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Recently, accounts of human rhythmic movement have been given in terms of
nonlinear dissipative dynamics with special emphasis on the autonomous dynamics
-that characterize sel(-organizing systems. In this article, an argument is made for a
modeling strategy that allows for and, when possible, attempts to capitalize on the
incorporation of nonautonomous dynamics in models of human rhy thmic move-
ment, that is, dynamics that characterize systems that are forced externally. The
problem is to incorporate these nonautonomous dynamics nonacbitrarily. Cascade
juggling and swinging hand-held pendulums provide the coordinated rhythmic
movements to which the argument is applicd. Empirical and theoretical analyses
suggest that the dynamical description of the movements composing these activities
nay be nonautonomous whea the level of analysis is restricted to the motions of
the subsystetns in isolation; there are small but systematic forcing contributions in
addition to the dominant autonomous components. It is suggested, however, that
autonomy is restored when the level of analysis is raised from that of the motions
to that of the perception-action cycles, so that dynamically based informational
terms are included. At thislevel, forcing is a function of information, not clock time.
A strategy lor investigating coordinated rhythmic movements is proposed in which
(a) the full complement of tools from nonlinear dynamics is put to use, (b) the
determination of nonautonomous components follows the evaluation of autono-
mous components, and (c) informational variables are sought to transform the
resultant dynamical description of the coordinated activity to full autonomy.
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In this article we address issues of contemporary importance in the study of
human movement coordination. Qur primary focus is on the developing
nonlinear dynamical approach. To date, this approach to coordinated move-
ment has emphasized the dynamics associated with systems that are self-
organizing and self-sustaining rather than externally driven (e.g., Kay, 1986;
Kay, Kelso, Saltzman, & Schéner, 1987; Kugler, Kelso, & Turvey, 1980, 1982;
Kugler & Turvey, 1987; Saltzman, 1986; Schoner & Kelso, 1988). Nonau-
tonomous descriptions of coordinated movement patterns, that is, descriptions
in which the flow of the system depends explicitly on time, have been discarded
in favor of autonomous descriptions, that is, descriptions in which the flow of
the system only depends on the system’s internal (or state) variables (i.c.,
position and velocity).

Our proposal in this article is for a thoroughgoing incorporation of all aspects
of nonlinear dynamics without making the a priori assumption that chythmi-
cally coordinated movement systems are always and necessarily autonomous,
irrespective of how their boundaries are defined. We argue that this full-fledged
dynamical approach is needed to accommodate dynamical systems, such as
biological systems, that are governed more by information than by forces (sce
Kugler & Turvey, 1987). The strategy of rescarch and theory allied to this
proposal suggests to first describe the motions of the movement subsystems of
perception-action systems in terms of their autonomous and nonautonomous
dynamics that together comprise the dynamical basis of the coordinated move-
ment in question (P. J. Beek & W. J. Beek, 1988; P. J. Beek, 1989a, 1989b), with
the identification of autonomous components preceding and constraining the
identification of feasible nonautonomous components. Subsequently, it is sug-
zested to restore the autonomy of the description by raising the level of analysis
rom that of the motions to that of perception-action cycles and substituting the
10nautonomous components by informational variables that capture the cou-
sling of the movement subsystems among each other and to the environment.
A major challenge our proposal faces is that of including both the autonomous
ind the nonautonomous components in physically well-motivated, non-
wrbitrary ways. As we hope will become apparent, our efforts to meet this
-hallenge bear on the conventional motor programming formulations of move-
nent coordination and, more importantly, on the roles played in movement
:oordination by intention and information.

BIOMECHANICS AND MOTOR PROGRAMS

n the study of the coordination and control of movement it has been customary
o distinguish the concerns of the biomechanicist from those of the neuro-
cientist and psychologist. In biomechanics one observes a movement pattern
ind attempts to formulate an account of certain aspects of its spatio-temporal
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details {its kinematics) in terms of muscular and reactive forces (its kinctics). In
neuroscience and psychology onc observes a movement pattern and attempts to
formulate an account of certain aspects of its spatio-temporal details in terms of
neural and/or mental processes precipitating the muscular and reactive {orces.
The two accounts are largely complementary, with biomechanics addressing
those aspects that follow from the laws of mechanics, and neuroscience and
psychology addressing those aspects that do not. Obviously the biomechanical
account is tightly constrained; the laws of mechanics cannot be compromised. In
contrast, the complementary account given by neuroscience and psychology is
looscly constrained. In the abscuce of laws in the strict sense of the word,
constraints on this latter account are limited to the criteria of sound logic,
applied within the context of the prevailing model of internal processes, and by
the data of experiments, conducted and analyzed within that context. The
account must be at least consistent with the premises of the model.

The need to affix an account in terms of internal processes to an account in
terms of the laws of mechanics arises primarily {rom the conceptual scparation
expressed roughly as that between mind or brain and body. The laws of
mechanics apply only to the body. The mind/brain sets the body segments into
motion and identifies basically what form the variously directed motions of the
segments should take. A most significant feature of coordinated movement is
that the adjacent and successive order of the skeletomuscular variables and their
various magnitudes appear to be anticipated. That is, coordinated movements
appear to be programmed. In many quarters a major challenge for a thorough-
going science of moveient —perhaps the major challenge —is understanding this
programming. A widespread opinion is that the programs of movernent coordi-
nation are expressed in a language that is quite different from the language of
natural laws. For example, suitable formulations of motor programs seem to be
in terms of symbol strings, or weighted connections among processing units,
where these formulations embody essentially a model or representation of the
movement.

UNDERSTANDING COORDINATION THROUGH
NONLINEAR DISSIPATIVE DYNAMICS

In recent years there has developed an approach™to the study of movement
coordination aimed at understanding all of its aspects in law-based terms. The
approach might be called the dynamical systems approach to movement coot-
dination. The basic hypothesis is that the phenomena of movement are under-
standable as the outcomes of nonlinear dissipative dynamics (e.g., P. ]. Beek,
1989a; Kay, 1988; Kay, Saltzman, & Kelso, 1991; Kugler & Turvey, 1987;
Schoner & Kelso, 1988; Turvey, 1990a, 1990b). This hypothesis extends the

physical analysis of movement beyond the laws of classical mechanics to the
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principles and laws of self-organizing, complex systems. The significance of this
extension is that an analytic strategy exploiting the principles and laws in
question ought to bear simultaneously on the internal processes and the bodily
motions. The promise is a softening of the classical separation, and an account
of coordination’s basis—the aspect of particular interest to ncuroscience and
psychology—in a language that is intimately connected to dynamics.

In large part, but by no means exclusively, the nonlinear dynamical perspec-
tive on movement coordination was fostered and advanced by the ecological
approach to perception and action, with its emphasis on general principles and
its deemphasis of specific computational-representational formulations (e.g.,
Carello, Turvey, Kugler, & Shaw, 1984; Gibson, 1979; Michaels & Carello,
1981; Turvey & Shaw, 1979; Turvey, Shaw, Reed, & Mace, 1981). From an
ecological point of view, proposed motor programs as computational-
representational entities seemed to fall prey to excesses of detail and arbitrariness
of form (Fitch & Turvey, 1978; Fowler & Turvey, 1978; Kelso, 1981; Turvey,
Shaw, & Mace, 1978). The expectation was that, given a physical tack on the
problem of coordination, one that respected biology’s nonlinear dissipative
nature, the abstractly defined processes or structures underlying coordinated
movements would be revealed as sparse in detail (technically speaking, of low

dimension) and shaped nonarbitrarily by dynamics (Kugler et al., 1980, 1982;
Turvey, 1977).

AUTONOMOUS AND NONAUTONOMOUS DYNAMICS

A system’s dynamics can be represented by either autonomous or non-
autonomous differential equations. An autonomous equation contains no terms
in which time t (the independent variable) is involved explicitly; a
nonautonomous equation, in contrast, does involve time explicitly. An auton-
omous system is defined by the time-indifferent state equation:

dx/de = f(x), x(tg) = x, (1)

and a nonautonomous dynamical system is defined by the time-varying state
equation:

dx/de = f{x,1), x(tg) = x¢ (2)
To choose two specific examples, the equation

m(dx/de?) + b(dx/dt) -+ kx = E(¢) 3)
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is autonomous because the argument ¢ of function E is a state variable of the
system (viz., the phase angle in the x —dx/dt phase plane), whereas the cquation

m(dx/de?) + bidx/dt) + kx = Acos(wt) 1)

is nonautonomous because it depends explicitly on the external “clock” time, t.
In the example of the nonautonomous equation, a linear mass-spring system of
mass m with damping and stiffness coellicients b and k, respectively, is controlled
by a time-independent forcing function, Acos(wt), which is independent of the
system’s state. In the example of the autonoimous equation, the function E(¢)
governs the injection of energy to offset the energy lost through the friction
term, b(dx/dt), and is dependent on the value of the mass-spring system's
kinematic variable of phase angle, ¢. In the autonomous case, the initial time
may always be taken as t; = 0, which is not permitted in the nonautonomous
case. The essential aspect of a nonautonomous system is that the clock variable
affects, but is unaffected by, the rest of the system variables.

Within the dynamical perspective, a marked preference has been expressed
for conceptualizing coordinated rhythmic movements in terms of autonomous
dynamics rather than nonautonomous dynamics (Kay, 1986; Kay, Kelso,
Saltzman, & Schéner, 1987; Kugler et al., 1980; Kugler & Turvey, 1987). Two
major reasons have been put forward. The first reason is the need to incorporate
explicitly into the understanding of coordination the self-organizing, self-
sustaining processes characterizing the class of open, dissipative systems, of
which humans and animals are members. Self-organizing and self-sustaining
dynamical processes are best expressed in autonomous form (Haken, 1977, 1983;
Yates, Marsh, & lberall, 1972). The second reason for advocating autonomous
dynamics over nonautonomous dynamics is the need to halt the regress of
control structures. With respect to rhythmicity, for examnple, it has been argued
that if there is a cyclic forcing function, independent of a rhythmically moving
system, then we must ask the question, what is the forcing function’s time-
keeper? Implicating another forcing function and, hence, additional set-points
for control tenders the analysis of rhythmic movement regressive and
unenlightening.

The forcing functions characterizing nonautonomous dynamics, external as
they are to the systems they f{orce, bear close conceptual similarity to motor
programs (cf. R. A. Schmidt, 1988), which are said.to be logically separate from,
and hierarchically superior to, the subsystems that are coordinated. Conse-
quently, within the general ecological approach it has been felt that any attempt
to model coordination strictly through nonautonomous dynamics is not likely
to fare any better than métor programming formulations. Such forcing func-
tions can be proposed arbitrarily to accommodate any of the various details of
coordinated activity.

However, equating the physical notion of nonautonomy with the psycholog:
~
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ical notion of motor programs qua time-keeping mechanisms is problematic.
When distinctions drawn from diffecent disciplines meet, one has to be extremely
careful not to let the technical meaning of one distinction (i.c., autonomy vs.
nonautonomy) be dominated or corrupted by the technical meaning of the
other distinction (i.e., motor programming or not). Dynamically speaking, a
particular system is either an autonomous or a nonautonomous system with the
sole criterion of whether physical time appears explicitly in the system’s equa-
tions of motion. Whether the nonautonomous dynamics can be equated with a
motor program or not is quite another issue. In this context, it is crucially
important to realize that the autonomous-nonautonomous distinction is just as
susceptible to one’s selected frame of reference as is the psychological distinction
between emergent and preprogramined timing (cf. Saltzman & Munhall, 1989).
The reason is that any nonautonomous system of equations can be transformed
into an autonomous one by adding one or more equations describing the
dynamics of the (formerly) external clock-time variable. That is, the system
boundaries of the system definition can be extended to include the dynamics of
both the original nonautonomous dynarmics as well as the (formerly) external
clock. Equation 4, for instance, which is a nonautonomous second-order
equation, can be converted into a set of three autonomous first-order equations
if one defines dx/dt = y and employs the standard trick of regarding t as one of
the variables with the third equation simply dt/dt = 1. In this new set of
equations, a state of unilateral coupling exists between system elements. Con-
versely, any autonomous system of equations can be transformed into a
nonautonomous one by adding one or more equations describing the (formerly)
autonomous dynamics of a conveniently chosen subpart of the original system
as acting nonautonomously on some other conveniently chosen subpart of the
original system, which now has become the system. That is, the system
boundaries of the system definition can be narrowed down to exclude a part of
the (formerly) autonomous dynamics of the system. If the two subsystems of the
original system were coupled unilaterally, then this move does not affect the
validity of the description. However, if the two subsystems of the original system
were coupled bilaterally, then the system description looses accuracy. Because
the issue of autonomy-nonautonomy depends on the definition of the bound-
aries of the system under study, the psychological interpretation of non-
autonomous dynamics as being necessarily equivalent to motor programs in
terms of internal representations responsible for time keeping is unwarranted.
All that is implied by a nonautonomous system is that the composition of the
system in question is such that it can be conceptualized as a system that is
externally and unilaterally forced by another system or set of systems, whose
forcing actions can be modeled in a time-dependent way. This need not imply an
infinite regress, nor the existence of internal representations.
In contrast to the psychological interpretation of nonautonomous dynamics,
-we emphasize here the need to view the incorporation of nonautonomous
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forcing functions as a strictly operational step on the part of the scientist in
sceking an optimal characterization of the system under study. As such,
incorporating nonautonomous dynamics provides, as we arpuc, a potentially
uscful tool for uncovering the informational/intentional basis of coordinated
rhythmic movements.

CAN NONAUTONOMOUS DYNAMICS BE
INCORPORATED IN A NONARBITRARY WAY?

It the context of the ccological critique of motor programming, the distinction
between arbitrary and nonarbitrary constructions of abstract control spaces—
the intentional contents of motor actions—is crucial. In the ecological critique,
the qualifier arbitrary refers to constructions that are discontinuous with the
strategy of understanding phenomena through the careful extension of natural
laws. Arbitrary constructions invoke concepts that are neither physical in
themselves nor constrained by general physical principles. Arbitrary construc-
tions of intentional content comport with a deep-rooted assumption that
intentionality is a psychological category par excellence and, thus, per defini-
tion, devoid of principles of a more gencral, physical nature. By contrast, the
qualifier nonarbitrary in the ecological critique refers to constructions that are
completely continuous with natural law. Idesally, these constructions invoke
concepts that are either physical in themselves or so constrained by physical
principles that it is evident how intentional content connects with the dynamics
that it harnesses (see later in this article).

Returning to the issue of nonautonomous control dynamics in accounts of
coordination, we now note that nonarbitrary routes to understanding how
coordination is created within the perception-action cycle may well include the
identification and exploitation of a nonautonomous “timer,” without making
the assumption that this timer need also be represented internally, other than in
the combined effect of a set of dynamical subsystems. The only requirement
would be that its inclusion satisfies continuously the criterion of non-
arbitrariness. The ecological critique of motor programming attempts to dispense
with all arbitrary forms of nonautonomous components, and to motivate
nonarbitrary forms of nonautonomous components. The question, therelore, is
whether or not nonautonomous dynamics can be incorporated in a nonarbitrary
way.

THE W-FUNCTION

Gencrally speaking, it is hard to distinguish between autonomous and

. nonautonomous systems solely on the basis of the kinematic measures ({angular]
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position and [angular] velocity) of a movement cycle. For instance, if the
phase-plane representation of position against velocity exhibits a steady state or
a limit set that is a perfect circle, then the nature of the underlying dynamics may
be autonomous as well as continuously forced, and there will be no way to
distinguish between the two on topological grounds alone. It is extremely
unlikely, however, that kinematic measurements of the rhythmic movements of
animal or human will, if ever, produce perfect circles in the phase plane. In many
cases, they tend to deviate from the circle in nontrivial ways. Moreover, the
trajectories of multiple cycles plotted in a phase plane typically intersect. Figure
1 shows several phase portraits of a particular rhythmic movement: the comn-
fortable swinging of a hand-held pendulum through motions at the wrist for an
interval of 15 s to 20 s (see Kugler & Turvey, 1987; Rosenblum & Turvey, 1988;
Turvey, Rosenblum, R. C. Schmidt, & Kugler, 1986; Turvey, R. C. Schmidt,
Rosenblum, & Kugler, 1988). The phase portraits are of such wrist-pendular
activity in the context of the subject moving rhythmically two pendulums, one
in each hand, at the same average frequency (1:1 frequency locking in the mean).
Each phase portrait in Figure 1 depicts the behavior of one of these thythmic
units. In each case, the trajectories in the phase plane intersect and the resultant
orbital patterns deviate from a circle in more or less obvious ways. The observed
differences in orbital shapes are associated with differences in the conditions of
1:1 frequency locking. The two hand-held pendulums can differ in size (mass and
length) with the result that, for comfortable 1:1 coordination pattern, the
smaller pendulum must move slower than its characteristic frequency and the
larger pendulum must move faster than its characteristic frequency (see Kugler
& Turvey, 1987; R. C. Schmidt, P. J. Beek, Treffner, & Turvey, 1991; Turvey,
R. C. Schmidt, & P. J. Beek, in press, for details). What we focus on here is the
fact that trajectory intersections in the phase plane and orbital deviations from
circularity of the kind identified in Figure 1 may provide some first clues as to the
nature of the underlying dynamics.

With regard to trajectory intersections in the phase plane, there is a well-
known fact concerning the existence and uniqueness of solutions to the dynam-
ical systems described by Equation 1 and Equation 2 that is important in this
context {cf. Parker & Chua, 1987). Assume that for any time ¢, f, is a
diffeomorphism (meaning that f, and f,~ ! are differentiable at each point, and
both are single valued and continuous). For systems represented by Equation 1,
that is, for autonomous systems, f,(x) equals £(3) if and only if x = y, implying
that the trajectories are uniquely prescribed by the system’s state at a given time.
When projected in a fully defined state space, that is, a state space that has as
many dimensions as the system it is a space of, the trajectories of these systems
cannot intersect. The trajectories can appear to cross, however, when viewed as
projections into a lower dimensional subset of the state space. For systems
represented by Equation 2, f{x, to) equals f(3, to) if and only if x = y. The latter

. equation implies that, given the initial time, a trajectory of a nonautonomous
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system is specified uniquely by the initial state with the qualification that it is
possible that f(y, to) equals f(3, t;) if to # t and x # y showing that the
trajectories of nonautonomous systems can intersect in a state space with as
many internal dimensions as the system in question. Only when time is added as
an additional dimension do the crossings disappear. The fact that the trajecto-
ries of multiple-movement cycles projected in the phase plane intersect is
evidence that more than two dimensions are needed to describe the dynamics of
the system. It is possible that the system in question is a second-order
nonautonomous system and that the dimension to be added is external time. It
is equally possible, however, that the dynamics are autonomous and of dimen-
sion greater than two. In the case of a bimanual wrist-pendulum, for instance, it
is reasonable to include the state variables of the second wrist-pendulum systemn
in a set of coupling terms in the equation of motion of the first wrist-pendulum
system (and vice versa), so as to model the system as two mutually coupled
nonlinear oscillators (Turvey et al., in press). In addition to higher order
autonomous dynamics and nonautonomous dynamics, noise may be the cause
of the trajectory crossings in the phase plane. (If one considers noise as an
extrinsically imposed, infinite-dimensional process, this possibility collapses
with the possibility that the dynamics are autonomous and of dimension greater
than two.) Thus, nothing can be said vis-a-vis the autonomy-nonautonomy
distinction on the basis of the existence of trajectory crossings other than that
the system is autonomous and noise-free when trajectory crossings are absent in
a fully defined state space. A detailed analysis of how the trajectorics cross cach
other, however, might be very revealing as to the underlying dynamics: Inter-
sections that are nearly tangential to some average trajectory indicate dynamics
very different from intersections that are nearly normal to average.

Second, the topology of the limit set itself may provide information about the
underlying dynamics. It may, for instance, deviate from the circle in such a way
that it is hard to reconcile with the state space of an autonomous oscillator. To
substantiate this claim, we summarize the results of an analysis offered by P. J.
Beek and W. J. Beek (1987, 1988). On the basis of topological considerations, P.
J. Beek and W. ]. Beek (1987, 1988) provided a mathematical argument that four
elementary series are sufficient to describe the conservative and non-
conservative terms of second-order autonomous oscillators. For the conserva-
tive terms, the relevant series are the Dulffing series (x, <, x°, . ..) and what
might be termed the 7-mix odd series [x(dx/dt)(dx/dt), L(dx/de)>(dx/di), . . .). For
the nonconservative terms, the relevant series are the Van der Pol series
[Odx/de), xdx/dt), x*dx/de), ...}, the Rayleigh series [(dx/de)°(dx/dt),
(dx/d0)}(dx/dt), (dx/dey*(dx/dt), . . .], and what might be termed the 7-mix even
series [x*(dx/dt)*(dx/d1), x*(dx/de)*(dx/dt), . . .]. The conservative terms exhibit
propertics that tend to influence oscillatory {requency more than amplitude;
they tend not to affect the total encrgy balance of the limit cycle. The

nonconservative terms, in contrast, influence oscillatory amplitude more so
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FIGURE 1 Examples of phase portraits of wrist-pendulum system activity indicating
intersection of trajectories and limit cycles that deviate in different ways from the circle. x is
angular displacement (in rad normalized to the frequency of the oscillator in 12) and dx/dt
is angular velocity (in rad/s). (a) is a system oscillating in the uncoupled state. (b), (¢}, and (d)
are examples of systems participating in I:1 frequency locking. With the depricted system's
eigenfrequency given by the numerator, the ratios of the uncoupled frequencies in the three
coupled cases were: 1.27/.74, .57/1.27, and .57/1.30.
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than frequency; they tend to affect the total energy balance of the limit cycle.
Basically, the #-mix series is the product of the Van der Pol and Rayleigh series.
Its significance. is that it identifics a new class of conservative and non-
conservative terms for oscillators with a single degree of freedom.

From the P. . Beek and W. J. Beck (1987, 1988) catalogue of functions, useful
analytical and graphical tools can be derived for identifying the essential terins
of nonlinear differential equations. The series are developed in a function W(x,
dx/dt) that reflects the continuous deviation of the limit set from the circle
defined by d’x/dt* + wylx = 0:

dix/de? + wozx + W(x, dx/dt)wy = 0. &)
Multiplying by dx/dt and integrating yields
Wi(x, dx/dt) = —dl(dx/de)* + wyx*]/2dwyx. (6)

The W-function can be constructed once a reasonable estimate of the
equilibrium position, which has to be assumed to be constant throughout a trial,
has been made. W(x, dx/dt) can be inspected graphically to scout locally for
Duffing, Van der Pol, Rayleigh, and #-mix behavior, in anticipation of the fact
that the local prominences of these basic oscillatory mechanisms change over
different phases of the cycle. To scout locally for Duffing behavior, W(x, dx/dt)
is plotted as a function of x; for Rayleigh behavior, W(x, dx/dt)/dx/dt is plotted
as a function of dx/dt; for Van der Pol behavior, W(x, dx/dt)/dx/dt is plotted as
a function of x; for w-mix, W(x, dx/dt)/x is plotted as a function dx/dt (see P. ].
Beek, 1989b and P. ]. Beek & W. J. Beek, 1988, for further details). We present
in Figure 2 an example of this graphic technique with respect to the pendular
clocking mode of movement organization. The example is that of scouting for
Duffing behavior in one of the cycles presented in Figure 1. As can be seen, the
cycle of wrist-pendular activity depicted exhibits a cubic (x") relation between W
and x that is of different sign for the two segments of the cycle. In the depicted
cases, the cycles comprise both a hardening spring (the restoring force is
exponentially larger than linear) in the course of ulnar flexion that closes the
wrist angle (adduction), and a softening spring (the restoring force is exponen-
tially smaller than linear) in the course of radial flexion that opens the wrist
angle (abduction). It is also apparent from inspection that stilfness functions of
higher order (*, x') may apply. An estimate of the coefficients of cach of these
Duffing terms (i.e., x, x,}, x°, etc.) can be obtained by entering them in a multiple
lincar regression on W, performed either for each individual (half) cycle ot for a
bout of cycles. A measure of the “detuning,” that is, the degree to which the
wrist-pendulum system moves faster or slower than its eigenfrequency, can
simply be obtained by estimating the slope of the lincar regression of xon W,
“which is a measure of the overall stiffness. From the fact that the slope of the
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FIGURE 2 The graphic procedure for exhibiting detuning and the presence of Duffing
terms in oscillatory behavior. The magnitude of detuning is indexed by the slope of the
function relating W to x; the presence of Duffing terms is indicated by the curvature of the
function. It can be scen that the curvature of the function for radial flexion (right-pointing
arrows) is positive, indicating a hardening spring, and the cucvature for ulnar flexion
(left-pointing arrows) is negative, indicating a softening spring. (Sce text for details.)

linear relation between x and W is negative, it follows that, during the selected
cycle, the system was running slower than its eigenfrequency.

When these regression techniques are used to obtain estimates of the coeffi-
cients of all the terms (up to a certain power) in the identified series expansions,
important insight into the dynamics can be gained. Table 1 shows the results of
this approach for one particular subject swinging three different single wrist-
pendulum systems for 12 complete cycles (defined (rom full abduction to full
abduction). For each completed cycle, estimates were obtained for the coeffi-
cients of x, dx/dt, X, x(dx/dt)?, (dx/dt)’, and x¥dx/dt) during that cycle by
regressing these variables on W (using a stepwise regression technique). As can
be scen from the results, the nonconservative terms prove to be significant more
often in the smaller wrist-pendulum system than in the larger wrist pendulum,
which is predominantly conservative. It can also be seen that there is, in



TABLE 1

Statistically significant parameter coefficients of the conservative (c) and
nonconservative (nc) terms in the W-function as assembled during 12 cycles of
swinging three single wrist-pendulum systems of different length L (where L =
moment of inertia/static moment). Amount of variance in W accommodated on each
cycle by the two classes of terms is identified by R

r? x (c) dx/de (nc) < (c) (dx/dy) () (dx/de) ) x(dx/de)? (c)
=.226m
917 .049 1.292 - .044
977 1.500 .209 -.053
981 —.750 2.027 .162
.956 911 162 -.033
945 -.776 2.088 259
.898 043 1.283 —.048
930 1.164 .193 -.039
.836 .050 941 —.029
.950 134 974 ~.006 -.030
.865 1.197 .003 - 044
.899 1.348 173 -.049
.990 .026 1.138 137 —.042
= J317m .
.870 124 6.008
920 149 6.309
.876 107 6.369
935 7.720 1.386
.982 5.388 116 —15.260 —~.562 —.668
.993 3.390 126 —17.543 ~-.353
.879 1.431 165
934 1.416 .103
927 116 5.624
941 134 4.630
995 2.947 -.571 —4.567 1.804 076 —.266
.950 .100 4.858
=.413m
.867 916
.983 1.073 .184 —.585
836 1.339 123
912 1.485 126
911 115 7.244
934 1.584 123
925 1.412 .168
952 136 9.986
.984 1.915 .184 —.155
.984 1.708 130 -.193
.983 1.728 .140
.986 1.697 119
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addition to the dynamic variations of the state variables of position and velocity,
a true dynamic attached to each of the coefficients of the terms entered in the
regression. Not only do the coefficients on the linear and cubic Duffing terms
vary systematically {rom cycle to cycle, but so do the cocefficients on the Van der
Pol and #-mix terms (note that signilicant Rayleigh terms are mostly absent).
Each cycle (and presumably each half cycle) is assembled afresh. An implication
of this latter observation is that models will need to be developed that address
the obscrved “parameter dynamics” not only at a coarse-grained level {e.g., Kay
et al., 1987, 1991) but also at a fine-grained level. Three possible routes can be
taken to modeling these changing coefficients: (a) autonomously, that is, by
making the parameters dependent on the system's state variables; (b)
nonautonomously, that is, by making the parameters an explicit function of
time, and (c) stochastically, that is, by ascribing the observed variations to
stochastic {orces operating on the parameters. Differentiating among these
possibilities is not likely to be straightforward, but a reasonable first step would
be to scout for regularities in the observed parameter variations by making them
explicitly dependent on time.

The W-method has the special advantage of not only exposing the local
prominence of particular terms in the series development of admissable W-
terms, but also of revealing the clfect of deviations from the circular phase
portrait that are too locally constrained to be captured by any of the terms in the
series expansion. These "kicks” are discrete in nature and could point to an
external control strategy in which a timer closes the perception-action cycle. P.
J. Beck and W. ). Beek (1988) and P. J. Beek (1989a) applied the graphic
technique to quantifying a typical phase portrait of the hand movement for
juggling three balls. The technique revealed the presence of discrete forcing,
suggesting that the best dynamical model of its specific phase portrait is one in
which discrete, external control action is taken into account in addition to the
autonomous nonlinear dynamics of the juggling assembly. The dynamical
model implicates a functional braiding of autonomous and nonautonomous

control components in the dynamics of juggling. The model equation has the
following structure:

Ex/de? + x + fix, dx/dodx/de + g(x) = AS (£ = to), 0

where 8 is the unit Dirac function, indicating a pulsed forcing of very short
duration and magnitude A, at a specific time tc. In theory, it would have also
been possible to make the driving term at the right-hand side of Equation 7
dependent solely on the internal states of the system, such as position, velocity,
or phase, and thus render it autonomous. In practice, however, this approach
was not feasible, because the onset of the kicks could not be linked systemati-
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cally (i.e., reproducible from cycle to cycle) to any of the state variables of the
hand in motion, nor to the state variables of the other hand in motion.

Applications of the W-function analysis to human rhythmic movements, as
in the foregoing, suggest that: (a) the details of simple and more complex
rhythmic activities are governed in largest part by autonomous terms (of the
W-series); (b) the details not accounted for by (a) are not (entirely) random but
seem, at least in some instances, attributable to a nonautonomous forcing
function with definite structure; (c) the nature of this forcing function in an
instance of rhythmic activity cannot be discerned in the absence of a prior
determination of the contributions by the terms of the appropriate W-function,
which~in our view—represents control as it is distributed over the entire work
cycle, as opposed to the identified discrete control action; (d) this control,
however, is not distributed evenly over the entire work cycle, but varies from
phase to phase due to the fact that the rate of change of the parameters of the
appropriate W-function is faster than a cycle period; (e) the change of these
parameters may itself be represented as a nonautonomous dynamic. In the
section that follows we suggest a link between the identified discrete
nonautonotnous forcing functions and information.

INFORMATION AND COORDINATION

A core feature of biological systems is that information dominates theit behavior
as much as forces, if not more so. Ecological analysis relates the notion of
information, in the context of controlling activity, to lawful regularities
(Gibson, 1979). More specifically, it equates informative structures with large-
scale kinematic, geometric, and spectral properties of low-energy fields deter-
mined lawfully by properties of surface layouts, movements of the body relative
to surface layouts, and movements of body segments relative to the body and to
each other (Kugler & Turvey, 1987; Turvey, 1990a). Of particular concern to
the points we wish to make here is that, with respect to coordinated rhythmic
acts, such as 1:1 frequency locking of hand-held pendulums and cascade juggling
of three balls, use must be made of information in the foregoing sense, that is,
about the macroscopic dynamics of the act. '

When a person is asked to swing two hand-held pendulums comfortably at a
single, common period (l:1 frequency locking), the experimental evidence
suggests that the chosen period corresponds to the minimum of a potential
function. The potential function in question is that governing the motion of the
simple pendulum equivalent of the two pendulums considered as a compound
pendulum (Kugler & Turvey, 1987). We reproduce the function pictorially in
Figure 3. As can be seen, there is a trajectory of minimum potential defining the
comfort period of absolute coordination. Surrounding that minimum trajectory

- are trajectories associated with increasingly larger potential values.
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Stable rhythmic movement of two hand-held pendulums in 1:1 {requency
locking requires contact with the potential depicted in Figure 3. ln under-
standing the form of this contact, it is important to underscore that the observed
thythmic parameters do not result from the coordinated system being drawn
inexorably to the minimum by forces. If the person so chooses, the period of the
activity could be at some remove from the period defined by the potential
function’s minimum. Rather, the observed rhythmic parameters result from the
coordinated system being guided intentionally to the minimum by information.
In short, there must be information about the potential (Kugler & Turvey,
1987). That is, there must be information about the relevant dynamics of
absolutely coordinated units—specifically, their stability conditions. It is on the
basis of this information that the aforementioned contact with the potential is
achieved. The contact is “soft” (information based) not “hard” (force based). It
has been argued by Kugler and Turvey (1987) that this “soft” versus “hard”
distinction is crucial to any thoroughgoing dynamical understanding of coordi-
nated rhythmic activity.

In coordinating the rhythmic motions of hand-grasped pendulums, the
information of concern is defined over the moving segments of the body. There
is a changing pattern of joint articulations and a changing pattern of deforma-
tions of cutaneous and subcutaneous tissues brought about by the moving loads,
with large-scale consequences for mechanoreceptor activities (Solomon &
Turvey, 1988; Solomon, Turvey, & Burton, 1989). In the case of between-
person interpendulum coordination, the comfort mode of coordination obeys
the same physical principles as in the within-person case, but must now be
specified by a combination of haptic information (about the “local” dynamics)
and visual information (about the “global” dynamics; R. C. Schimidt, 1991). In
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sum, if the goal is to produce reliably 1:I frequency locking at the most
comfortable frequency, then information specifying the potential minimum and
deviations from it must be exploited. We hypothesize that exploiting informa-
tion to achieve and sustain a given trajectory of movement states is indexed by
the nonautonomous components in the differential equation(s) representing the
activity in question.

Returning to juggling, an argument can be made that this more elaborate
activity shares with the simpler one just discussed the characteristic of a
potential function defining the act’s stability. The argument, unfortunately, is
somewhat detailed. We develop it in several graduated steps. To begin with, we
note that the “frequency” of the hand movements in stnooth juggling must he
matched with the “requency” of the motion of the balls in free fall (P. J. Becek,
1988). A juggling hand loop comprises two distinguishable times: the duration in
which the hand carries a ball between a catch and a throw (time loaded, T})),
and the duration in which the hand is empty and moving without a ball between
a throw and a catch (time unloaded, Ty,). A ball loop also comprises two
distinguishable times: The duration in which the ball is in a hand (time loaded,
T,.)» and the duration in which the ball is in flight from a hand to the next (flight
time, Tg). Now if N is the number of juggled balls, H is the number of hands that
do the juggling, T is the duration of a complete N-ball, H-hand cycle, and Ty,
Ty, and T are the average time loaded, time unloaded, and time flight during
T, respectively, then, from the perspective ofahand, N(T + Ty) = T, becausc
a hand manipulates N balls during T, and, from the perspective of a ball, H(T,,
+ Tp) = T, because a ball is manipulated by H hands during T. Hence:

N(T, + Ty) = T = H(T, + T ®)

This timing constraint was first identified by Claude Shannon (Horgan, 1990;
Raibert, 1986). It applies beyond the cascade juggle to all recurrent patterns in
which a hand never holds more than one ball (e.g., reversed cascade, fountain,
shower) and may, therefore, be considered a universal field equation for juggling
(Horgan, 1990). Equation 8 can be rewritten to make apparent the manner in
which the three times relate:

Tg = (N/H = )T, + (N/H)Ty )
or, given that H = 2 and N = 3:

1 = /AT /Ty + 3/ UTy/Te) (10
Let us focus on the ratio of the time a ball is in a hand to the time that that

pacticular ball is in the air (T /Tp). One can raise the question of the juggler’s
options with regard to how these two times fill up the loop time of a ball.
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Metaphorically, the question is one of how many different ways can the juggler
“tile” the total loop time with component times. With respect to fixed, specific
areas of two-dimensional space, it is well respected that filling the space
completely (so that there are no cracks or gaps) can only be achicved through
repetition of a limited number of homomorphic two-dimensional forms (e.g.,
squares, triangles, hexagons, etc.; Grinbaum & Shephard, 1987; Stevens,
1974). In the notion of phase locking, one finds a similar understanding about
filling a given amount of time, that is, there are a limited number of ratios into
which component durations can enter. Suppose that these are ratios between

relatively prime integers (i.e., intcgers lacking a common divisor). Then, if the
loop time of the ball is “tiled” Pythagorean style:

T/ Te=12/1,3/2, 1/}, /2, 1/3, . ... (1
Given Equation 10, it would follow that
Ty/Tp=0,1/6,1/3,1/2,5/9, . .. (12)

Looking at the hands, one can imagine that the “temporal tiling problem”
reduces, for the juggler, to the question of how long to hold onto a ball during
a cycle of the hand. That is, what proportion of the hand's cycle time (TL+ Ty
is to be taken up by holding or carrying a ball (T)? Expressing T, and Ty in
terms of T on the basis of the preceding two equations yields:

TT, + Ty} = 1/1,9/10, 3/4, 1/2,3/8, . ... (13)

All of the preceding ratios are permitted by mode-locking considerations. ln an
experimental analysis of cascade juggling with H = 2, N = 3, three juggling
speeds, and four skilled jugglers, it was found that the duration of the subtask of
carrying the juggled object between catch and throw expressed as a proportion
of the hand cycle time (k = T /(T + Ty)) ranged between .54 and .83 with a
mean of .71 (P. J. Beek, 1989a). A regression of kon Ty = T + Ty reveals for
these data a significant effect of hand cycle time, k = .21T; + .57, ) = .42,
p < .02; k was larger at lower juggling {requencies. In subscquent experiments,
examining juggling with five balls, the proportion of the hand's cycle time taken
up by holding or carrying the ball was always close to .75 (range 0.71 — 0.7%;m
= 0.75). The same proved to be true for three jugglers who could cascade juggle
seven balls (P. J. Beek, 1989b; P. J. Beek & Turvey, in press). One reading of the
preceding is that there may be a value of k in the vicinity of .75 that jugglers
gravitate toward but do not necessarily achieve, and that the degree of attrac-
tion towards .75 becomes more severe as N/H increases.

Why should the preferred k be .75 rather than some other candidate rational
ratio? During cascade juggling, one ball per hand is maintained at the zenith of
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its parabola, from which point the fall time is Tr/2. The time-averaged number
of airborne balls per hand is given by N*/H (where N* = N — k). Il we
associate a unit of time (T; — T) with each airborne object per hand, then, by
hypothesis, the fall time for the mean number of airborne objects per hand is
(N*/HXT, — Ty). A juggler will fill the fall time of objects with (T, — Ty, time
units il (N*/HX(T, — Ty) = T¢/2. Inshort, sitting inside the temporal structure
of juggling is a convenient principle. It might be referred to as a “tiling principlc”
insofar as it addresses the question of how the juggler fills up or tiles the loop
time of a hand and the loop time of an object with component times (e.g., those
of the various repetitive subtasks) so as to ensure a smooth juggle. The principle
reads: Tile the loop times of objects and hands in integer multiples of (T, — Ty))
or, to use the simplest possible expression, P(T,, — Ty) = (T, + Ty), where P
is an integer. In combination with k = T, /(T + Ty), it follows from this that
k = 1/2 4 1/(2P), with P > 1 and 1/2 < k < 1. Self-evidently, P cannot equal
1, but it can assume any real value greater than 1. The assumption that
principles of frequency locking apply suggests that integer values of P will be
associated with stable regimes and that the lowest possible integer at which
frequency locking can occur, namely 2, will be associated with the most stable
regimes. At integer values of P > 2, frequency locking will occur at k values less
than 374 (.75); for example, for P = 3, k = 2/3,{or P = 4, k = 5/8, ctc., as
indeed was found in the case of juggling three balls (P. J. Beek & Turvey, in
press).

In sum, the empirical evidence suggests that cascade juggling is describable by
a potential function with multiple minima corresponding to the integer values of
P at which mode locking can be achieved (P. ]. Beek, 1989b; P. ]. Beck & Turvey,
in press). The number of minima is a function of the number of balls being
juggled, and appears to reduce to one (k = 3/4) in the case of juggling five balls
and more. That is, the juggler performing cascade juggling, like the person
coordinating two hand-held pendulums, organizes his or her movements with
respect to the minima of a task-dependent potential function. We presume that
information about the function, its minima and its gradients, is available to the
juggler. And we presume further that the exploitation of this information is
revealed in the nonautonomous (right-hand) terms of Equation 7.

INFORMATION SECURES AUTONOMY

Let us pursue the juggling case a little further to underline an important aspect
of the informational character of human movement. As noted, the
nonautonomy of Equation 7 is expressed in terms of a Dirac delta function (a
sharp forcing pulse that operates each time its criterion is satisfied). This fact
raises particular information-related questions such as, what is the minimal
"aumber and size of the kicks needed to sustain the desired trajectory? The
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informative structures available to the juggler are defined over (a) covariations in
tissuc deflormations and branchings of the bones (cf. Gibson, 1966; Solomon &
Turvey, 1988) and (b) optical structure, particularly that generated by the flights
of the balls and their phasing (P. J. Beek, 1988). Considerations from the
ecological point of view (e.g., Fitch & Turvey, 1978; Kugler & Turvey, 1987)
would suggest that, in assembling and executing the act of juggling, a functional
specification must be defined over the informative structures and the identified
nonautonomous components such that informational properties specify forcing
propetties (e.g., when to force and how much to force). This way of thinking is
in concert with the thesis that any coordinated activity is simultancously an
organization of outflow (“efference”) and an organization of inflow (“afference”;
Gelfand ct al., 1971; Turvey, 1990b), that is a closed perception-action cycle.

The functional linkage of information and forcing suggests how it is that
coordinated human movements may submit to completely autonomous descrip-
tions even though nonautonomous terms might figure prominently in their
analyses. We have seen how the description of the motions of the body segments
in juggling must entail both autonomous and nonautonomous dynamics for
completion. The lesson of the analyses described in the present article is that,
when restricted to the level defined by the motions themselves, a coordinated
act need not be an autonomous dynamical system. The promisc of the preceding
paragraph, however, is that when analysis is raised to the level that incorporates
the perception-action cycle, a coordinated act is an autonomous dynamical
system. If the forcing function is information based, as argued, then the clock
time that appears explicitly in the formulation of the forcing function must be
interpreted as a placeholder. It is a placcholder for an information variable. The
proposed functional linkage between inforimation and forcing is tantamount to
a claim that forcing is a function of information, not clock time. The proposal
suggests that after a (nonautonomous) forcing function has been determined
and formulated precisely for a given instance of coordinated rhythmic activity,
the next step is to determine and formulate precisely the activity’s informational
basis. The goal is to identify the information variable or variables that can
replace time with the results of (a) satisfying fully the dynamics of the act and (b)
rendering the overall dynamical description autonomous. An educated guess is
that the relevant information variable governing the right-hand side of the
cascade juggling equation, Equation 7, may be a generalization of the time-to-
contact optical quantity investigated most notably by Lee (1980; P. ]. Beek,
1988, 1989b; see also, Bootsma & van Wieringen, 1990).

We can now get reasonably clear on the way in which the dynamical
description of the juggling movements provided by Equation 7 is to be inter-
preted. At first blush, the differences between the two kinds of dynamics evident
in Equation 7, the autonomous and the external forcing function, suggest that
they might map onto distinctions of a more familiar nature, for example,
peripheral and central nervous systetns, spinal and cortical motor components,
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or nonintentional and intentional processes. To construct such mappings,
however, would give a misleading picture of juggling’s dynamical basis.

The familiar distinctions in question reduce ordinarily to a dominance or
superimposition relation. One systein, component, or process dominates, or
is superimposed upon, the other. If such distinctions did bear on the contrast of
autonomous and nonautonomous dynamics in coordinated rhythmic move-
ments, then we would have to suppose that the two dynamics relate similarly by
way of dominance or superimposition. For example, it could be hypothesized
that the basic dynamic of juggling is captured by the autonomous components,
with the nonautonomous components comprising an independent source of
adjustment that is added onto the autonomous components. By this hypothesis,
the two kinds of dynamics represented in Equation 7 are separable physically,
and not just logically or mathematically.

An alternative hypothesis—one that follows from the preceding discussion of
a functional linkage of information and forcing—is that the two kinds of
dynamics represented in Equation 7 are not related through dominance or
superimposition but rather are dually complementing, such that Equation 7
represents a truly unitary dynamical regime. The first hypothesis conveys the
image of the juggler engaging in two distinct processes, namely, assembling the
autonomous components of juggling and then assembling, as an overlay, the
forcing function, albeit not in the suggested serial order. The alternative
hypothesis conveys the image of the juggler engaging in one process, namely,
assembling a single dynamical regime comprising (a) nonlinear (W-)terms and (b)
a forcing function that exploits the information generated lawfully by the
autonomous dynamics, where (a) and (b) are being treated, at least temporarily,
as interdependent, but functionally distinct, components. The significant im-
plication of the alternative hypothesis is that the dynamics of a skill like juggling
are composed intrinsically of autonomous components and forcing, and that
this might apply generally to all coordinated rhythmic movements.

The foregoing interpretation of the autonomous/forcing relation bears on the
understanding of movement’s intentionality. In colloquial terms, an intention is
equated with doing something according to will or choice, and is distinguished
from doing something reflexively or instinctively. The decisive idea behind the
colloquial usage is that of personally bringing about a change in an ongoing state
of affairs that is otherwise proceeding under its own devices. For this reason it is
easy to see how one might wish to view the kicks that characterize the
nonautonomous components of the juggling dynamic as being particularly good
expressions of the intentional part of that activity. Be that as it may, the
alternative hypothesis just mentioned would suggest that the kicks are no more
or less an expression of intentionality than the continuous, nontransitory
aspects of the juggling dynamic as represented by Equation 7.

In technical philosophical terms, intentionality refers to the fact that mental
states exhibit an “aboutness” or a “directedness.” They are states that are about
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objects, objectives, significances, or meanings or, synonymously, states that are
directed toward such things. Ordinary sentences express intentionality through
the use of an intentional or psychological idiom, such as "l wish to do x," where
“wish” is an example of an intentional idiom and “to do x” is an example of what
might be termned intentional content. It helps to paraphrase sentences of this
kind as follows: “l wish that I do x,” because the paraphrase brings out the fact
that the auxiliary “that” connects all intentional or psychological idioms with
their corresponding intentional contents. One consequence of the technical
treatment of intentionality is that it leads to a view of an activity such as
swinging two hand-held pendulums in a 1:1 frequency pattern, or an activity
such as juggling, as infused in its entirety by intentionality. Thus, for exarple,
the intentional state expressed roughly as “I want that [ keep these three balls
moving between the two hands continuously” can only be satisfied by an
organization that incorporates both the forcing function and the autonomous
components identified in Equation 7. Issues can be broached, therefore, of how
to proceed toward an understanding of the actual intentional contents of 1:1
interlimb frequency locking and juggling given knowledge of the form of the
macroscopic dynamics that characterizes these acts.

We suggest that answers to the preceding are shaped by the fact that {:1
{requency locking of differently sized hand-held pendulums, and the cascade
juggling of three balls, involve physical laws and principles that have to be
tailored in a particular way in order for each to take place. As a first approxi-
mation, therefore, it must be the case that intentionality harnesses dynamics, and
the informative structures that they make available, in a highly particular
manner {cf. Kugler & Turvey, 1987; Turvey, 1986, 1990a). As such, intentional
content must play a role analogous to the auxiliary conditions (initial condi-
tions, boundary conditions, constraints, etc.) of classical mechanics. More
directly, intentional content must comprise such conditions with respect to the
physics and information pickup that makes coordinated movements possible. In
regard to information pickup, intentional content would scem to entail a
classification of regions of the coordination pattern as those to which attention
should be directed and within which forcings should be applied.

INFORMATION SECURES A BALANCE BETWEEN
STABILITY AND ADAPTABILITY

It remains to identify a special property that belongs to systems that are
governed more by information than by forces. As noted, the juggling data reveal
that jugglers do not occupy the regions of mode locking but that they function
at the borders of these regions, with the better jugglers functioning closer to
those borders than the poorer jugglers. A system that functions habitually inside
a mode-locked region is a system for which the initial conditions are repeatable
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exactly from one instance of functioning to the next. For an ordinary biological
movement system the requirement of reproducible initial conditions cannot be
satisfied. Biological movement systems assemble the macroscopic parameters of
oscillation afresh each cycle, and do so from a microstructure of very many
degrees of freedom. They are also prohibited from residing in the mode locking
regions by virtue of their informational basis. As noted, a region of mode locking
is a region associated with a potential minimum. By the arguments advanced
here, a system that relates to a potential function through information can
hover about the vicinity of the potential minimum to the degree that (a) it can
register the information specifying the minimum and the magnitude of depar-
tures from the minimum, and (b) its forcing terms are linked to the information.
This latter fact, expressing the general understanding that the juggler is not
forced into a minimum but must discover it through information, means that
the juggling assembly functions habitually outside, but close to, the borders of
mode-locking regimes. There is a distinct benefit to this way of functioning,
namely, juggling can be stable but at the same time adjusted relatively freely to
accommodate perturbations in the routine. Adaptability to varying circum-
stances, therefore, is a simple but highly significant consequence of the fact that
coordinated movements are dynamical systems governed by information.

We can reinforce the preceding ideas by a final consideration of a subject
attempting to swing two pendulums comfortably out of phase at the same
frequency. Figure 4 shows, for three subjects (R. C. Schmidt et al., 1991), the
time series of the continuous phase refation between the two units under three
conditions, one in which the two pendulums are nearly identical (right/left ratio
of uncoupled eigenfrequencies, omega, is nearly unity) and two in which the
two pendulums are different (@ = 1.91 and @ = .52). The main features to be
noted about Figure 4 are: (a) in all omega conditions the mean frequency of the
right unit and the mean frequency of the left unit were almost identical, that is,
absolute coordination was achieved in the average state; (b) in all omega
conditions there was considerable moment-to-moment variation in phase, that
is, the moment-to-moment interlimb pattern was primarily that of relative
coordination (meaning that neither frequency nor phase locking was achieved);
(c) the average deviation from the intended phase relation was larger for Q =
1.91 and © = .52 than for @ = 1.03; (d) in all omega conditions there were
tendencies toward phase locking at 180°% and, relatedly, (e) in all omega
conditions there are hints that satisfying the phase demands of the task may be
limited to particular phase values. These features of the interlimb coordination
of pendular rhythmic movements reinforce the impression of imperfect mode
locking, that is, of an attraction to modes (well-defined frequency and phase
relations) without a locking into modes— the coordination is relative with mode
attraction, not absolute with mode locking. In paraphrase of the conclusion
drawn from juggling, the strategy of gravitating toward mode-locking regiincs
but operating on their edges gives to coordination patterns an essential balance
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between persistence and change (P. ]. Beek, 1989a, 1989b; Turvey, 1990b;
Turvey & P. J. Beek, 1990; Turvey, R. C. Schmidt, & Beck, in press).

ADDITIONAL ADVANTAGES OF INCORPORATING
NONAUTONOMOUS DYNAMICS

We conclude with an overview of what we see as other benefits of a modeling
strategy that does not a priori exclude—and, when possible, nttc'mp'ts to
exploit —the incorporation of nonautonowous components in the description of
biological movements.

Challenge of System Decomposition

It is true, of course, that the laws of nature do not vary with time. Nonetheless,
equations with a time-dependent right-hand side, Equations 2 and ?, for
example, will arise in situations where the system component under study. is part
of a compound system, and when this component is influenced unidirectionally
by other components. In this case, the other “forcing” compouents cvo.lvc
independently of the first component, and the state variables .of these {orcmg
components can be used to define a clock-time dependent forcing functlon' for
the now nonautonomous dynamics of the first component. Suppose we consider
some part P of a physical system P + Q. Although it is the case that the law of
evolution of the whole system does not vary with time, the influence of part Q
on part P may cause the law of evolution of part P to be time dfzpendent. qu
example, the influence of the moon on the earth produces tldc':s, and this
influence is expressed mathematically by the fact that the magnitude of t!lc
acceleration due to gravity, which figures in the equation of motion of terrestrial
objects, becomes time variable, and that the rest of the system has no effect on
it. Similarly, the observed behavior of an action system can be expected to
reflect multiple subsystems, multiple subsystems that need not always be cou-
pled bidirectionally. If this is the case, then the most effective procedure is to
construct first the dynamics of part P of the system and to then represent the net
action of all other parts of the system (Q, R, etc.) as one, time-dependent, forcing
function. Moreover, if the subsystems of movement systems are rclascd
bidirectionally, it may be useful to allow for nonautonomous dynamics during
some stages of the modeling process. By first modeling t'he effecf: of one
subsystem on another subsystem as a nonautonomous dynamlc,‘and vice versa,
one can attempt to discover, by comparing model predictions with actl'ml data,
what type of bidirectional (autonomous) coupling term should bc' d?S{gncd to
construct a more adequate model. Allowing for, and capitalizing on,
nonautonomous dynamical descriptions in addition to autonomous d.y.namlcnl
descriptions promotes the identification of effective system decompositions.
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Challenge of Idéntifying Neural Constraints

A natural-physical approach to human movement aims at understanding the
formative physical strategies at work in human and animal movements in such
a way that the role of neural subsystems will become apparent {Turvey, 1990b).
Pursuing a nonarbitrary distinction between autonomous and nonautonomous
components to reveal the dynamics that underwrite biological movements
enhances the likelihood that a functional rather than a morphological identifi-
cation of neural subsystems may be reached (i.e., in terms of physically intensive
variables and their uni- or bidirectional coupling). Ultimately, a major aim is a
general understanding, in general dynamical terms, of the interactional organi-
zation among individual subsystems at the level of the central nervous system
(Schoner & Kelso, 1988). Nonarbitrary inclusion of nonautonomous compo-
nents would aid this effort, arbitrary inclusion would hinder it.

Challenge of the Heterogeneity of Composition

Most dynamical analyses are with respect to systems that involve enormously
large degrees of freedom that are of like kind (e.g., the photons present in a neon
tube or the electrons in electrical circuits). Biological action systers, however,
are more properly interpreted as heterogeneous rather than homogeneous
complex systems, consisting, as they do, of various morphological structures
that involve various functional processes. In contemporary physical language,
movement systems are probably systems that are to a considerable extent
“frustrated” (Chowdhury, 1986), meaning that their varied components at
multiple scales are subject simultancously to very many different physical
requirements that they cannot possibly satisfy fully. To the extent that their
subsystems are related unidirectionally, the dynamics of heterogeneous systems
may necessitate the inclusion of nonautonomous components.

Challenge of Defining the Relevant Physics

The understanding of coordination in law-based terms is in its infancy. Conse-
quently, it is premature to restrict the potent conceptual framework of nonlinear
dissipative dynamics exclusively to those concepts that are designed to capture
autonomous processes of spontaneous pattern formation (self-organization).
Such a restriction may have the operational advantage of narrowing the focus in
such ways that phenomena of self-organization in human movement are ad-
dressed from the perspective of the theory of autonomous systems alone. This is
not to say, however, that including nonautonomous dynamical ingredients
would necessarily render modeling procedures underconstrained and explana-
tions more arbitrary. As a case in point, the behavior exhibited by (either
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continuously or discontinuously) driven oscillators can be modeled as rigorously
as the behavior of completely autonomous systems.

The theory of an important class of physical phenomena, such as Farey phase
- locking (e.g., Chernikov, Sagdeev, Usikov, Yu Zakharov, & Zaslasvsky, 1987),
parametric resonance (Arnol'd tongues, Arnol'd [1983]),.and frequency-, phase-
and amplitude modulation due to “messenger signals,” is (at least) equall.y .wc?ll
developed in the context of externally driven, nonautonomous syste.ms asitisin
the context of autonomous systems. The entire menagerie of dynamical patterns
can be generated in systems with (appropriately parameterized) autonomous or
nonautonomous dynamics of at least third order, but they may ?oss.css
nontrivial dynamical differences. Making the assumption that coordmat.lve
structures may involve both autonomous and nonautonomous dynamical
components means that the mathematical richness o’f the (:ramewor.k of
nonlinear dynamics can be exploited to the fullest in making the mforrr.mtlonal
basis of movement transparent. The booming field of nonlinear dynafmcs (e.g.,
Thompson & Stewart, 1986) offers a rich conceptual reservou'. and a
heterogenous testing ground to not only identify the type of dynamlc's com-
prising human action systems, but also, we trust, to come to Fcrms wn:h. the
informational nature of these systems, Necessarily, the fiest step in developing a
physics suitable to an understanding of the problem of coordinated movement
is one of identification. As Iberall (personal communication) would put it, the
central question is, what is the physics of this problem?
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