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ABSTRACT. The development of motor skills can be por-
trayed as a dynamical process that.involves three types of dy-
namics: state dynamics, parameter dynamics, and graph dy-
namics. The time scales associated with each type of dynamics
are discussed, and an outline is provided of the role played by
each type in the developing organism. In particular, the role of
parameter dynarnics and graph dynamics in producing qualita-
tive, bifurcational changes in behavior is described. It is con-
cluded that all three types of dynamics are required for a com-
plete description of skill acquisition and development.
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he focus of this article is on the dynamics of motor
- skill learning and development, with specific em-
phasis on the types of dynamics that govern changes in
behavioral patterns over time. Within this framework,
coordinated patterns of biological movement are identi-
fied with morphogenetic phenomena (e.g., Arbib, 1984;
Bemnstein, 1967/1984; Kugler, Kelso, & Turvey, 1980,
1982), where the term morphogenesis ‘‘refers to the
process by which pattern and form are generated in bio-
logical systems’® (Rosen, 1981, p. 161).. This position
echoes that of the Russian physiologist N. A. Bernstein
(1967/1984) in its insistence that skilled biological
movements be ‘‘regarded as morphological objects . .
[that] . . . do not exist as homogeneous wholes at every
moment but develop in time, that in their essence they
incorporate time coordinates’’ (1984 ed., pp. 178-179;
italics added). Physically rooted, dynamical accounts of
morphogenesis as a self-organizing process have a rela-
tively long history (e.g., Turing, 1952) and currently are
being pursued vigorously (e.g., Lengyel & Epstein,
1991; see Murray, 1989, for a recent overview of work
in this area).
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In the following sections, we provide a brief overview
of dynamical concepts applicable to issues of skill acqui-
sition and development. In doing so, we review the pos-
sible origins of the qualitative changes that are observed
in behavioral forms and use the example of vocal tract
growth to highlight some of the problems posed by
physical growth for skill acquisition.

Three Types of Dynamics

The developing human organism can be viewed as a
complex, evolving dynamical system (e.g., Fentress, 1989;
Goldfield, 1989, in press; Kugler et al., 1982; Newell,
1986; Newell, Kugler, Van Emmerik, & McDonald, 1989;
Thelen, 1989a, 1989b). Dynamical systems possess three
types of dynamics: state dynamics, parameter dynamics,
and graph dynamics (Farmer, 1990). The term szate dy-
namics refers to the processes that directly shape patterns
of motion in a dynamical system’s state variables (e.g.,
position and velocity variables for mechanical systems,
node activation variables for connectionist systems).
Parameter dynamics refers to the processes that directly
govern motion patterns in a dynamical system’s param-
eters (e.g., stiffness or equilibrium position for mechani-
cal systems, internode connection weights for connection-
ist systems). Graph dynamics refers to the processes that
directly influence the evolution of a system’s actual ‘‘ar-
chitecture’ (e.g., the number of oscillators in a mechani-
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cal system of coupled oscillators, the number of nodes in
connectionist systems).

The three types of dynamics can also be characterized
according to their own intrinsic time scales. Typically,
motion of the state variables is considered to occur fast-
er than parameter motion, whereas evolution of system
architecture is considered to occur even more slowly or
not at all. Similarly, the performance, learning, and de-
velopment of skilled activities can be viewed as events
that unfold over successively longer time scales. It is
useful heuristically to associate each type of sensori-
motor event with a corresponding type of predominat-
ing dynamics, according to their respective orderings
along the spectrum of time scales. In the following sec-
tions, we explore this mapping between types of dynam-
ics and sensorimotor events in greater detail while
noting, however, that the mapping is not a strictly rigid
one. For example, all three types of dynamics can be
identified as contributing to the real-time assembly and
performance of skilled activities (see the State Dynamics
section that follows).'

State Dynamics

State dynamics refers to the on-line processes of coor-
dination and control that shape spatiotemporal patterns
of movement during skilled motor performances. For
example, when a cup is lifted to the lips, the angular
positions and velocities at the elbow and shoulder joints
vary throughout the motion in a manner that is specific
to the task at hand. In a dynamical perspective, such
skilled performances are viewed as being governed ac-
cording to the dynamics of coordinative structures (e.g.,
Fowler, 1977; Kugler et al., 1980, 1982; Saltzman &
Kelso, 1987; Saltzman & Munhall,>1989; Turvey, 1977,
1990). A coordinative structure can be defined as a tem-
porarily and flexibly assembled functional organization
that is defined over a group of muscles and joints and
that converts these components into a task-specific,
coherent multiple-degree-of-freedom ensemble. In the
context of the present article, the assembly of a coordi-
native structure would involve the graph-dynamic speci-
fication of a system’s architecture and the parameter-
dynamic specification of the system’s parameter set.
These specifications serve to establish the boundary
conditions for an upcoming performance (or to reset the
boundary conditions during an ongoing performance).

Given an appropriate set of initial conditions for the
state variables (and an appropriate set of boundary con-
ditions), state dynamics offers a theoretically unified ex-
planation both of the displayed behavioral forms, such
as the pattern of angular motions at the elbow and
shoulder, and of the stability of these forms to perturba-
tions encountered during the performances. For exam-
ple, sudden perturbations to the speech articulators
have been shown to induce spontaneous, compensatory
adjustments by remote articulators to achieve phonetic
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goals on a time scale that is on the order of tens of milli-
seconds (Abbs & Gracco, 1983; Folkins & Abbs, 1975;
Kelso, Tuller, Vatikiotis-Bateson, & Fowler, 1984;
Munhall, Léfqvist, & Kelso, 1986; Shaiman, 1989).2
The state dynamics of such compensatory behaviors, as
well as of other naturally occurring aspects of interartic-
ulatory coordination, have been simulated using a so-
called task-dynamic model of speech production (e.g.,
Saltzman, 1986; Saltzman & Munhall, 1989). More gen-
erally, dynamical models have also been formulated for
simulating skilled rhythmic and nonrhythmic motions
of the limbs or speech articulators, using both conven-
tional (e.g., Haken, Kelso, & Bunz, 1985; Kay, Kelso,
Saltzman, & Schéner, 1987; Saltzman & Kelso, 1987;
Saltzman & Munhall, 1989; Schéner, Haken, & Kelso,
1986) and connectionist (e.g., Bullock & Grossberg,
1988; Jordan, 1986, 1990; Kawato, 1989; Kawato, Fu-
rukuwa, & Suzuki, 1987) equations of motion.

Parameter Dynamics

Parameter dynamics refers to the longer time scale
processes involved in motor performance as well as in
skill acquisition and sensorimotor adaptation. To per-
form a given skill, the action system must be parameter-
ized appropriately (i.e., as part of the process of assem-
bling a coordinative structure, mentioned in the section
on state dynamics). A given “bout’’ of action is hypoth-
esized to be governed by a task-specific set of parame-
ters that remain relatively constant, compared to the
state variables, during the particular performance. For
example, it seems reasonable to hypothesize that the act
of reaching to a single target is constrained throughout
the evolution of the system’s state variables (i.e., the
angular positions and velocities of the arm joints) by a
constant parameter that represents the spatial position
of the target. Similarly, in a sustained rhythmic oscilla-
tion at a single limb joint (e.g., the wrist), the frequency
parameter would remain constant throughout the cycling
motion of the state variables.

In learning a new skill, the action system must acquire
the appropriate parameterization. What type of dynam-
ical system has the parameter-dynamic properties re-
quired for such learning? As Jordan (1990) pointed out,
connectionist models are naturally suited to capture par-
simoniously within a single framework not only the
slower time scale processes of parameter dynamics, but
also the fast time scale processes of state dynamics.
Motor learning in connectionist terms is an issue of us-
ing supervised or unsupervised learning algorithms to
train a network until its internode weights attain values
appropriate for guiding accurate performance on a
desired task. Relatedly, Schaner (1989) has described a
more conventional, nonconnectionist dynamical model
for learning the parameter values that are appropriate
for producing bimanual oscillatory movements with
desired values of relative phasing between the hands.

Joumal of Motor Behavior
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FIGURE 1. Average first and second formant values for
children’s and adults’ productions of six vowels. (Data
reprinted with permission from S. Eguchi and I. J.
Hirsh, Development of speech sounds in children. Acta
Oto-Laryngologica, Supplementium, 257, 1-51.)
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Once skills are acquired, the corresponding parame-
terizations cannot remain fixed. For example, it is nec-
essary that these parameter sets change adaptively in the
face of developmental and exercise-induced changes in
the geometry and biomechanics of the body. In these in-
stances, the parameters that must be learned and con-
tinually updated are elements of direct and inverse
transformations among coordinate systems relevant to
skilled motor activity (e.g., Saltzman, 1979). Such sen-
sorimotor transformations include the mappings be-
tween: (a) retinocentric or head-centered visual coor-
dinates and the musculoskeletal coordinates of the arm-
hand effector system for visual guidance of reaching
and (b) acoustic and articulatory coordinates of the
vocal tract for speech production and perception. Note
that such parameter learning allows the actor to adapt
to changing sensorimotor mappings regardless of the
origin of these changes, be they naturally induced by
development or exercise or artificially induced by ex-
perimental manipulation (e.g., by requiring the actor to
view the world through lenses or prisms that system-
atically distort the visual field). The processes of sensor-
imotor adaptation and recalibration can be simulated by
the parameter dynamics of connectionist systems (e.g.,
Bailly, Laboissiére, & Schwartz, 1991; Grossberg, 1986;
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Jordan, 1990; Kawato, 1989; Kawato et al., 1987; Ko-
honen, 1988; Kuperstein, 1988). -

We turn now to a more detailed examination of one
particularly important development example of sensori-
motor adaptation and recalibration: the learning of
speech in the context of vocal tract growth.

Vocal tract growth. The vocal tract of the young child
is dramatically different in size and shape from the
vocal tract of an adult (see also Goldstein, 1980; Thelen,
in press). This fact is behind one of the major puzzles of
speech acquisition. How does a child learn to produce
the set of phonetic distinctions that are present in its
auditory-linguistic environment, when its immature
vocal tract is unable to accurately produce these distinc-
tions? Children’s productions of vowels, for example, .
are clearly different from those of adult speakers, due to
gorresponding differences in vocal tract geometry.
These acoustic differences are shown in Figure 1 (Egu-
chi & Hirsh, 1969), in which the first and second for-
mants are the axes defining the vowel space. Note that
the absolute positions of all the individual vowels are
shifted between groups, as are the overall outlines traced
by each collection of vowels.

The origin of these differences lay in the dimensions of
the acoustic tube that produced these sounds, that is, the
dimensions of the vocal tract. Figure 2 plots some of the
growth patterns for individual parts of the vocal tract, in-
cluding: the length of the upper and lower lips (Subtelny,
1959), the length of the soft palate (Subtelny, 1957), the
vertical distance between the hyoid and a plane defined
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FIGURE 2. Change in anatomical dimensions of select-
ed speech articulators as a function of age.
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by the center of the sella tercica and the nasion (a meas-
ure of the pharynx) (King, 1952), and the mandibuiar
skeletal effective length (Moyers, Bookstein, & Hunter,
1988). It is clear from these plots that the articulators all
increase in size, yet do so in a nonuniform manner. For
example, the changes in the lips’ dimensions are small
and largely occur early in development, whereas the
pharynx exhibits much larger changes in size throughout
the childhood years. For the pharyngeal measure, the
data are broken down by sex. Although King’s data were
not collected beyond the age of 16, the male-female dif-
ference in the length of the pharyngeal cavity is evident.
This difference and the greater laryngeal cavities of adult
males compared with those of women and children are
the major determinants of the acoustic vowel differences
seen in Figure 1 (Fant, 1966; Nordstrém, 1977).

The effects of such anatomical changes on the control
of nonspeech oral functions are manifold. Consider the
relative descent of the larynx in the vocal tract. In the
neonatal vocal tract, the larynx is high, with the lingual
surface of the epiglottis against the superior surface of
the soft palate (Sasaki, Levine, Laitman, & Crelin, 1977).
The human newborn is thus an obligate nose breather.
During the first year of life, the pharyngeal cavity length-
ens and the larynx descends in the vocal tract so that the
epiglottis and soft palate are normally approximated no
longer during breathing. The development of oral tidal
respiration accompanies the anatomical transformation.

The control of the oral cavity for speech must undergo
similar functional changes because of the anatomical
changes. For example, the changes in the size and form
of the mandible alter many biomechanical characteris-
tics, such as the mass, the center of mass, muscle moment
arms, and so forth. Because rotation.and translation of
the mandible are the result of a careful balance between
the forces generated by the various muscles (Flanagan,
Ostry, & Feldman, 1990), it is clear that growth must be
accompanied by a parameter-dynamic process of adap-
tive recalibration to maintain this muscular balance.

Graph Dynamics

Graph dynamics is responsible for changes in the ar-
chitecture of a dynamical system, that is, in the size,
composition, and connectivity of the set of equations
used to represent the system. The size of a system is in-
dexed by the dimensionality of the system’s state space,
that is, by the dimensionality of the set of motion equa-
tions used to model system behavior.? Thus, size dif-
ferences are exemplified by comparing the equation sets
that describe the dynamics for a finger moving in isola-
tion with those that describe a finger moving in conjunc-
tion with another finger. Composition differences are
exemplified by comparing the coupled dynamics of two
fingers with those of a finger and toe. Connectivity dif-
ferences are exemplified by the comparison between the
dynamics of a pair of unidirectionally and bidirectional-
ly coupled fingers. Roughly speaking, system architec-
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ture is responsible for the structure of the (intrinsic and
coupling) functions that define a system’s equations of
motion. The structure of these functions determines the
range of qualitative dynamical forms (e.g., static, peri-
odic) that the system can exhibit, with the precise form
displayed at any given time being determined by the cur-
rent values of the parameters and state variables.

The architecture of a given system may grow or shrink
in size as state variables are gained or lost, in accordance
with graph-dynamic processes analogous to cell birth or
death, respectively. Additionally, a given subsystem that
previously occupied an isolated portion of a larger state
space may become coupled to the rest of this space by the
growth of nonnegligible coupling functions. Conversely,
a large network might be partitioned into a set of isolated
subnetworks by the loss of such coupling terms. Recent
work on connectionist networks has focused on incorpo-
rating graph-dynamic processes that allow network archi-
tectures to evolve adaptively. These processes include the
creation of new nodes (Fahlman & Lebiere, 1990; Han-
son, 1990; Kassebaum, Tenorio, & Schaefers, 1990;
Tenorio & Lee, 1989) as well as internode connections
(Bodenhausen & Waibel, 1991). A particularly elegant
connectionist model has been proposed recently in the
context of modeling gene expression in the blastoderm of
Drosophila melanogaster, and promises to offer a well-
articulated modeling framework—combining state-, pa-
rameter-, and graph-dynamics—for investigating more
generally the dynamics of biological development (Mjols-
ness, Sharp, & Reinitz, 1990).

Typically, state- and parameter-dynamics have been
the main foci of dynamical theories of skill performance,
acquisition, and development. In terms of motor per-
formance, however, it is clear that the system graph re-
quires appropriate specification (i.e., as part of the proc-
ess of assembling a coordinative structure, discussed in
the state dynamics section). This can be considered, in
part, to be a process of selecting and combining those
subcomponents that can contribute successfully to ac-
complishing the task at hand. Such subcomponents in-
clude not only the set of end-effectors that actively partic-
ipate in the task (e.g., the selection of the hand and finger
surfaces that define grip configuration according to the
size and shape of the grasped object; Newell, Scully, Mc-
Donald, & Baillargeon, 1989), but also the perceptual
systems that are used to guide task performance (e.g., vi-
sion or haptics). Such graph-dynamic processes appear to
occur also at the longer time scales of learning and devel-
opment. For example, skilled use of a new tool or piece
of sports equipment can entail expansion of the system
graph during learning to incorporate the additional state
variables and parameters associated with the implement
itself. On a developmental time scale, Goldfield (1989, in
press) has provided evidence supporting the claim that
the onset of crawling during infancy results from the way
in which three developing action systems (i.e., orienting
with respect to the support surface, using the legs for pro-
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pulsion/kicking, and using the hands to steer/reach; see
Reed, 1982, for a more general discussion of action sys-
tems) combine and interact with each other in service of
the task of locomotion. Thelen (1989b) summarized this
point of view, pointing out that
development proceeds . . . as the opportunistic marshal-
ling of the available components that best befit the task at
hand. Development is function-driven to the extent that
anatomical structure and neurological mechanisms exist
only as components until they are expressed in a context.
Once assembled in context, behavior is, in turn, molded
and modulated by its functional consequences (p. 947).

Bifurcations: The Roles of Parameter Dynamics
and Graph Dynamics

As mentioned in the previous section, state dynamics
and parameter dynamics typically have occupied center
stage in dynamical theories of motor behavior. These
types of dynamics have been considered sufficient to
characterize most of the observed interesting behavioral
forms as well as qualitative changes in these forms.
Qualitative developmental changes in system behaviors
are viewed primarily as bifurcation phenomena induced
when parameter dynamics drive system parameters
across certain critical boundaries in the system’s param-
eter space. These boundary crossings can cause abrupt,
qualitative changes of the patterns displayed by the sys-
tem’s state variables, even though the motions of the pa-
rameters across these boundaries are themselves smooth.
The problem with this formulation is that qualitative, bi-
furcational changes in behavior patterns also have been
demonstrated to result from graph-dynamic processes.
Thus, any dynamical model of the emergence of new be-
havioral forms during development that ignores graph
dynamics is likely to be an incomplete one.

Bifurcation phenomena can be divided into (at least)
two nonmutually exclusive categories. One involves
qualitative differences in the topologies of the be-
havioral forms exhibited by a given dynamical system
and includes transitions among static, periodic, quasi-
periodic, and chaotic forms. A specific theoretical ex-
ample is the Hopf bifurcation between static and peri-
odic forms (e.g., Thompson & Stuart, 1986). The sec-
ond bifurcation category involves quantitative differ-
ences among a set of topologically identical forms ex-
hibited by a system, and can include transitions in the
number of such forms displayed by the system.

Perhaps the best known example of a bifurcation phe-
nomenon in human movement belongs to this latter cat-
egory. It is displayed during bimanual rhythmic move-
ments when subjects begin an experimental trial by os-
cillating their fingers (or hands) at the same frequency in
an out-of-phase manner (i.c., approximately synchron-
ous flexion/extension of the right limb and extension/
flexion of the left limb), and then increase the frequency
of oscillation over the course of the trial (¢.8., Kelso,
1984; Scholz & Kelso, 1989). Under such conditions, the
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out-of-phase coordination abruptly shifts to an in-phase
coordination (i.e., synchronous flexion/extension of the
right and left limbs) when the oscillation frequency
passes a certain critical value. A comparable shift is not
seen, however, when subjects begin with an in-phase co-
ordination; under these conditions, the in-phase oscilla-
tion is sustained as frequency increases. Thus, below the
critical frequency, the system is bistable, in the sense
that both in-phase and out-of-phase rhythmic modes are
performable in a stable manner; above this frequency,
the system is monostable, in that only the in-phase- mode
is stably attainable. The same pattern of results is ob-
tained also when the tasks are defined across two people,
with each person oscillating one leg and merely watching
the other’s rhythmic limb movements (Schmidt, Carello,
& Turvey, 1990). )
Systems of conventional nonlinear, ordinary differen-
tial equations have been used to model the bifurcations
observed in the examples just described (e.g., for the
Hopf bifurcation, see Thompson & Stuart, 1986; for the
bimanual transition, see Haken, Kelso, & Bunz, 1985,
and Schoner et al., 1986). These models display abrupt
changes in measured functions, or sets of functions, of
the corresponding state variables when the systems’ pa-
rameters are scaled smoothly and cross critical bound-
aries in parameter space.” In these examples, the bifur-
cation-inducing parameter motions are specified explic-
itly by the theorist or numerical modeler in the motion
equations representing the phenomena under investiga-
tion. Specifically, this involves scaling a linear damping
coefficient in the motion equation for the Hopf bifurca-
tion, and the natural frequency coefficients of both
limbs’ motion equations for the bimanual transitions.
Bifurcational changes in system behavior can also re-
sult from graph-dynamic alterations in the architecture
of an observed dynamical system. For example, in the
early stages of termite nest construction (e.g., Kugler &
Turvey, 1987; Nicolis & Prigogine, 1977), the deposit of
building material initially occurs in a homogeneous,
random fashion within the nesting site. When the
amount of deposited material, which is directly propor-
tional to the number of participating termites, reaches a
certain critical value, the uniform pattern gives rise to a
spatially structured pattern of pillars and walls. In re-
lated work using a connectionist model, Schrager,
Hogg, and Huberman (1987) measured the percentage
of nodes in the network that were activated by input toa
given single node (i.e., the spatial event horizon of the
net), and found an abrupt jump in this measure as net-
work size was smoothly increased one node at a time.
Finally, bifurcations due to graph dynamics have been
demonstrated in conventional dynamical models whose
equations of motion are defined by sets of first-order,
nonlinear, ordinary differential equations. Haken
(1980) investigated the results of coupling two such sets
of equations. Before coupling, the state behavior of
each set was identically quiescent. Even simple linear
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coupling was sufficient, however, to induce a qualitative
change in the topological characteristics of the coupled
" system’s aggregate behavior, compared to the behavior-
al forms displayed previously by the uncoupled subsys-
tems. Given the presence of system noise or fluctua-
tions, the effect of increasing the size of the system was
to destabilize the quiescent behavioral modes of the sub-
systems and to drive the coupled system into a qualita-
tively different mode, for example, periodic behavior.
Thus, in the context of this article’s major concerns, it is
possible that graph-dynamic changes occurring at dif-
ferent time scales (performance, learning, and develop-
ment) can lead to the appearance of novel behavioral
forms because of system bifurcations. Note, however,
that such bifurcations need not always occur; for exam-
ple, combining two quiescent dynamical subsystems can
also result in a new, larger system that is also quiescent.

The lesson to be learned from these considerations of
graph-dynamic bifurcations is similar to one associated
with many-body physics (e.g., Anderson, 1972) and,
perhaps not surprisingly, with classical Gestait Psychol-
ogy (e.g., Kohler, 1947) and General System Theory

(e.g., von Bertalanffy, 1952; Weiss, 1969): The whole is

greater than, or at least is different from, the sum of its
parts. Actually, the examples described above are more
consistent with the following, slightly revised lesson:
The whole can be greater or different from the sum of
its parts, but not necessarily. Sometimes, you just get
more of the same.

Summary and Conclusions

An organism’s repertoire of sensorimotor skills can
be viewed as a complex ensemble _of self-organizing,
morphological objects (see Bernstein, 1967/1984; Kug-
ler et al., 1980, 1982). Like most other aspects of such
complex systems, skilled behaviors can be analyzed ac-
cording to their state-, parameter-, and graph-dynam-
ics. Within this framework, parameter dynamics pro-
vides a reasonable account of many of the changes that
occur during skill learning and during sensorimotor
adaptation and recalibration. Qualitative changes in be-
havioral forms can be viewed primarily as bifurcation
phenomena (see also Note 2), and such phenomena have
typically been interpreted as resulting solely from pa-
rameter-dynamic processes. One of the main purposes
of the present article has been to draw attention to the
fact that such phenomena can be shaped by both param-
eter dynamics and graph dynamics.

We conclude by considering further the role of graph
dynamics in an organism that is rapidly developing in

- parallel at a number of levels—biomechanical, neurologi-
cal, behavioral—all of which are presumably interrelated
in an intimate fashion. Graph-dynamic changes at the
musculoskeletal level, for example, may drive parameter-
dynamic changes at the Icvel of mappings among sensori-
motor coordinate systems. In particular, imb growth can
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be viewed as a graph-dynamic growth of tissues that, in
turn, necessitates recalibration of the kinematic (e.2.,
joint angles to body-spatial position of the hand) and
kinetic (e.g., joint angular acceleration to joint torques)
coordinate transformations that are parameterized func-
tions of limb lengths, moments of inertia, and the like. )
Similarly, graph-dynamic growth of the vocal tract (see
the parameter dynamics section) necessitates parameter-
dynamic changes in the kinematic mapping between
acoustic and articulatory coordinates and in the kinetic
mapping between muscle activation and resultant articu-
latory motion.

It is also likely that graph-dynamic changes at the neur-
onal level are tightly coupled to behavioral changes ac-
companying motor learning. Such a relationship is sug-
gested by neurophysiological and behavioral data from
the adult male canary, a songbird that displays seasonal
variation in the stereotypy of its song repertoire (e.g.,
Alvarez-Buylla, Kirn, & Nottebohm, 1990; Nottebohm et
al., 1990). The repertoire becomes unstable after breed-
ing season during late summer and fall, during which
time many previously learned song *‘syllables’’ disappear
and new ones appear. Stereotypy of the new repertoire is
established during the following winter and spring. These
decreases and increases in stereotypy are accompanied by
corresponding changes in brain nuclei related to the pro-
duction and perception of song. In particular, the high
vocal center (HVC) displays an apparent loss of neurons
during song instability; preceding the establishment of
song stereotypy, it displays a marked increase in neuronal |
birth. These patterns of variation in numbers of neurons
can be interpreted as graph-dynamic changes at the
neuronal level that are closely linked with corresponding
changes in the behavioral repertoire.

The above two examples illustrate several ways that
graph-dynamic changes occurring at both neural and
nonneural levels might be related to the learning, calibra-
tion, and performance of observable sensorimotor be-
haviors. Such graph-dynamic changes have been docu-
mented amply in young and rapidly developing organ-
isms. Thus, particularly during the early stages of sensor-
imotor development, it would seem prudent to include
graph dynamics as an integral component of any theory
of behavioral change.
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NOTES

1. Our purpose in adopting the nomenclature used in this
paper is to provide a clearly defined framework within which
to analyze the performance, learning, and development of
skilled sensorimotor behavior. The categories of state-, param-
eter-, and graph-dynamics apply, however, to the analysis of
any dynamical system—human or nonhuman, biological or
nonbiological. Additionally, this categorization is orthogonal
to those introduced by others in the field of movement science
that reflect, roughly speaking, a dichotomy between the dy-
namics associated with externally imposed tasks and with in-
ternally preferred modes of system behavior, for example, in-
herent versus incidental (Bingham, 1988), resource versus task
(Bingham, Schmidt, Turvey, & Rosenblum, 1991), intrinsic
versus extrinsic (Schoner & Kelso, 1988), and task versus artic-
ulator (Saltzman & Kelso, 1987).

2. It is also possible to observe pattern changes in a system
with a fixed parameter set and a fixed architecture. Such
changes could result, not from system bifurcations, but from
the presence of multiple stabilities in the state dynamics of the

system (e.g., Thompson & Stewart, 1986). In this case, how-

ever, the multistable system would have to be pushed from one
stable pattern to the other by an externally applied determinis-
tic or stochastic force. Such a force would act to reset the sys-
tem to an effectively new set of initial state .values. In the con-
text of skill learning, one can hypothesize that practice may en-
tail the strategic application of such forces, thereby allowing
the performer to explore the layout of stability regions in the
currently active state space, and to possibly discover previously
unknown regions of stability (e.g., Fowler*& Turvey, 1978;
Newell, Kugler, Van Emmerik, & McDonald, 1989; Thelen,
1989a).

3. A set of n first-order ordinary differential equations can
be used to represent both a single, nth-order conventional or-
dinary differential equation and also a continuous-time,
n-node, recurrent connectionist network. In both cases, the set
of n first-order equations can be used to construct a system
graph, with each equation representinga system node or vertex
and the coupling terms in each equation representing the sys-
tem connections or edges. An important difference exists be-
tween the conventional and connectionist representations,
however. In the latter case, each of the first-order equations
represents a corresponding network node that comprises an
elemental information-processing unit of the system and that
acts as a dynamical primitive of the network. In the former
case, however, each first-order equation is simply the nota-
tional outcome of mechanically rewriting the original nth-
order equation into first-order form, and the resulting set of n
first-order equations does not represent dynamically equiva-
lent units.

4, Parameter-induced bifurcations have also been demon-
strated in connectionist dynamical models (e.g., Reggia & Ed-
wards, 1990; Schrager, Hogg, & Huberman, 1987). For exam-
ple, training-induced changes in the strengths of a given sys-
tem’s internode weights can change the number of stable pat-
terns displayed by that system’s state dynamics. These types of
bifurcations have been described in terms of the ‘‘coalescence
and dissociation’’ of the system’s regions of stability (Huber-
man & Hogg, 1985, p. 272).
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