase lag A® is such that (a) the
rthythmic unit with the slower eigenfrequency is always

the coupled autonomous oscillators nonautonomous, is not seen as
necessary in the first pass of modeling this phenomenon. However,
the external “forcing” of the system that is in the perceptual tuning
of the control structure indeed renders the system nonautonomous
in nature. How to incorporate nonautonomous dynamics nonarbi-
trarily into perceiving-acting systems has been discussed else-
where (Beek, Turvey, & Schmidt, 1992).

behind the faster unit in phase even though they have the
same coupled frequency and (b) the magnitude of this phase
lag is a linear function of the eigenfrequency difference
(Aw). These characteristics were first observed by-von Holst
(1939/1973) in the coordination of fish fins. He called the
phenomenon the maintenance tendency because he claimed
that each rhythmic unit was trying to maintain its own
inherent frequency and the phase lag was the result of the
balancing of the “forces” of the individual oscillators. These
maintenance tendency characteristics have also been ob-
served on the neural level as well in the coordination of the
CPGs in the crayfish swimmeret system (Stein, 1973, 1974).

The maintenance tendency has been primarily observed in
the bimanual coordination of wrist movements in humans
using a2 methodology known as the wrist-pendulum para-
digm (Kugler & Turvey, 1987) in which the eigenfrequen-
cies of the individual rhythmic units can be manipulated. In
this paradigm, a subject must coordinate two hand-held
pendulums with either identical or different masses and
lengths in (a) a comfortable 1:1 frequency lock (i.c., at the
same tempo) and (b) either the symmetric or the alternate
relative phase modes. The eigenfrequency of a single wrist-
pendulum system is determined as that frequency that is
most comfortable for long-term oscillation and has been
found to be very near the pendulum’s gravitational fre-
quency (27w = "\/gflength). The eigenfrequencies can be
manipulated in the wrist-pendulum paradigm because they
are a function of the inertial loadings of the pendulums: The
eigenfrequencies of short length and light mass wrist-pen-
dulum systems are high and those of long length and heavy
mass wrist-pendulum systems are low. The control param-
eter Aw can then be manipulated by having a subject swing
two pendulums of different sizes (one in each hand) in a 1:1
frequency lock. As with fish fins and neural CPGs, the
wrist-pendulum system with the lower eigenfrequency lags
in phase and the magnitude of this A® depends upon the
magnitude of the left-right imbalance (i.e., Aw) (Bingham,
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Schmidt, Turvey, & Rosenblum, 1991; Rosenblum &
Turvey, 1988; Schmidt et al., 1991; Turvey et al., 1986).

The explanations of maintenance tendency in human bi-
manual coordination have attempted to give credence to von
Holst’s “balancing of forces” idea. Rosenblum and Turvey
(1988) suggest, following Partridge (1966, 1967), that the
patterning of the relative phase @ is a consequence of the
general phenomenon of latencies in electromechanical re-
sponse of the musculature which are inertia dependent.
Same inertia wrist-pendulum systems will produce the
equivalent latencies in the musculature, and hence, no de-
viation from intended relative phase (ie.,  =0°or @ =
180°); however, different inertia wrist-pendulum systems
will produce different latencies in the musculature, and
hence, a deviation A from intended relative phase. Bing-
ham et al. (1991) accepted this hypothesis and point out that
the property that is responsible for the magnitude of mus-
cular latency is the stiffness assembled at the wrist to move
the inertial loading of the pendulum at the frequency re-
quired by the 1:1 frequency lock. The fact that the difference
in the estimated stiffness assembled at the two wrists (right
stiffness ~ left stiffness), which can be said to index the
compromise of the forces at the two wrists, linearly scales
the deviation AP from intended relative phase (Bingham
et al., Figure 9) supports von Holst’s “balancing of forces”
hypothesis.

A dynamical systems exposition of the balancing of
forces hypothesis for systems under a Aw parameterization
is found in' the neural oscillator literature but can accom-
modate "the human bimanual oscillation data as well. In
modeling the changes of ¢ with Aw observed such as those
observed by Stein (1973, 1974), Kopell (1988) and Rand et
al. (1988) proposed that the dynamical models of ® pre-
sented in Equations 6 and 8, respectively. Kopell proposed
a general model of which the Rand et al. model is a partic-
ular instantiation. Rand et al. chose the coupling function
H = k sin(P) because it captures the key characteristics of
@ empirically observed under Aw scaling, namely, (a) an
increasing phase lag with deviation of Aw from 0 and (b) the
two basic relative phase modes at ¢ = 0° and & = 180°.

These two characteristics can be demonstrated in terms of .

the properties of a potential function V that represents the
attractor layout for this system. Given that the coupling
strength k is large with respect to Aw, the attractor layout for
Equation 8 has a single well, and hence, a single stable state
or point attractor (as compared to that of Equation 7 in
Figure 1). Equation 8 has the characteristic that, assuming a
constant k, the position of the attractor’s stable point is a
function of Aw (Figure 2). In particular, a deviation in Aw
from 0 causes the location of the stable points to move away
from @ = 0° and & = 180° (i.e., causes a AD). Larger
deviations in Aw from 0 move the location of the attractor
point farther from ® = 0° or & = 180°. The position of the
attractor’s stable point is an indication of the balancing of
forces of the two component oscillators.

Furthermore, although the model has only one potential
well, it can model both the symmetric and alternate relative
phase modes. If the strength of coupling k is positive, the
stable point is near P = 0° if k is negative, the stable point
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symmetric mode alternate mode
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0o © 180 @

V(®) = A0D — £ cos(d) V(®) = Awd + E cos(®)
Figure 2. Rand, Cohen, and Holmes’s (1988) dynamical model
of the changes in the coordination variable @ with the scaling of
the control parameter Aw. (Deviations of the control parameter Aw
from 0 lead to a procession of the stable relative phase angle at the
bottom of the potential well away from the intended relative phase
angles at & = 0° and ¢ = 180°. The two relative phase modes are
atained in this model by the sign of the coupling swrength k. Note
that the sign of k changes as one moves from the differential
(Equation 8] to the integral form [this figure] of the model.)

is near @ = 180°. As a matter of fact, the scaling of this
coupling strength can lead to the breakdown of coordinative
modes modeled by Haken et al. with Equation 7: Decreasing
the absolute magnitude of the coupling strength (i.e., 1 k1)
will lead to increasing instability of the attractor and to a
breakdown of the phase locking as k passes through a crit-
ical value that depends upon the magnitude of Aw (Rand
et al., 1988). Assuming (as Haken et al., 1985) that the
magnitude of this coupling strength decreases with increas-
ing frequency, Equation 8 can model the breakdown in
alternate mode phasing with increasing w. as well. What
Equation 8 fails to predict (that Equation 7 does) is the
asymmetry in the breakdown in phasing—it occurs only in
alternate mode. Equation 8 can accommodate this fact, how-
ever, by assuming the boundary condition that the coupling
strength for alternate mode is in general weaker than that of

“the symmetric mode. It should also be noted that Equation

7, with constant coupling strengths a and b, also produces an
increased deviation of its attractors’ stable points with the
scaling of Aw. With these differences noted, the two equa-
tions can be seen as alternative explanations for the changes
of & with the scaling of w. and Aw because each can explain
the effects of both control parameters.

Changes in the Variance of ¢ as a Function of Aw

Not only does the deviation from intended ® increase as
the control parameter Aws deviates from 0, but also the
variability of ® as measured by the power of the ® spectrum

. increases as Aw deviates from 0. The explanation of this

result can be seen in terms of the circle map representation
of coupled oscillators (Equation 9). An important point,

-stated above, is that this representation is a discretized ver-

sion of the Rand et al. Equation 8. The state map of the
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circle map regime, known as an Arnold tongues diagram
" (Schmidt et al., 1991, Figure 2), represents the stable
frequency. locking patternings that two oscillators under a
sinusoidal coupling (H) can have given a difference in
eigenfrequencies (appearing in the circle map as = wy/
w,) and a coupling strength k. Schmidt et al. point out that
the Arnold tongue for 1:1 frequency locking becomes nar-
rower and narrower as the eigenfrequency difference in-
creases. This can be interpreted as indicating that the ap-
propriate coupling strengths k, necessary for maintaining
1:1 frequency locking, get fewer and fewer in number as Q
deviates from 1 (or as Aw deviates from 0). Because the
number of possible coupling strength magnitudes decrease
for any given () away from () = 1, the fluctuations in ¢
increase. )

The increase in variability of @ as Aw deviates from 0 can
also be explained by the continuous dynamical model found
in Equation 8. In Figure 2, not only does the place of the
point attractor change as Aw deviates from 0 but the con-
cavity of the potential (d?V/d®?) becomes shallower. The
concavity of the well is an index of the strength and relax-
ation time of the attractor, the time the system takes to return
from a perturbation: The greater the concavity, the greater
the relaxation time, and the greater the relaxation time, the
weaker the attractor. Furthermore, assuming that the control
structure assembied has a constant amount of noise from its
microstructure (Schoner, Haken, & Kelso, 1986), this con-
stant noise would manifest itself as greater fluctuations in ®
as the attractor becomes weaker.? This explanation furthers
the circle map/Amold tongue hypothesis by demonstrating
why the Amold tongue becomes narrower as Aw deviates
from O: The attractor for the 1:1 frequency lock patterning
becomes weaker and only certain coupling strengths k can
keep it from becoming completely unstable.

Scaling of the eigenfrequency difference Aw has also
been found to affect the local and global patterning of power
in the ® spectrum (Schmidt et al., 1991). First, the & spec-
trum has been found to be compossd of peaks at integer
multiples of the oscillation frequency (i.e., a harmonic or-
ganization of the power). This local patterning of power
signifies that there are rhythmicities latent in the variability
of ®. Furthermore, it was found that the general increase in
total power with deviations from Aw = 0 was due only to
the increases of power at the peaks: The peaks became taller
as the control parameter Aw was scaled and new peaks
emerged. =

The spectral peaks of the @ spectrum have been inter-
preted as representing control processes that are hamessed
to deal with the ensuing instability of the dynamical regime
assemble to govern the coordination (e.g., Equation 8).
What this hypothesis proposes is that (a) appropriating a
dynamical regime to control coordination has its costs be-
cause instability occurs under different parameterizations
and (b) additional control processes have to be brought to
bear in order to keep the control structure stable. If the
spectral peaks in the relative phase spectrum are taken to be
an index of these control processes, it can be said that
growing instability is “packaged"” by these control processes
at the time scales of the spectral peaks. Schmidt et al. (1991)

suggested that the control processes that are subsidiary to

" the main dynamical regime are processes of perceptual tun-

ing. In particular, the peaks may represent control points at
which information about the coordination is picked up
(Beek, 1989). Hence, an increase in the number of peaks
could indicate an increase in information pickup (see the
General Discussion section).

The fact that there is coherent patterning of the ® variance
in the form of rhythmicities indicates that the interlimb
phasing of the coupled wrist-pendulum systems is not one
of phase locking but rather phase entrainment: The phase
angles of the two oscillators are attracted to one another
but not perfectly locked (Keith & Rand, 1984). The distinc-
tion between the two kinds of coordination is elucidated
in Figure 3 (upper panel). The importance of this point is
that the dynamical models so far presented account for
phase locking behavior only, not phase entrainment; Equa-
tion '8 would predict a general increase in total power
with deviation of Aw from O but not coherently packaged
power at harmonically related spectral frequencies. How
is this phase entrainment pattern to be explained? Two
explanation are possible. The phase entrainment pattern can
be explained by (a) incorporating other processes besides
those of Equation 8 into the architecture of the coupling
function (H;) underlying the coordination or by (b) making
the osciilatory dynamics (the F; in Equations | and 2) not
simply harmonic but nonlinear counter to the assumptions
of the averaging procedure of Rand et al. (1988). Refine-
ment of the models along these lines is explored in the
discussion.

The @ spectrum not only has a local patterning of the &
power in the form of spectral peaks but has also a global
patterning that has a 1/f° topology (Figure 3, lower panel).
These spectra are called inverse power-law spectra (West &
Shlesinger, 1990). Such spectra have been observed in com-
plex systems such as biological organisms (Goldberger,
Bhargava, West, & Mandell, 1985; Goldberger, Kobaiter, &
Bhargava, 1986; Koboyashi & Musha, 1982; Musha,
Katsurai, & Teramachi, 1985) that function on multiple
space-time scales. The topology of their spectra indicates a
relation between the amounts of power (or energy) that
occur at different time scales, namely, the magnitude of
power is a function of the inverse of the frequency (i.e.,
period) of the subtask. Systems that have these interrela-
tionship of subtasks have a fracral or scale-invariant orga-
nization (West & Shlesinger, 1989).

The § of the 1/f5 scaling is indicative of the amount of
correlation between the subtasks of a system. A8 = 0 (a
white-noise process) would indicate no correlation between
subtasks. But as § increases from 0, there is an increasing
amount of correlation between the subtasks because more
power will be concentrated in one particular part of the
spectrum (the lower frequencies). Schmidt et al. (1991)
found that the & magnitudes of the P spectra were scaled by
the left—right imbalance of the coupled wrist-pendulum sys-

3 Essentially, a noise perturbation with given magnitude of force
F will travel farther up the potential well when the slope of the well
is less steep.
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phase locking phase entrainment

V7
0 =

0 62 360 0 62 360

~> ratz of change of " > rate of change of
oscillators equal oscillators not equal
lo g
i £ &
e transform F
Frequency
m-:(vﬁw‘) log(Power) = - § log(Frequency) + @

Figure 3. The top panel shows the difference between oscillators
that are phase locked and phase entrained (after Keith & Rand,
1984). (When two oscillators are phase locked, a phase-phase plot
has a constant slope. When two oscillators are phase entrained,
their phase-phase plot has a changing slope.) The lower panel
demonstrates a 1/f power spectrum. (These have a hyperbolic
distribution of power across the frequency range, power = a 1/f3,
which upon a transformation to logarithmic coordinates becomes
linear, log(power) = -§ log(f) + a.)

tems as indexed by the control parameter Q) = w,/w,. At
Q = 1, § had magnitudes near 2. But as  decreased
to values far from 1, 8 approached magnitudes near 1,
suggesting that the correlations between the subtasks de-
creased as the eigenfrequencies of the component oscillators
became more different. This decreased correlation was in-
terpreted as an accommodation to the increasing internal
perturbations caused by the narrowing of the 1:1 frequency
lock region (Amold tongue) of the regime’s state space.

Simultaneous Manipulation of w, and Aw

In the present study, we investigated the coordination of
two moving limbs as indexed by the order parameter ®
under the simultaneous scaling of the two control parame-
ters, . and Aw. Furthermore, these manipulations were
carried out in the intended (¥) coordination modes of @y =
0° and Py = 180°. Of general interest is how the patterning
of & previously observed for the manipulation of Aw is
affected by different frequencies of oscillation w., and
whether the effects of these two control parameters is the
same for the symmetric and alternate modes of coordina-
tion. Of specific interest is how well the candidate dynam-
ical models (Equations 7-9) based on 27r-periodic coupling
functions address the pattern of dependencies of ¢ on .,
w, and Aw." )

The simultaneous effect of the two control parameters, w,
and Aw, on the two coordination modes has not heretofore

been observed. These control parameters have been previ-
ously investigated only in different studies with different
effector systems only. Kelso and colleagues (Kelso, 1984,
1989; Kelso et al., 1986) have extensively investigated the
effect of w. on interlimb phasing using the bimanual oscil-
lation of index fingers. Turvey and colleagues have exten-
sively investigated the effect of Aw on interlimb phasing
using the bimanual oscillation of hand-held pendulums
swung from the wrist. The present study examines the si-
multaneous effect of the two control parameters using the
latter methodology. Furthermore, an attempt is made to
explain the effects of both control parameters in terms of a
single dynamical model. Previously, the effects of the two
control parameters have been explained by different dynam-
ical models, the effects of w, by Equation 7 and the effects
of Aw by Equation 9. Also, the effectiveness of the Rand et
al. equation in modeling macroscopic limb movements has
not been previously evaluated.

Method

Subjects

Seven subjects participated in the experimeat, 2 men and 5
women. Three of the subjects were University of Connecticut
graduate students, 3 were undergraduates fulfilling a course re-
quirement, and the other was not affiliated with the University of
Connecticut. Two subjects’ data were discarded because their rel-
ative phase time series revealed spontaneous transitions or very
large and uneven fluctuations that violated the stationarity condi-
tions necessary to perform power spectral analysis on a time series.
Therefore, 5 subjects’ data were used in the analysis. All subjects
were naive to the purpose of the experiment.

Materials

The pendulums were constructed using the specifications de-
scribed in Kugler and Turvey (1987). They consisted of an ash
dowel with a bicycle hand grip attached to the top. Mass weights
were attached to a 10-cm-long bolt that was drilled through the
dowel at right angles 2 cm from the bottom. Four such pendulums
were used. The length and mass magnitudes were-0.31 m and
0.2 kg for Pendulum A, 0.48 m and 0.2 kg for Pendulum B, and
0.75 m and 0.2 kg for Pendulums C and D. The effective mass and
length of a single wrist-pendulum system have been taken to be the
equivalent simple pendulum mass and length of the compound
pendulum consisting of the attached mass, the dowel and the hand
of the subject. These magnitudes were calculated using the algo-
rithm reported in Kugler and Turvey ( 1987). The characteristic
frequencies (w;) of these simple equivalent pendulums considered
as gravitational pendulums are displayed in Table 1.

Each subject was asked to oscillate isochronously five combi-
nations of the pendulums during the experiment: The two longest
together, the longest in the right hand with each of the two shorter
ones in the left hand, and the longest in the left hand with each of
the two shorter in the right hand. The design of these coupled
wrist-pendulum systems along with the difference in the cigenfre-
quencies Aw (= gy — heg) is displayed in Table 2. Note that
negative Aw values indicate pendulum pairs in which the left
system is smaller and has a greater frequency of oscillation than
the right and positive Aw values indicate pendulum pairs in which
the right system is smaller and has a greater frequency of oscilla-
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tion than the left. Note as well that manipulating Aw is tantamount
to manipulating the left-right imbalance of the pendulum systems.

Subjects sat in a specially designed chair with armrests to sup-
port their forearms. The armrests were designed to resuict the
subjects’ swinging movements to the wrist; the forearm was kept
continually resting on the arm support. The chair also raised the
subjects’ legs with supports so that they did not interfere with the
ultrasonic acquisition of the data (see below).

Wrist-pendulum movement trajectories were collected using an
UltraSonic 3-Space Digitizer (SAC Corporation, Stratford, CT).

An ultrasound emitter was affixed to the end of each pendulum. An

ultrasound “spark” was issued from each emitter 90 times per
second. The digitizer operates by registering each emission using
three microphones arranged to form a square grid. The digitizer
calculates the distance of each emitter from each microphone,
thereby pinpointing the position of the emitters in the three dimen-
sions at the time of the emission. This slant range information was
stored for later use on an 80286-based microcomputer using
MASS digitizer software (Engineering Solutions, Columbus,
Ohio). This software and analogous routines written on a Macin-
tosh II use the slant range time series to calculate the primary angle
of excursion of the pendulums and their relative phase angle ®. An
electronic metronome was used in trials in which subjects were
instructed to swing the pendulums at a preset frequency.

Procedure and Design

The subjects were asked to coordinate one of the five possible
pairings of pendulums in Table 2 in either the symmetric phase
mode ($y = 0°) or alternate phase mode (dy = 180°). The
subscript ¥ is used here to denote that these were the retative
phase angles that the subject intended. The frequency of oscillation
(wo) at which a subject coordinated the pendulums was either a
self-selected comfort frequency or one of two preset frequencies,
0.93 Hz or 1.15 Hz. These frequencies were chosen because they
were in the upper. or above comfort mode, frequency range
observed in wrist-pendulum swinging. Frequencies in the lower
frequency range (below the comfort mode) are investigated by
Sternad, Turvey, and Schmidt (1992). In comfort frequency trials,
the metronome was off; in the other trials, it was tuned on at the
preset frequency before data recording-tegan. Thus-the design of
the experiment was a factorial one that consisted of two intended
relative phase modes (®y), three kinds of frequencies (w.), and
five coupled pendulum systems (Aw). Both the coordination mode
and the frequency of oscillation were specified at the beginning of
a trial. There was one 60-s trial per condition for a total of 30 trials
per subject. The order of trials was randomized, with the constraint
that the &y = 0° and Py = 180° trials for a given combination of
Aw and @, were next to each other. This constraint expedited the
experimental session because the pendulums needed to be changed
only every other trial rather than every trial.

Table 1

Characteristic Frequencies of the Simple
Equivalent Pendulums (in Hz) Considered
as Gravitational Pendulums .

Subject Pendulum A Pendulum B Pendulum C Pendulum D

1 1.037 0.806 0.637 0.637
2 1.007 0.792 0.632 0.632
3 1.022 0.799 0.635 0.635
4 1.009 0.793 0.632 0.632
5 1.026 0.800 0.635 0.635

Table 2 : n
Design of the Coupled Wrist-Pendulum Systems and
the Average Value of Aw (in Hz)

System Left pendulum Right pendulum Aw
1 C A 386
2 C B 164
3 C D 0
4 B D ~.164
5 A D -.386

Each subject was given instructions and allowed to practice
before the beginning of a session. He or she was told to place the
forearms squarely on the arm rests, to gaze straight ahead without
looking at the pendulums, and to swing the pendulums smoothly
back and forth. The subject was instructed to hold the pendulums
firmly in the hands so that as much of the rotation of the pendulum
as possible was created about the wrist joint rather than about the
finger joints. The subject was allowed to practice the task in both
phase relations and all frequency conditions for a subset of the
coupled pendulum system combinations. At the beginning of each
trial, the subject was allowed as much time as needed to achieve
the goal of the condition. Data recording began after the subject
indicated that he or she was ready. Subjects were allowed to rest
berween the trials of a session when they needed to.

Data Reduction

The digitized displacement time series of the wrist-pendulum
systems were smoothed using a triangular moving average proce-
dure.* Each trial was subjected to software analyses to determine
the frequency of oscillation of each wrist-pendulum system, the
time series of the relative phase angle @ between the two wrist-
pendulum systems, the power spectra of this relative phase time
series, and the total power associated with each of these spectra.

A peak picking algorithm was used to determine the time of
maximum forward extension of the wrist-pendulum trajectories.
From the peak extension times, the frequency of oscillation for the
nth cycle was calculated as

1
f= (time of peak extension, ., — time of peak extension,)’

(10

The mean frequency of oscillation for a trial was calculated from
these eyels-frequencics. The phase angle of each wrist-pendulum

4 Subsequent to the data collection, we realized that a number of
the data records had noise in them that the moving average pro-
cedure could not efficientdy smooth. The reason for this is the
following. One of the perils of using a sound-based acquisition
system is the reflection of previous emissions back to the micro-
phones from hard surfaces in the experimental area. These erro-
neous points appear as extreme outliers and can be identified by
software error checking routines. When this occurs either correct
points are interpolated or, if software interpolation is not possible,
the trial is repeated. Unfortunately, the error-checking routines
used at the time of data collection were faulty such that trials that
would have been repeated were not identified. Hence, the errone-
ous points were eliminated post hoc using a laborious graphical
interpolation procedure in which single points were placed into
their appropriate place in the time series “by eye.” It is important
to note that affected were the data of 2 subjects only and fewer than
10 points per cycle (usually much fewer).
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system (6;) was calculated for each sample (S0/s) of the position
time series to produce a time series of 6,. The phase angles of wrist
pendulum i at sample J (8;) were calculated as -

X3
9,.,.=arcran<E). (11
y
where 1} is the velocity of the time series of wrist pendulum i at
sample j divided by the mean angular frequency for the trial, and
Ax; is the position of the time series at sample j minus the aver-
age position for the trial. The relative phase angle (P;) between
the two coupled wrist-pendulum systems was calculated for each
sample as the 8y,y, ;= bierj. The P, that the subject intended to
produce should be 0° for ®y, = 0° and 180° for &y = 180°. The
¢ time series allows an evaluation of how the subject satisfied
this task demand. The evaluation was accomplished in a number
of ways. First, the mean & was calculated for each trial and con-
dition. Second, in order to determine the magnitude and pattern-
ing of the variability associated with this time series, a power
spectral analysis was performed on the & time series. A 60-s time
series was broken up into nine subsidiary time series each of

1,024 samples and each overlapping by 512 samples. Each sub- -

sidiary time series was windowed using a Welch filter to reduce
spectral leakage, and all of the nine spectra from a given trial
were averaged to reduce the error of the spectral estimate (Press,
Flannery, Teukolsky, & Vetterling, 1988). Finally, the total power
of @ was calculated for each trial by summing the power at each
frequency of the averaged spectra except the DC component at
the zero frequency. This measure was used as 2 summary of the
variability of .

Results and Discussion
Frequency of Oscillation

The mean frequency of oscillation for each condition was
submitted to a2 X 3 X § analysis of variance (ANOVA)
within factors of coordination mode @y = 0 or 180),
frequency condition (comfort frequency, 0.93 Hz or 1.15
Hz) and coupled pendulum system (1-5) in order to verify
that the prescribed frequency of oscillation was actually
performed. The only significant effect that the analysis
yielded was a main effect for frequency, F(2, 8) = 20.94,
MS. =0.08, p < .01. Figure 4 (upper panel) displays the
mean frequencies performed, averaged across the coordina-
tion modes for each coupled pendulum system at each fre-
quency condition. The observed frequencies of the 1.15-Hz
and 0.93-Hz conditions were constant across system condi-
tions with means that were near the metronome specified
values (1.151 and 0.936, respectively), whereas the frequen-
cies of the comfort mode were more variable but not sig-
nificantly different from one another: Frequency Condition
X Pendulum System, F(8, 32) = 1.10, MS, = 0.005,
p > .05.

Still, the variability of the coupled pendulum system fre-
quencies in the comfort mode condition can be rationalized
by Kugler and Turvey’s ( 1987) virtual system hypothesis,
namely, that the comfort frequency of a coupled wrist-pen-
dulum system is dependent upon the magnitude of the two
wrist-pendulum systems inertial loadings, in particular, the
distance to their center of oscillation or virtual length (L,).

The formula for virtual length is ’ .
L, = (ML} + M,L)[(M,L, + M,L,), (12)

where M, L, refer to the mass and length, respectively, of
one of the wrist-pendulum systems considered as a simple
pendulum and M, L, refer to the mass and length of the
other wrist-pendulum system considered as a simple pen-
dulum. Given the symmetry of the wrist-pendulum pairings
used (see Table 2), the five coupled systems had only three
L, values: 0.524 m (Systems 1 and 5), 0.535 m (Systems 2
and 4) and 0.618 m (System 3). As seen in Figure 4 (lower
panel), the fact that the mean oscillation periods (1/
frequency) calculated across the five subjects scale as a log
linear function of the L, is consistent with the Kugler and
Turvey theory (see also Turvey, Schmidt, Rosenblum, &
Kugler, 1988).

Deviation of Mean & From &,

The deviation of mean ® from ®y was calculated by
subtracting the intended relative phase angle for each dy
condition (0° or 180°) from the mean ® of each trial. This
transformation was performed in order to compare the at-
tained @ for the two coordination modes with each other
relative to the goals of their respective conditions. On these
magnitudes, a three-way ANOVA of the same design as
above was performed. The analysis revealed no significant
effects with coordination mdde but a significant main effect.
for coupled pendulum system, F(4, 16) = 64.57, MS, =
52427, p < .001, and a significant interaction between
frequency condition and coupled pendulum system, F(8, 32)
= 246, MS, = 19495, P < .05. Figure 5 displays the
mean deviation from ®y averaged across the coordination
modes for each system at each frequency condition. Two
characteristics can be observed. First, as the Aw values
of the coupled pendulum systems deviate from zero, the
deviation from &y increases. The conventions for the
calculations of Aw and ® are that the left-hand values
are subtracted from the right hand. Consequently, these
deviations from ®y can be interpreted as follows: The
wrist-pendulum with the higher gravitational frequency
(right when Aw > 0, left when Aw < 0) leads the other
wrist-pendulum system in the cycle. (When right leads,
deviation from ®y, > 0; when left leads, deviation from ®y,
< 0.) Second, the magnitude of this lagging and leading is
scaled by the magnitude of Aw in a nearly linear fashion.

Figure 5 also shows that the scaling of the deviation from
Py by the control parameter Aw is different for the different
frequency conditions. This significant interaction between
frequency condition and coupled pendulum system is a con-
sequence of the differences of the frequency conditions at
Aw = 386 and Aw = -.386. Post-hoc ¢ tests revealed
significant differences between comfort mode frequency
and the metronome scaled conditions for Aw = .386 (both
P < .01) and between the comfort mode frequency and 1.15
Hz condition for Aw = -.386 {p < .05). In both cases, the
comfort mode deviation from ®y was smaller than that of
the metronome paced conditions,
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Figure 4. The upper panel demonstrates the frequency of oscil-
lation w, that was attained across changes of the control parameter
Ao for the three w. conditions (circles = comfort frequency,
squares = 0.93 Hz, crosses = 1.15 Hz). The lower panel displays
the scaling between the w, in comfort mode and L, (the distance to
the center of oscillation of the two coupled wrist-pendulum sys-
tems treated as a rigidly coupled system), as predicted by Kugler
and Turvey (1987).

As argued in the introduction, according to a dynamical
systems model of coupled oscillators, the deviation from
®y, with the scaling of the left-right imbalance (Aw) can be
explained in terms of the displacement of the point attractor
of ®. One of the motivations of the present experiment was
to see how this change of location in the ¢ equilibrium point
is affected by the scaling of another control parameter, w..
The scaling of the w. seems to exaggerate the- deviation
from ®y in pendulum systems with relatively large Aw. To

the extent that the displacement of the attractor point away
from ®y can be seen as an approach to unstable relative
phase values (e.g., 90°), the scaling of w, can be interpreted
as adding to the destabilization produced by the scaling
of Aw.

The candidate dynamical system models of coupled os-
cillators presented in the introduction (Equations 7 and 8)
can be fit to the present data; assuming ¢ = 0, using a re-’
gression technique. With Aw as a dependent variable and
sin(P) and sin(2d) as independent variables, a stepwise
regression can be used to establish the model (i.e., combi-
nation of these independent variables) that best fits the
data. Analyses were performed separately on the data from
the three frequency conditions. Since there was no effect
of coordination mode, the data from the two conditions
were combined. For the two metronome-scaled conditions
(0.93 Hz and 1.15 Hz), the sin(®) term was significant~
0.93 Hz, 1(47) = 2.65; 1.15 Hz, 1(47) = 4.76, both p <
.05-whereas the sin(2®) term was not—0.93 Hz, 1(47) =
1.35; 1.15 Hz, £(47) = 1.40, both p > .05. In the comfort
mode frequency condition, the sin(2®) term was signifi-
cant, 1(47) = 2.34, p < .05, whereas the sin(®) term was
not, ¢(47) = 0.07, p > .05.

The sin(®) model of Rand et al. (1988) (Equation 8) is
the best fit model for the two metronome scaled fre-
quency conditions (~ = .85 and 7 = .88, respectively)
whereas a single-term sin(2®) is the best fit for the comfort
mode condition (7 = .77). However, because the sin(2d)
term _is not in itself a model and the simple regression
of sin(®P) on Aw presents a competitive correlation (2 =
.75), the model of best fit for all three conditions will be
taken to be the sin($) model found in Equation 8. The fit
of this model to the data of the three frequency conditions
can be seen in Figure 6. The slope of the regression of

60- ;
) ] '
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g 20~ ;
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8 40 : 00.93 Hz
= ] E x 1.15Hz
e e . M
-0.4 -0.2 0 0.2 0.4
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Figure 5. The mean deviation from intended relative phase (dy)
antained across changes of the control parameter Aw for the three
w, conditions.
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sin(®) on Aw can be interpreted as the coupling term k
in this equation. In regressions performed separately on
the data of the three frequency conditions, the following ks

were found: 3.25 for the comfort condition, 3.02 for the -

0.93-Hz condition and 2.78 for the 1.15-Hz condition.

These results indicate that increasing the control param-
eter w. can be interpreted as having the effect of decreasing
the magnitude of the coupling strength of the coupled os-
cillator models of ® in Equations 7 and 8. This scaling was
assumed in the modeling of Haken et al. (1985) but until
now has not been empirically measured. As stated in the
introduction, decreasing the coupling strength in this model
would have the effect of increasing the instability of the
system by making the attractor region more shallow and
lead ultimately to its breakdown when k passes through a
critical value that depends upon Aw. Because increasing w,
decreases the coupling strength and the stability of the at-
tractor, we may anticipate observing greater fluctuations in
P as w, is increased. Tests of this prediction are presented
in the next section.

Patterning of the Relative Phase Spectrum

The spectral analysis of @ allows us to determine the
magnitude and patterning of fluctuations found in the o
time series across the different frequency ranges. Figure 7
demonstrates the spectral analyses of the 30 trals of a
representative subject. The spectra are plotted in normalized
coordinates where, on the abscissa, the frequency is scaled
to the . and, on the ordinate, the power is scaled to the total
power. Two qualitative features previously noted by
Schmidt et al. (1991) are apparent. First, the spectra have a
local patterning of power in spectral peaks at integer mul-
tiples of the oscillation frequency. Second, they have a
general hyperbolic shape such that the power scales to 1/f,
where f is the spectral frequency. Following Schmidt et al.
(1991), a number of analyses of the spectral patterning are
pursued in the following sections to see how the local
(peaks) and global (1/f) qualitative features of the spectra
change with the two control parameters, w. and Aw, and
Dy = 0° or 180°.

Total power of ®. The total power of ® is a summary
measure of fluctuation in relative phase exhibited across
the entire range of possible frequencies. A thrée-way
ANOVA with the same design as those before was per-
formed on the log transform of total power. This analysis
revealed a significant main effect of coordination mode,
F(1, 4) = 249.59, MS, = 0.004, p < .001, which demon-
strates that there were more fluctuations when by = 180°
(3.24) than when the Dy = 0° (3.08). However, analysis
of a significant Coordination Mode X Coupled Pendulum
System interaction, F(4, 16) = 3.27, MS, = 0.03, p < .05,
indicates that this difference between the relative phase
modes exists only at the Aw values near 0 (Ao = 0 and

Figure 6. The fit of the Rand et al. (1988) model found in Equa-"
tion 8 to the observed deviations from Dy (The upper, middle, and
lower panels shows the fit of this model to the data of the comfort
mode, 0.93-Hz and 1.15-Hz conditions, respectively.)
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Power/Total Power
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Figure 7. The normalized spectra of & for the 30 trials of a
representative subject.

*.164) and not for the systems with extreme left-right im-
balances (Aw = = .386). -

Main effects for both frequency condition and coupled
pendulum system were also significant, F(2, 8) = 6.83,
MS. = 0.14, p < .05, and F(4, 16) = 16.04, MS, = .06,
p < .001, respectively, which indicates that in general the
fluctuations increased as Aw deviated from zero and when
w, deviated from the comfort mode. However, as Figure 8
(upper panel) portrays, there is a complicating significant
interaction between frequency condition and coupled pen-
dulum system, F(8, 32) = 5.62, MS, = .04, p < .001. A
simple effects analysis reveals that the basis for this inter-
action is significant system effects for the comfort and
0.93-Hz frequency conditions (both p < .001) but not the
1.15-Hz condition (p > .05). For the comfort and 0.93-Hz
frequency conditions, the variability in interlimb coordina-
tion increased as Aw deviated from O; but in the highest w,
condition, no matter what the left-right imbalance (Aw),
the interlimb phasing had the same amount of variability.

A consequence of this effect is that the total power be-
comes more equal for the three w_ conditions as Aw deviates
from 0. This is bom out in post hoc ¢ tests comparing the
marginal means plotted in Figure 8 (upper panel). At Aw =
0, the three frequency conditions are significantly different
from each other (p < .05); but at the other Aws, only one pair
of means are significantly different (at Aw = —.164, the
comfort and the 1.15-Hz conditions; at Aw = .164, the
0.93-Hz and the 1.15-Hz conditions; and at Aw = * .386,
the comfort and the 0.93-Hz conditions, all p < .05).

In sum, fluctuations in P as indexed by the total power
in general are greater for the altenate mode of relative
phasing and for higher-frequencies of oscillation. How-
ever, these effects depend upon the left-right imbalance of
the pendulum involved: As the coupled pendulum systems’
Aw deviates from 0, the interlimb phasing variability of
the two coordination modes becomes less different
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Figure 8. The spectral power of ® as a function of the control
parameter Aw for the thres w, conditions. (The upper, middle, and
lower panels display the total power, the peak power, and the
residual power, respectively.)
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(the @ fluctuations of the symmetric mode becomes more

like the alternate mode) as does the variability of the dif- -

ferent frequency conditions (the ® fluctuations of the com-
fort mode becomes more like the 0.93-Hz and 1.15-Hz
conditions).,

Can the dynamical system of Equation 8 model the
observed variability of ®? Given that the fluctuations
observed in a dynamical system will increase with the time
it takes for the system to relax to equilibrium from a
perturbation—its relaxation time—the fit of the data to this
model can be assessed by calculating the relaxation time
for the model given the specific parameters found in the
experimental simation. The relaxation time of the regime
can be determined for the candidate magnitudes of k (3.25
for comfort, 3.02 for 0.93 Hz, and 2.78 for 1.15 Hz) and
the candidate values Aw (.386, 164, 0, -.164, -.386)
through numerical integration of this equation given an ini-
tial perturbation from the regime’s stable attractor point
(20°).

On average, in concert with the data, these relaxation
times increase as the w, increased from comfort mode
(1.27 s, 1.58 5, 2.56 s for comfort, 0.93-Hz and 1.15-Hz
conditions) and as the pendulums system deviated from
Aw =0 (2945, 1.07 s, 1.00 s for Aw = +.386, *.164,
and 0). The relation between the relaxation times and the
magnitudes of the observed total power of ¢ can be seen
in Figure 9 (top). The relaxation times determined through
Equation 8 are fair predictor of the total power found em-
pirically. There is a linear relation between the two vari-_
ables, *(14) = .32, p < .05. The graph indicates that the
relaxation time for the extreme Aw six coupled pendulum
systems (1.73 s, 2.34 s, 4.69 s for the three w, conditions)
should have been much smaller given the magnitude of
fluctuations observed. Indeed, relaxation times that large
probably too long to produce stable coordinated interlimb
phasing. Scholz et al. (1987) found that as the relaxation
time of bimanual phasing of limbs approaches 1.3 s, a
breakdown occurs in the coordination. The model pre-
dicted values for extreme Aw are in excess of this empiri-
cally derived limit. :

Assuming that this limit for the relaxation time cannot
be exceeded, Figure 9 (bottom) replots the total power as a
function of the model predicted relaxation time where for
the extreme values of Aw the relaxation time is set to 1.2
s. The increased correlation of the relaxation time and total
power, r%(14) = .78, p < 001, suggests that the relaxation
times of the observed control structure probably do not ex-
ceed 1.2 s. How can the limit on the relaxation time be un-
derstood in terms of the dynamical model in Equation 87 It
may be that as the increased left-right imbalance makes
the coordination harder and harder to maintain, additional
control processes are used besides those expressed in
Equation 8 that effectively decrease the relaxation time of
the control structure for extreme Aw values and, thereby,
increase the stability of the coordination, In short, addi-
tional control processes may be_used to decrease the relax-
ation time of the dynamic instantiated by Equation 8. That
this is the case is further substantiated by how the power is
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Figure 9. The relationship between the relaxation time predicted
by Equation 8 and the total power of ® observed for the data of the
comfort mode, 0.93-Hz and 1.15-Hz @, conditions. (The upper
panel displays the relaxation times predicted directly from the
mode! given the parameters derived from the present experiment.
The lower panel displays the relaxation times that respect the
empirically derived limit for stable phasing, 1.2 5, found by Scholz,
Kelso, and Schéner, 1986.)

spread across the frequencies of the spectrum. This is ex-
plored in the analyses of the next section.

Peak power and residual power in the & spectrum.
The total power of the ® spectra can be divided into two
components: The power found in the spectral peaks at in-
teger multiples of the frequency of oscillation {w.) and the
residual power that is not at these peaks. In order to deter-
mine the effects of w., Aw, and Dy on these two different
kinds of fluctuations, an algorithm was used to find the
magnitude of the power to be found solely at the spectral
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peaks. To account for the fact that these peaks had a band
width, the power at the peak, the power at one frequency
bin above and below, were summed to estimate the peak
power of a spectrum. The difference between the total
power of a spectrum and its peak power is the residual
power of the spectrum. The frequency distributions of the
spectral frequency at which the peaks were found are plot-
ted in Figure 10 for the two coordination modes. The dis-
tributions do not appear dramatically different for &y =
0° and Py = 180°. In both cases, the spectral peaks tend
to appear at integer multiples of w. and the number of
peaks decreases as the spectral frequency increases. As can
be observed in Figure 10, although the majority of the
peaks are at integer multiples of the w,, a portion of them
are not. These nonharmonic peaks may be due to the vari-
ability in the estimate of w.. There is no doubt that some
variation in the w, occurred across the 60 s of a trial (es-
pecially for the comfort mode); hence, the mean w, for the
“entire trial may not be the w, for the portion that generated
the apparently nonharmonic spectral peak.
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Figure [0. The distribution of the spectral frequencies at which
peaks occurred for the ¥y = 0° coordination mode (top panel) and
&, = 180° coordination mode (lower panel).
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A three-way ANOVA with the same design as those pre-
vious was performed on the log transform of the peak
power. The array of significant effects was very similar to
those in the analysis of total power. The ANOVA yielded
significant main effects of frequency condition, F(2, 8) =
9.36, MS. = 0.21, p < .01, and coupled pendulum system,
F(4, 16) = 23.69, MS. = 0.13, p < .001. The peak power
increased as the Aw deviated from 0 and as w, increased
from comfort mode. The coordination mode main effect
was not significant (p >-.05). The middle panel of Figure
8 (which looks nearly identical to the upper panel) displays
a significant interaction between frequency condition and
coupled pendulum system, F(8, 32) = 4.81, MS, = 0.10,
p < .001. A simple effects analysis reveals much the same
asymmetry in the effect of coupled pendulum system con-
dition as with the analysis of total power: For the comfort
and 0.93-Hz conditions, the variability in interlimb coordi-
nation increased as Aw deviated from O; but in the 1.15-Hz
condition, regardless of the values of Aw, the interlimb
phasing had a great amount of variability. Again, as with
the total power, post hoc ¢ tests reveal that the peak power
become more equal for the three w. conditions as Aw de-
viates from 0.

An identical ANOVA was performed on the log trans-
form of the residual power. The analysis produced a signif-
icant effect of coordination mode only, F(1, 4) = 12.02,

"MS. = 0.08, p < .05. The means of residual power calcu-
lated across coordination modes are displayed in the lower

-panel of Figure 8 so that the data can be compared with
the total (upper panel) and peak power (middle panel). It is
obvious from inspection of these graphs that the magnitude
of the residual power is relatively depressed and undiffer- .
entiated by the frequency and coupled pendulum system
conditions.

The conclusion can be drawn that the effects of the con-
trol parameters Aw and w, are mainly on the magnitude of
the power at the peaks in the spectra rather than the resid-
ual power. However, the effect of the coordination mode
®, appears to effect mainly the magnitude of the residual
power. The implication is that the kind of fluctuations that
are scaled by the control parameters are harmonically or-
ganized fluctuations or rhythmicities in the behavior of @,
whereas, the kind of fluctuations that are effected by the
coordination mode are more stochastic in nature. The coor-
dination mode fluctuations are in line with what the dy-
namical system in Equation 8 would predict for fluctua-
tions in $. The control parameters fluctuations, however,
go beyond what Equation 8 would predict. This model
does not predict any packaging of ® fluctuations into peri-
odicities but only that the fluctuations should increase with
deviation of Aw from 0 and with decreases in the coupling
strength k. In order to produce the periodic behavior of &,
other control processes must be added to this regime.

The topology of the spectral peaks. In Schmidt et al.
(1991), a multiple regression analysis found that the power
at the peaks was structured in a particular fashion. They
found an inverse log-linear relationship between peak
height and spectral frequency with peaks at lower spectral
frequencies being larger than those at higher spectral fre-
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quencies. This topology reflects the general nature of the

spectra of P to exhibit a 1/f® shape (see below). The re-
gression analysis also found that the height of the peaks
changed in a direct log-linear relationship with the distance
from Aw = 0: The larger the deviation from Aw = 0, the
larger were the spectral peaks. The consequence of these
two relations is that new peaks come into existence at
higher frequencies as Aw deviates from zero more and
more. This previous study suggested that the emergence of
new spectral peaks is evidence for the genesis of new
functional subtasks (e.g., more perceptual pickup process-
es) in the dynamical regime underlying the interlimb coor-
dination that are required as the scaling of the control pa-
rameter Aw makes the coordination more difficult.

The question that remains is whether the same relations
(that the height of the peaks scale to 1/f and to Aw) hold
for the present data and whether these relations are af-
fected by the coordination mode @y and the control pa-
rameter w.. To this end, a multiple regression analysis was
performed with a dependent variable of log peak power,
with continuous independent variables of |log ()1 (where
Q) = Wies/wirigh, is used instead of Aw for comparison to
Schmidt et al., 1991) and log peak number (integer multi-
ple of oscillation frequency, 1-5) and with categorical in-
dependent variables of frequency condition and coordina-
tion mode. The analysis did not reveal a2 main effect of
coordination mode (p > .05). This indicates that the topol-
ogy of the & spectra did not differ for ®y = 0° and ®y =
180° and was anticipated by the similarity of the distribu-
tion of spectral peaks displayed Figure 10.

In short, this result shows that the topological packaging
of the fluctuations of ® does not differ for the two coordi-
nation modes. This is interesting because it has been pro-
posed that the difference in the stability of the attractors at
® = 0° and ® = 180° are a consequence of the differ-
ences in the information availability for the two coordina-
tion modes (Kugler, 1990). That is, information about
whether the two limbs are coordinated is available only at
peak flexion and extension in alternate mode but is contin-
ually available for the symmetric mode. Hence, because
the number of possible control or “synch” points within a
cycle is greater for symmetric than the alternate phase
mode, the symmetric mode is inevitably more stable. Fur-
thermore, Schmidt et al. (1991) suggest that the peaks of
the ® spectrum may index the number of control points
used within a cycle to maintain the coordination. If (a) the
difference in the stability of the two coordination modes is
a consequence of the difference in the availability of infor-
mation and (b) the peaks in the spectrum represent percep-
tual pickup processes, then one would have expected the
topology of peaks of the ¢ spectra to differ for the $y =
0° and Py = 180. Because this did not occur, one of these
two assumptions (or both) may be incorrect.

Significant main effects were found for the two continu-
ous variables, Ilog 01, F(1, 867) = 5.83, MS. = 0.003,
p < .001, and log peak number, F(1, 867) = 2,618.02,
MS, = 0.003, p < .001. The coefficients (slopes) of the
latter two effects were 5.07 and -3.02, respectively, dem-
onstrating once again (a) the direct log-linear relation be-

tween the control parameter {} (viz., Aw) and the height of
the peaks and (b) an inverse log-linear relation between the
frequency and peak height. The latter result demonstrates
that the 1/f nature of the spectrum (see next section) is ap-
parent in the spectral peaks. The former result indicates
that as the control parameter Aw deviates from 0 that new
peaks at higher frequency multiples come into existence
(see Schmidt et al., 1991, Figure 9).

A significant main effect was also found in this the mul-
tiple regression analysis for the categorical variable of w.,
F(1, 867) = 309.14, MS, = 0.003, p < .001. Multiple re-
gressions of Ilog {21 and log peak number on log peak
power for the data of the three frequency conditions sepa-
rately produce the regression equations displayed in Table
3. Inspection of this table reveals that the intercepts of the
regressions increase as the @, changes from comfort mode
to 0.93 Hz to 1.15 Hz, which indicates that the topology of
the power across the different peaks and Ilog 21 does not
change but is simply raised as the control parameter w, is
increased. In short, the peaks become larger as w, is in-
creased. This raising of the spectrum has the effect of pro-
ducing new peaks at higher frequency multiples as the w,
is increased. .

To reiterate, the spectral peaks of the @ spectrum can
been interpreted as representing control processes that
package the ensuing instability of the dynamical regime
assembled to govern the coordination. It has been sug-
gested that these processes may be control points at differ-
ent parts of the cycle where informational pickup occurs to
ensure control of the coordination (Beek, 1989). The cur-
rent results indicate that as the left-right imbalance of the
coupled pendulum systems (i.e., Aw) increases and as the
frequency of oscillation increases (w.), the spectral peaks
increase in their number. These results, given the above
working hypothesis, suggest that new perceptual tuning
processes are brought to bear as the control parameters
make the coordination more difficult. How this working
hypothesis can be directly tested is suggested in the Gen-
éral Discussion section.

1/f® patterning of power. In order to investigate the
global topology of the ¢ power spectrum, simple regres-
sions of log power of the entire spectrum on log {spectral)
frequency were performed to estimate the 1/f° nature of
the spectrum. The absolute values of the regression coeffi-
cients are estimates of the 8 exponent of the 1/f topology.
The values were submitted to three-way ANOVA with the
same design as those used previously to determine how the
two control parameters, w. and Aw, and the coordination

Table 3

Summary of the Multiple Regression of | log Q|
and Log Peak Number on Log Peak Power

at Each Frequency Condition

Frequency llog Q1  Log peak number

condition  coefficient coefficient Intercept 2
Comfort 7.22 =317 0.62 .83
0.93 Hz 5.87 -2.88 1.12 1
1.15 Hz 2.12 -3.01 1.52 .76
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mode affect the global form of the spectra. The analysis in-
dicated a significant main effect of coupled pendulum sys-
tem, F(4, 16) = 7.47, MS. = 0.18, p < .01, but no other
significant effects.

In order to evaluate this coupled pendulum system ef-
fect, Q (= wWiep/Wrign) Was regressed on the 5 exponent of
the 1/f topology. Again () was used to allow comparison
with the analyses in Schmidt et al. (1991). A plot of this
analysis is displayed in Figure 11 demonstrates a quadratic
relation between Q) and & (5 = 1.74 + 2.16 O - .80Q?),
(141) = .07, p < .01. The & exponent decreases in mag-
nitude on either side of a maxima at = 1.35. This result
replicates that of Schmidt et al. (1991); as a matter of fact,
the regression weights are very similar those observed in
that study. The correlation of the present study is much
less than that of the former, however. One reason for this
may be that the previous study used coupled pendulum
systems with 2 much wider range of left-right imbalance
(1 = .38 to 1.98 vs. .62 to 1.63 in the present study) and
with many more different values of {) (~100 vs. 5).

Interpreting the structure of the spectra from the spectro-
scopic perspective of homeokinetics (Iberall, 1977, 1978)
that maintains that biological organisms are unified concat-
enations of rhythmic subsystems stratified across many
space/time scales, the 1/f distribution of power of the @
-spectrum indexes the relation between the subtasks that
underlie the rhythmic coordination. The 1/f® distribution of
power seem to be a universal biological design feature that
indicates a scale invariant distribution of epergy across
subsystems at different space-time scales. As stated above,
the & of the 1/f® scaling is indicative of the amount of cor-
relation between the subtasks of a system. As § increases,
there is an increasing amount of cormrelation between the
subtasks because more power will be concentrated in one
particular part of the spectrum (the lower frequencies). The
decrease of 8 magnitudes with increases in left—right im-

41

:
:
o}
O
o

—
o

y = 1.74 + 2.16x - .80x2

4 6 8 1 12 14 16 18
Q

Figure 11. The magnitude 1/f exponent § of the ® spectra as a
function of the control parameter () (= w,/w,).

balance (deviation of Aw from 0 or  from 1) indicates
that the correlations between the subtasks decrease as the
eigenfrequencies of the component oscillators become
more different.

General Discussion

The present results verify that interlimb phasing of two
rthythmic movements can be understood as being governed
by general dynamical principles. The patterning of the in-
dices of interlimb coordination, mean relative phase and
power of relative phase (®), changed with the independent
variables, frequency of oscillation (w,), left-right system
imbalance (Aw) and intended coordination modes (dy), in

~ ways that can be interpreted from the dynamical model

presented in Equation 8.

Whereas past studies have demonstrated the independent
effects of w. and Aw on interlimb phasing and the dynam-
ical nature of the control structure underlying this phasing,
the present work has investigated the effects of simulta-
neous manipulation of these variables. It has been shown
that the effects of these control parameters on the mean ®
and the general variability associated with ¢ (i.e., total
power of @) can be understood in terms of a single model.
However, other observed properties of the patterning of @,
namely the global and local structure of the & spectrum,
cannot be understood in terms of any extent dynamical
model of interlimb coordination. The spectral peaks at in-
teger multiples of the frequency of oscillation represent how
the control structure governing interlimb phasirig reacts to
growing instability. The distribution of the power in the
spectrum is not random but becomes concentrated at spe-
cific spectral frequencies. That is, there are rhythms in the
behavior of the relative phase angle. These periodicities
indicate that the coordination is not one of phase locking but
phase entrainment. This phase entrainment patterning can
be explained by modifying the present dynamical model of
Equation 8. In the following remarks, a summary of the
results is elaborated and modifications of the dynamical
model are suggested. '

Summary of Results

The effects of the left-right imbalance control parameter
Aw found in previous studies were for the most part repli-
cated here. As Aw deviated from 0, an increase was found in
the deviation of ® from ®y (Figure 5) and the total power
and peak power (Figure 8 top and middle) but not residual
power (Figure 8 bottom) of the ¢ spectrum (Rosenblum &
Turvey, 1988; Schmidt et al., 1991; Turvey et al., 1986).
Furthermore, as Aw deviated from 0, spectral peaks grew in
height at lower spectral frequencies and new spectral peaks
emerged at higher ones (Schmidt et al., 1991). Also, the
exponent § of the 1/f® nature of the spectrum was found
to decrease in magnitude (Figure 11) as Aw deviated from 0
(Schmidt et al., 1991), The dynamical model of Equation 8
predicts both the mean deviation of ® from & (Figure 6)
and the increase in the total power of the ¢ spectrum
(Figure 9).
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The effects of the coordination mode are also in line
with past studies which have found the alternate phase mode
to be less stable than the symmetric phase mode (Kelso,
1984; Schmidt et al., 1990: Turvey et al., 1986). However,
the present results verify that this differential stability is
revealed only in some measures (Turvey et al., 1986). The
coordination mode has an effect upon the magnitude of the
total and residual power observed of the ¢ spectrum but not
the mean deviation from intended phase (Py), height of the
spectral peaks, nor the § of the 1/f topology of the ® spec-
trum. The dynamical-model of Equation 8 predicts that the
deviation from @y should be different for the two coordi-
nation modes if the spectral power (variance) of @ is dif-
ferent for them. This does not appear to be the case: The
deviation from ®y, ANOVA found the coordination mode
effects not significant, whereas the total power ANOVA
found the coordination mode effects to be significant. How-
ever, the mean coupling strengths for ®y = 0°and Py =
"180° when estimated through a regression analysis are
found to be 3.03 and 2.94, respectively. The ordering of
these values are in accord with the model’s predictions.

In addition to Aw and vy, the present study also inves-
tigated the simultaneous manipulation of the frequency of
oscillation, w.. The effect of . was uniform across both
coordination modes.. This may seem counterintuitive be-
cause previous studies have found that scaled increases in
@, lead to a breakdown in the alternate but not the symmet-
ric mode of relative phasing (Kelso, 1984; Kelso et al,
1986; Schmidt et al., 1990). The present results suggest that
this effect of ¢ is a consequence of the differential stability
of the two & modes at any w, rather than a differential
stability of the two modes only at higher w..

The scaling of control parameter w, was found to interact
with the scaling of the control parameter Aw: w, increased
the deviation from Py at extreme values of Aw (Figure 5)
and increased the magnitude of the total and peak power
observed in the ¢ spectrum for coupled.pendulum systems
with small left-right imbalances (Figure 8 top and 8 mid-
dle). More exactly, w, effect on mean deviation from @y,
was greatest at Aw = —.386 and .386, whereas its effect on
the variability of d was least at those Aw values and greatest

_at Aw values near 0. The former effect can be directly
predicted from the dynamical model of Equation 8 assum-
ing that the increases in w decrease the coupling strength k
(Figure 6). The effect of @ on the total power is also
predictable from Equation 8 if one assumes that the relax-
ation time of the dynamical control structure is held at a
fixed limit by other control processes in addition to those in
the present model (Figure 9, bottom). Just how the model
can be revised to include additional control processes is
outlined in the next section.

Revision of the Dynamical Model

In addition to the lower relaxation times, the model in
Equation 8 fails to predict two aspects of the ¢ spectrum:
The power is locally concentrated at integer multiples of the
. as well as globally distributed in a 1/f? fashjon, Equation
8 makes no predictions about the structure of the variance
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Figure 12. & as a measure of the phase entrainment behavior
that is indexed by the peaks of the spectrum as a function of the
Pphase angle of the left hand ( 9,).

around a stable relative phase angle . However, there are
ways that the model in Equation 8 may be modified to
account for the properties of the spectral peaks and 1/f®
shape. To obtain the latter property, one can assume that
high-dimensional noise encroaches upon the behavior of @
from the multitudes of microscopic components that are
making up the more macroscopic limb movements. This
assumption was used by Schéner et al. (1986) in order to
mode] the critical fluctuations observed immediately before
the ransition from & = 180° 1o ¢ = Q° using Equation 7.
They added a Gaussian noise term Q of constant force to
Equation 7. This constant noise interacts with the concavity
of the potential well such that fluctuations in ® increase as
the well becomes more and more shallow, A 1/f® shape to
the @ spectrum may be observed if a noise term. of a
different form, not the symmetric Gaussian but an asym-
metric lognormal one, is assumed. The magnitude of fluc-
tuations at each frequency may then scale to the inverse of
that frequency. '

The spectral peaks can be interpreted as indicating that
the behavior observed in the coordination variable ® is not
phase locking but phase entrainment behavior (Figure 3,
upper panel). What needs to be predicted to capture the
phase entrainment behavior is the rate of change of ¢ or
. Figure 12 shows how & is patterned with respect to the
phase angle (6) of the left hand in a given trial of approx-
imately 60 cycles. Notice that the patterning in the first half
of the cycle (0° to 180° or extension) almost repeats itself
exactly in the second half of the cycle (180° to 360° or
flexion) and that there are further subsidiary undulations
within each half cycle. It is this kind of periodic behavior
that is captured in the peaks of the spectrum of D. As stated
in the introduction, Equation 8 can be modified to account
for this phase entrainment in two ways: by making the
coupling dynamic (# in Equation 6) more complicated and
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asymmetric and by making the oscillatory dynamics of the
individual rhythmic units different (F; in Equations 1 and 2).

The former kind of modification is exemplified by a
model of phase entrainment proposed by Keith and Rand
(1984):

& = Aw + k;sin(8, — 6,) — k,sin(6, — 26,). (13)

This dynamical regime has been shown to have both 1:1 and
2:1 phase entrainment. Furthermore, under specific param-
eterizations a bifurcation occurs between the two coordina-
tion modes. Notice that Equation 13 is Equation 8 with a
second coupling term, &, sin(8; — 26,), added that represents
a sinusoidal forcing at two times the frequency of oscilla-
tion. It seems reasonable that the spectral peaks observed in
the & spectra may be due to a number of these higher order
coupling functions that correspond to subsystem control
processes that are appropriated to harness the ensuing vari-
ability. Given this possibility, the following model was fit to
the ® time series to see if these terms capture the structure
of the spectral peaks observed:

& =Aw + 3 k;sin(8, — i6,). (14)
i=}
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A stepwise regression fit of the coupling terms to the

" flexion and extension ¢ behavior observed in Figure 12 was

performed using time series from the 30 trials of each sub-
ject that were downsampled by 10 (600 points total). Sig-
nificant fits to the model were found for about two thirds of
the trials but many of these had low correlations. The mean
correlation for the combined flexion and extension behavior
was .17 (SD = .13). We would predict low correlations for
the condition where Aw = 0 but an increase in the corre-
lation as Aw deviates from O because the relative peak
power with respect to residual power (and, hence, phase
entrainment behavior with respect to noise) increases in
these conditions. The regression analysis shows that the
model fit 7 significantly increases with the deviation of Aw

‘from 0 (y = .46x + .07, » = .28, p < .05), as would be

expected.

Spectral analyses of the time series predicted by the
model are compared in Figure 13 with spectra of two rep-
resentative trials, one with Aw = .368 and one with Aw =
0. When Aw is large, the model and observed spectra are
qualitatively very similar. They have the same number of
spectral peaks at the same integer multiples of the w.. When
Aw is at zero, the model and observed spectra are not similar
at all. The periodic phase entrainment behavior may be too
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Figure 13. A comparison spectra of two representative trials, one with Aw = .386 (upper left
panel) and one with Aw = 0 (lower left panel), and the spectra of the phase entrainment mode fit
(Equation 14) of these trials that was found through a stepwise regression (upper right and lower

right panels).
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small in low Aw conditions to be reliably modeled. Alter-
natively, increasing the complexity of the coupling terms in
Equation 8 may not be the correct way to model the behav-
ior of ®. The second hypothesis, that the difference in the
oscillatory dynamics of the individual rhythmic units that is
causing the phase entrainment, is currently being tested
(Beek, Schmidt, Morris, Sim, & Turvey, 1991), and which
of the two possible modifications of the dynamical model is
best will be explored in future research.

The fit of the revised model of relative phase behavior
(Equation 14) to the phase entrainment data (d suggests that
additional control processes are recruited as the scaling of
the two control parameters Aw and @, brings the movement
control structure into regions of its state space that are
increasingly less stable. The solution to maintaining the
coordination is to change the control dynamic from a regime
which has a point atiractor, phase locking, and & near 0 to
one that has periodic components, phase entrainment, and
relatively large values of &. This remedy would have the
effect of keeping the control structure stable enough so that
the coordination can continue to be maintained in spite of
the demands of the task.

But just what these control structures amount to is still at
issue. Perhaps, as has been previously suggested, because .
more difficult movements need increased perceptual feed-
back, the additional control processes are used to obtain
additional perceptual information about the movements
(Schmidt et al., 1991). This hypothesis can be tested by
manipulating the perceptual information available and de- _
termining how the phase entrainment behavior is affected.

- With limited information available the coordination at ex-
treme values of Aw and w, should not be able to be main-
tained. It is planned to investigate these ideas in the visual
coordination e #ythmic movements between two individ-
uals. Interestingly, the between person adaptations of rhyth-
mic coordination paradigms in the present article yield
nearly identical patterning of relative phase with manipula-
tion of the control parameters Aw and w. (Schmidt et al.,
1990). However, in the between Jperson paradigm, one has
the added flexibility to manipulate the availability of visual
information by means of an occlusion methodology. This
methodology will allow the determination of whether more
perceptual tuning occurs as the Aw and @, are scaled into
their extreme ranges and whether perceptual control struc-
tures underlic the peaks of the & spectrum.

References

Beek, P. 1. (1989). Juggling dynamics. Amsterdam: Free Univer-
sity Press.

Beek, P. J., Schmidt, R. C., Morris, A. W., Sim, M-Y., & Turvey,
M. T. (1991 October). Determining stiffness and friction terms in
rhythmic movements. Poster presentation at the 18th Meeting of
the Intemnational Society for Ecological Psychology, Hartford,
CT.

Beek, P. I, Turvey, M. T, & Schmidt, R. C. (1992). Autonomous
and nonautonomous dynamics jn coordinated rhythmic move-
meats. Ecological Psychology, 4, 65-95.

Bingham, G. P, Schmidt, R. C., Turvey, M. T., & Rosenblum, L.
D. (1991). Task dynamics and resource dynamics in the assem-

R. SCHMIDT, B. SHAW, AND M. TURVEY

bly of a coordinated thythmic activity. Journal of Experimental
Psychology: Human Perception and Performance, 17, 359-381.

Gilmore, R. (1981). Catastrophe theory for scientists and engi-

neers. New York: Wiley.

Goldberger, A. L., Bhargava, V., West, B. I., & Mandell, A. J.
(1985). On a mechanism of cardiac electrical stability: The frac-
tal hypothesis. Biophysics Journal, 48, 525-528.

Goldberger, A. L., Kobalter, K., & Bhargava, V. (1986). 1/f-like
scaling in normal neutrophil dynamics: Implications for hema-
tologic monitoring. IEEE Transactions on Biomedical Engineer-
ing, 33, 874-876. .

Haken, H. (1983). Synergerics: An introduction. Heidelberg, Fed-
eral Republic of Germany: Springer-Verlag. :

Haken, H., Kelso, J. A. S., & Bunz, H. ( 1985). A theoretical model
of phase transitions in human hand movements. Biological
Cybernetics, 51, 347-356. )

Iberall, A. S. (1977). A field and circuit thermodynamics for inte-
grative physiology: L. Introduction to the general notions. Amer-
ican Journal of Physiology, 233, R171-R180,

Tberall, A. S. (1978). A field and circuit thermodynamics for inte-
grative physiology: III. Keeping the books—A general experi-
mental method. American Journal of Physiology, 234, R85-R97.

Keith, W. L., & Rand, R. H. ( 1984). 1:1 and 2:1 phase entrainment
in a system of two coupled limit cycle oscillators, Journal of
Mathematical Biology, 20, 133-152.

Kelso, J. A. S. (1984). Phase transitions and critical behavior in
human bimanual coordination, American Journal of Physiology: -
Regulatory, Integrative and Comparative, 246, R1000-R 1004,

Kelso, J. A. S. (1989). Phase transitions: Foundations of behavior.
In H. Haken (Ed.), Synergetics of cognition (pp. 249-268).
Berlin: Springer.

Kelso,J.A. S, & Kay, B. A. (1987). Information and control: A
macroscopic analysis of perception-action coupling. In H. Heuer
& A. F. Sanders (Eds.), Tutorials in perception and action (pp,
3-32). Amsterdam: North-Holland. v

Kelso, J. A. S., Scholz, J. P, & Schéner, G. (1986). Nonequilibrium
phase transitions in coordinated biological motion: Critical fiuc-
wations. Physics Letters, 118, 279-284.

Koboyashi, M., & Musha, T. (1982). 1{f fluctuation of heartbeat
period. JEEE Transaction on Biomedical Engineering, 29, 456—
457. '

Kopell, N. (1988). Toward a theory of modelling central pattern

- generators. In A. H. Cohen, §. Rossignol, & S. Grillner (Eds.),
Neural control of rhythmic movements in vertebrates (pp. 369-
413). New York: Wiley. .

Kugler, P. N. (1990). Physics of complex systems: Atomisms and
continua. Colloquium at the Center for the Ecological Study of
Perception and Action, University of Connecticut, Storrs, CT.

Kugler, P. N, Kelso, J. A. S., & Turvey, M. T. (1980). On the
concept of coordinating structures as dissipating swructures: 1.
Theoretical lines of convergence. In G. E. Stelmach & J. Requin
(Eds.), Twtorials in motor behavior (pp. 3-47). Amsterdam:
North-Holland. :

Kugler, P. N, & Turvey, M. T. (1987). Information, natural law
and the self-assembly of riythmic movement, Hillsdale, NJ:
Erlbaum.

Musha, T., Katsurai, K., & Teramachi, Y. (1985). Fluctuation of
human tapping intervals. JEEE Transactions on Biomedical
Engineering, 32, 578-581.

Parwridge, L. D. (1966).- Signal-handling characteristics of load-
moving skeletal muscle. American Journal of Physiology, 210,
1178-1191.

Partridge, L. D. (1967). Intrinsic feedback factors producing iner-
tial compensation in muscle. Biophysics Journal, 7, 853-863,

Press, W. H., Flannery, B. P, Teukolsky, S. A., & Vetteriing, W. T,



- INTERLIMB COUPLING DYNAMICS

(1988). Numerical recipes in C: The art of scientific computing.
Cambridge, England: Cambridge University Press.

Rand, R. H., Cohen. A. H., & Holmes, P. J. (1988). Systems of
coupled oscillators as models of central pattern generators. In A.
H. Cohen, S. Rossignol, & S. Grillner (Eds.), Neural control of
rhythmic movements in vertebrates. New York: Wiley.

Rosenblum. L. D., & Turvey, M. T. (1988). Maintenance tendency
in coordinated rhythmic movements: Relative fluctuations and
phase. Neuroscience. 27, 289-300.

Schmidt, R. C,, Beek, P. J., Treffner. P. J., & Turvey, M. T. (1991).
Dynamical substructure of coordinated rhythmic movements.
Journal of Experimental Psychology: Human Perception and
Performance, 17, 635-651.

Schmidt, R. C., Carello, C., & Turvey, M. T. (1990). Phase tran-
sitions and critical fluctuations in the visual coordination of
rhythmic movements between people. Journal of Experimental
Psychology: Human Perception and Performance, 16, 227-247.

Scholz, J. P., Kelso, J. A. S., & Schéner, G. (1987). Nonequilibrium
phase transitions in coordinated biological motion: Critical
slowing down and switching time. Physics Letters, 123, 390-
394,

Schéner, G., Haken, H., & Kelso, J. A. S. (1986). A stochastic
theory of phase transitions in human hand movement. Biological
Cybernetics, 53, 247-257.

Stein, P. S. G. (1973). The relationship of interlimb phase to

oscillator acdvity gradients in crayfish. In R. B. Stein, K. G. -

- Pearson, R. S. Smith, & J. B. Redford (Eds.), Control of posture
and locomotion (pp. 621-623). New York: Plenum Press.
Stein, P. S. G. (1974). The neural control of interappendage phase

415

during locomotion. American Zoologist, 14, 1003-1016,

Sternad, D., Turvey, M. T., and Schmidt, R. C. (1992). Average
phase difference theory and 1:1 phase entrainment in interlimb
coordination. Biological Cybemetics, 67, 223-23].

Turvey, M. T., Rosenblum, L. D., Schmidt, R. C., & Kugler, P. N.
(1986). Fluctuations and phase symmetry in coordinated rhyth-
mic movements. Journal of Experimental Psychology: Human
Perception and Performance, 12, 564-583.

Turvey, M. T., Schmidt, R. C., Rosenblum. L. D., & Kugler, P. N.
(1988). On the time allometry of coordinated thythmic move-
ments. Journal of Theoretical Biology, 130, 285-325.

von Holst, E. (1973). Relative coordination as a phenomenon and
as a method of analysis of central nervous system function. In R,
Martin (Ed. & Trans.), The collected papers of Erich von Holst:
Vol. 1. The behavioral physiology of animal and man (pp. 33-
135). Coral.Gables, FL: University of Miami Press. (Original _
work published 1939) '

West, B. J., & Shlesinger, M. F. (1990). The noise in natural
phenomena. American Scientist, 78, 40-45.

Zanone, P. G., & Kelso, J. A. S. (1992). The evolution of behav-
ioral attractors with learning: Nonequilibrium phase transitions.
Journal of Experimental Psychology: Human Perception and
Performance, 18, 403-421.

Received November 14, 1991
Revision received May 11, 1992
Accepted May 13, 1992 =



