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Pendular, clocking movements typify mammalian terrestrial locomotion. They can be investigated
with a procedure in which people swing hand-held pendulums at the wrists, comfortably and rhyth-
mically. Pendular, clocking behavior was examined for in-phase and out-of-phase coordinations.
The periodic timing and powering of rhythmic movements in the comfort state follow from different
laws (Kugler & Turvey, 1986). One law guides the assembling of the reference frame for “clocking.”
Another law guides the assembling of the muscular, escapement processes determining the cycle
energy. Wing and Kristofferson’s (1973) method for parsing periodic-timing variance into indepen-
dent “clock” and “motor” sources was applied. Mean periodicity was unaffected by phase. “Clock”
fluctuations, however, were larger out of phase than in phase. “Motor” fluctuations were indifferent
to phase but reflected the departures of individual wrist-pendulum systems from their preferred
periods. It appears that an intended phase relation is realized as a constraint on “clock” states. These
states are more stable under the in-phase constraint than under the out-of-phase constraint.

Terrestrial locomotion of two-legged and four-legged mam-
mals is characterized by a pendular, clocking mode of organiza-
tion. Individual limbs are raised and lowered with respect to
gravity’s pull (the pendular aspect), and when gait and speed
are sustained for any interval, the periodic timing of a limb’s
successive step cycles is closely similar (the clocking aspect). In
locomotion, limbs of the same girdle (shoulder, pelvic) swing
forward and backward together, or one limb swings forward as
the other limb swings backward. The former coordination of
the limbs is variously referred to as in phase, 0° difference, ho-
mologous, symmetric. The latter coordination of the limbs is
variously referred to as out of phase, 180° difference, nonhomol-
ogous, asymmetric. Of the three major quadruped gait divisions
(Pennycuick, 1975), the walk and the trot engage out-of-phase
coordination, the canter (and its fast variants, for example, the
gallop) engages in-phase coordination.

The two types of phase relation can be seen in other activities,
for example, finger, hand, and arm movements of humans and
fin movements of fish. In the present article we investigate
claims (Haken, Kelso, & Bunz, 1985; Kelso & Scholz, 1985;
von Holst, 1935/1973) that the two phase relations are not
movement organizations of like kind, that the in-phase relation
is more stable or more “attractive.” The analysis presented is in
the spirit of an emerging physical biology that emphasizes that
the characteristic phenomena of living things are shaped by a
small set of strategies common to all of nature’s scales (e.g.,
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Haken, 1983; Iberall, 1977-1978; Yates, in press). A physical
biology chooses physical ideas rather than those of formal sys-
tems as the basis of a global theory of the nervous system. Not
any set of physical ideas will do, however. It is conjectured that
only a variant of statistical mechanics, namely, statistical ther-
modynamics combined with nonlinear mechanics, has the fea-
tures required for theorizing about the nervous system in a
physical sense (see Yates, 1980).

Rhythmic Behavior of Single and Coupled
Wrist-Pendulum Systems

To investigate the dynamics of coordinated rhythmic move-
ments in the pendular clocking mode, Kugler and Turvey
(1986) had human subjects swing at the wrists two hand-held
pendulums that could be varied in mass and length. The upper
panel of Figure 1 depicts the experimental situation. The task
of the subject, for a given pair of wrist-pendulum systems, was
to swing them together at a comfortable, common tempo. The
comfort requirement is a steady-state condition defined over
mechanical and thermodynamical variables (see Kugler & Tur-
vey, 1986). The common tempo requirement is an isochronous
coupling constraint; the clocking or periodic timing of the two
wrist-pendulum systems must be (nearly) identical.

The lower panel of Figure 1 depicts the single wrist-pendu-
lum task. This task yields the preferred periodic timings or nat-
ural periods of the individual left and right wrist-pendulum sys-
tems. An important question is how the common periodic tim-
ing of a left system and a right system, when coupled, compares
with the left’s natural period and the right’s natural period. The
simplest expectation is that where the natural periods of the two
systems are identical (or nearly so), the coupled period should
be of the same magnitude (or very nearly so); and where the
natural periods are dissimilar, the coupled period should fall
somewhere in between. This expectation follows from assuming
that the obvious strategy with systems of unequal natural peri-
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Figure 1. An experimental task for investigating the pendular, clocking
mode of rhythmic movement organization in humans.

ods is to compromise by slowing down the naturally faster sys-
tem and speeding up the naturally slower system. Slowing down
and speeding up relative to natural period requires muscular
effort and energy expenditure in excess of that for producing
rhythmic movement at the natural period. Presumably, at some
period bracketed by the left’s natural period and the right’s nat-
ural period there is a minimization of effort and expenditure.
The data obtained by Kugler and Turvey (1986) did not con-
cur with the expectation. Here are two examples from their ex-
periments of the coupling of nearly identical systems: a left sys-
tem and a right system with natural periods of 791 ms and 787
ms, respectively, coupled at 882 ms; a left system and a right
system with natural periods of 911 ms and 892 ms, respectively,
coupled at 1,029 ms. And here are two examples of the coupling
of very dissimilar systems: a left system and a right system with
natural periods of 780 ms and 1,321 ms, respectively, coupled
at 1,235 ms; a left system and a right system with natural peri-
ods of 864 ms and 1,321 ms, respectively, coupled at 1,188 ms.
The obvious account (sketched above) of how two wrist-pendu-
lum systems are coupled to a common tempo is strained by
these examples. Why should two wrist-pendulum systems of
almost identical natural period settle at a common, coupled
tempo that is substantially larger than their natural period? And
with respect to the examples of the very dissimilar systems, why
should the “compromise” period—the in-between period at
which they settle—be larger for the coupling of 1,321 ms with

780 ms than for the coupling of 1,321 ms with 864 ms? Perhaps
the coupled period is not determined, as the obvious account
suggests, by a strategy that is conditioned by the natural periods
of the component systems.

Concept of a Virtual Single System

Kugler and Turvey (1986) showed that the periodic timing of
two coupled wrist-pendulum systems is understandable as the
periodic timing of a single wrist-pendulum system. It appears
that, when coupled, two wrist-pendulum systems defined by six
masses (those of the two pendulum rods, two hands, and two
sets of weights added to the pendulum rods), oscillating at
different distances from two points of rotation, submit to a sim-
pler description——that of a single wrist-pendulum system con-
sisting of a single concentration of mass at a single distance from
a single point of rotation. The virtual single length is derived
from the equation that converts a compound pendulum into
an equivalent simple pendulum (Huygens’ law). The equation
assumes that a compound pendulum is an ensemble of many
“micro” simple pendulums that are (a) of different lengths and
(b) rigidly connected. It replaces the multiple “micro” pendu-
lums by a single “macro” pendulum. Figure 2 depicts the trans-
formation. The length of the “macro” pendulum is such that
the “macro” pendulum’s cycle energy is equivalent to the
summed cycle energies of the many “micro” pendulums
(Mach, 1893/1960). The many-to-single mapping, the micro-
to-macro conversion, is governed by the conservations of energy
and momentum, A conservation—that of mass—similarly gov-
erns the determination of the virtual mass of the virtual single
system. It is simply the sum of the masses of the two wrist-pen-
dulum systems.

Conservations or summational invariants, it will be recalled,
are quantities that are neither created nor destroyed in the
course of binary interactions, only redistributed. Most impor-
tant for present purposes, the conservations completely define
the statistical properties of a closed system, that is, the statistical
distribution of its subsystems and, therefore, the mean values
of the quantities relating to them (Landau & Lifshitz, 1980).
Herein lies the basis for the fundamental strategy of statistical
physics: The mandatory sharing of the conserved quantities
among a body’s many subsystems (particles) means that a very
detailed description of the body (for example, the motions of
each of its subsystems in three dimensions) can be replaced,
over some range of conditions, by a very simple description (for
example, a single magnitude). Figure 3 depicts the conservati-_
on-based conversion of a pair of wrist-pendulum systems into a
virtual single wrist-pendulum system. (The attached Appendix
gives the details of the calculations used to derive the virtual
values.)

The appropriateness of the conversion raises challenging
questions about how the nervous system, which is essentially
fluid and dissipative, can simulate a system that is rigid and
conservative. (Huygens’ law is formulated for systems of the lat-
ter kind.) Understanding this simulation—the formation of a
virtual single wrist-pendulum system—depends, we believe, on
an understanding of three key concepts: (a) the universal role of
the conservations in assembling unitary processes; (b) haptic
(neural) fields as information about kinetic (force) fields; and
(c) intentions as boundary conditions or constraints on lawful
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Figure 2. A compound pendulum can be thought of as composed of many point masses at different distances
from the axis of rotation. The conception is of many simple pendulums. If they were allowed to oscillate
freely (as in the left panel) they would do so at different periods. If they were rigidly connected (as in the
center panel), they would oscillate at a single common period. The ratio of the sum of the moments of
inertia (Zm;/?) to the sum of the statical moments (Zmjl)) gives the length of the equivalent single simple
pendulum (as in the right figure). The subscript v denotes “virtual”” The ratio giving the equivalent simple

pendulum length is referred to here as Huygens’ law.

processes. Each of these notions is touched upon briefly in the
present article. A more complete discussion is to be found in
Kugler and Turvey (1986).

A Scaling Relation for Wrist-Pendulum
Mean Periodic Timing

It follows from the preceding that, given either a pair of wrist-
pendulum systems or a single wrist-pendulum system, the task
of the subject is very much the same, namely, to assign a single
periodic time to a given single length/single mass combination.
Using the mammalian tissue constants of density, elasticity, and
strength (Economos, 1982), and the tools of similarity analysis
and dimensional analysis, Kugler and Turvey (1986) determined
that the scaling relation for the wrist-pendulum situation was

Tn o M'O&SIJS, (l)

where T, is natural periodic time, M is the wrist-pendulum
mass, and L is the wrist-pendulum length, where M and L are
either actual single or virtual single quantities. (It is to be noted
that scaling relations, unlike laws, do not have to be dimension-
ally homogeneous. It should also be noted that wrist-pendular
periodic timing depends on both mass and length. A wrist-pen-
dulum system is a hybrid mass-spring/simple pendulum sys-
tem. There are two potentials at work—the gravitational poten-
tial and another elastic potential defined over the neuromuscu-
lar system. The mechanical image is of a single pendulum—a
mass at one end of a massless rod—oscillating about a fixed
point of rotation with a horizontally aligned spring attached to
the rod just below the rotation point.)

Given the concept of virtual single system and Scaling Rela-
tion 1, we are now in a position to answer the two questions
raised above concerning the periodic times resulting from cou-
pling identical wrist-pendulum systems and coupling different
wrist-pendulum systems. Let p stand for M%2°L5, where M is
measured in kilograms, and L is measured in meters. The left
and right wrist-pendulum systems whose natural periods were
787 ms and 791 ms had the same g value of 0.422. The u of the

virtual single system produced by their coupling, however, was
0.446. Similarly, the left and right wrist-pendulum systems that
had natural periods of 892 ms and 911 ms had the same u value
of 0.493'; the u of the virtual single system produced by their
coupling, however, was 0.514. By Scaling Relation 1, and with
other things being equal, it would be expected that in both of
the preceding two instances the periodic timing (882 ms and
1,029 ms, respectively) of the coupled system, that is, the virtual
single system, would exceed the preferred periodic timing of
its components. Turning to the examples of coupled dissimilar
systems, we find that the left and right systems of natural peri-
ods 780 ms and 1,321 ms yielded, when coupled, a virtual single
system with a u of 0.723. In comparison, the virtual single sys-
tem produced by coupling the systems with natural periods of
864 ms and 1,321 ms had a  of 0.703. By Scaling Relation 1,
and with other things being equal, the coupled periodic time in
the former case (1,235 ms) should exceed the coupled periodic
time in the latter case (1,188 ms).

Indifference of the Mean Periodic Timing Scaling
Relation to Phase Symmetry

The pendular clocking mode depicted in Figure 1 differs from
quadruped locomotion in that frictional contact with the

! The periodic times of left and right wrist-pendulum systems can
differ even though the u value is the same for both systems. Similarly,
the periodic time of a left wrist-pendulum system of one subject and
the periodic time of a left wrist-pendulum of another subject can differ
even though the u values of the two systems are identical. The reason for
these differences is that although steady-state periodic timing is lawfully
scaled, lawful scaling does not come neat. The quantities related by
Scaling Relation 1 are related in a context. The context is a “coordinate
space,” a physically based geometry defined by the momentary and local
distribution of conserved quantities. The coordinate spaces of the left
and right wrist-pendulum activities of a single person need not be iden-
tical in the same way that the coordinate spaces of left wrist-pendular
activity in two people need not be identical. The abstract notion of coor-
dinate space and its implications for understanding lawful regularities
at the scale of biology figure prominently in Kugler and Turvey (1986).
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Figure 3. Applying the “compound-pendulum” to “simple-pendulum”
transformation (Huygens’ law) to a coupled pair of wrist-pendulum sys-
tems. (In the resultant virtual single wrist-pendulum system it is as if
all the mass M, is concentrated at a single point a distance L, from a
virtual point of rotation.)

ground and forward propulsion of the body are absent. Most
important, for limbs M oc L*. Consequently, for quadruped lo-
comotion the relevant scaling relation (see Kugler and Turvey,
1986) is

T, oc M'*L%or T, oc M°L?. 2)

Most quadrupeds can locomote in all three major gaits. From
one gait to the next, Scaling Relation 2—between periodic time
and representative mass and length measures—is invariant
(Kugler & Turvey, 1986; Pennycuick, 1975). That is, Scaling
Relation 2 holds whether the coupling between limbs of the
same girdle is in phase or out of phase. In one experiment,
Kugler and Turvey (1986) inquired whether this was also true
for Scaling Relation 1. (They expected that it would be given
that Scaling Relations 1 and 2 are variants of the same underly-
ing principles linking time, mass, and length in biological sys-
tems. The pendular clocking mode of organization in locomo-
tion and swinging wrist-pendulum systems is the same but for a

difference in the mass-length relation.) The question was posed
with six pairs of wrist-pendulum systems. For three of the pairs,
the u value of the left wrist-pendulum system was the same as
the u value of the right wrist-pendulum system, and for three of
the pairs it was different. The comparison, roughly, is between
locomoting with limbs of the same size and locomoting with
limbs of different sizes. The six pairings generated six different
virtual u values. For future reference uy will designate the u
value of a virtual single system, and y; and u, will designate the
u values of the individual left and right systems, respectively. In
the course of the experiment each of four subjects swung each
pair of wrist-pendulum systems at a comfortable, common
tempo eight times in phase and eight times out of phase. (The
details of the experiment are given below in the Method sec-
tion.) The main observation was that for each subject the six
periodic times related to the six u, values in the same way for
both in-phase and out-of-phase couplings. Figure.4 shows the
in-phase and out-of-phase periodic times for the six coupled
systems, and Figure 5 shows the relation of Log 7, to Log g, for
the two phase relations (with T, and g, values averaged over
subjects). As can be seen, the coefficients (a) and exponents (¢)
of the two phase relations were nearly identical, and for both
phase relations the two quantities, T}, and g, were highly corre-
lated. In sum, as with Scaling Relation 2, Scaling Relation 1 is
invariant over the kind of coordination (in phase, out of phase)

. .between limbs of the same girdle.
- Three other aspects of the data should be noted. First, the

requirement of isochrony (both left and right wrist-pendulum
systems clocking with the same period) was met equally by all
six coupled systems, and it was met equally in phase and out of
phase. The relation of isochrony to system and phase for each
subject is depicted in Figure 6. Second, for 4 given coupled sys-
tem its period in phase was not consistently longer or shorter
than its period out of phase (see Figure 4). When we average the
data over the six systems, we find that Subjects 1 and 2 produced
numerically shorter periods out of phase than in phase (925
ms vs. 939 ms and 1,015 ms vs. 1,024 ms, respectively) while
Subjects 3 and 4 produced numerically shorter periods in phase
than out of phase (958 ms vs. 995 ms and 1,034 ms vs. 1,042
ms, respectively). The overall mean difference between in phase
and out of phase amounted to only 8 ms (in phase = 1,034 ms,
out of phase = 1,042 ms). This difference was not statistically
significant, F(1, 3) = 1.08, MS, = .407, p> .05.

The third additional aspect to be noted is that the coupled
systems whose components were different (i, # g,), that is Sys-
tems 4, 5, and 6, were continuous in the Log T, X Log g, plot
with the coupled systems whose components were the same
(us = u,), that is, Systems 1, 2, and 3. A useful way to compare
coupled, or virtual single, wrist-pendulum systems is through a
Symmetry metric (S), where

S'= (w1 — )/ o 3)

For the six coupled systems, the s values averaged over subjects
were 0, 0, 0, 0.258, 0.378, and —0.457, respectively. The S met-
ric reflects the competing temporal preferences of the individ-
ual left and right wrist-pendulum systems relative to the tempo-
ral preference of the virtual single system. It is an approximate:
measure of the compatibility between the steady state of the
“macro” virtual single system and the steady states of its con-
stituent “micro” subsystems. Thus, Scaling Relation 1 applies
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Figure 4. Periodic timing of six coupled wrist-pendulum systems as a
function of the intended phase relation. (The lower panel gives the mean
data.)

indifferently to the make-up or symmetry of coupled wrist-pen-
dulum systems (see Kugler & Turvey, 1986, for more extensive
support of this observation).

Collectively, the observations reported above suggest that
there is little to distinguish the pendular clocking mode of orga-
nization assembled (a) over in-phase components and over out-
of-phase components and (b) over components of the same
magnitude and over components of different magnitudes. On
the positive side, these observations indicate that left and right
wrist-pendulum systems, coupled so as to clock isochronously
in the comfort regime, define a unitary process. They point to
a soft assemblage and temporary sustainment of a single func-
tional entity—or coordinative structure (Kelso, Tuller, Vatikio-
tis-Bateson, & Fowler, 1984; Kugler, Kelso, & Turvey, 1980;
Turvey, Shaw, & Mace, 1978). This unitizing, or chunking, is
primarily the result of the conservational principles effecting

the transformations depicted in Figures 1 and 2. Given the mul-
tiple mass/length quantities locally (the left and right wrist-pen-
dulum systems), the conservations condense out single mass/
length quantities globally (the virtual wrist-pendulum system).
‘Whether the local components move in or out of phase and
whether they are of the same or different magnitudes does not
enter into the determination of these global single quantities to
which the coupled periodicity is lawfully linked through Scaling
Relation 1.

Composition and Fluctuations

This principled insensitivity of coupled wrist-pendulum sys-
tems to phase symmetry and composition is with respect to
mean periodic timing. In their experimental analysis Kugler
and Turvey did not evaluate whether this insensitivity extended
to other aspects of the behavior of coupled wrist-pendulum sys-
tems, specifically, fluctuations in periodic timing, mean phase
relation relative to intended phase, and fluctuations in phase.
These other aspects are analyzed in the present article. In the
immediately following paragraphs we outline reasons for ex-
pecting fluctuational differences where there are compositional
differences.

A virtual single wrist-pendulum system—and, by generaliza-
tion, any coordinative structure (see Kelso & Scholz, 1985;
Kugler & Turvey, 1986)—can be likened to a physical coopera-
tivity. In general terms, thisis a coherent, unitary state of affairs
of an ensemble that is maintained from below by the activity
of the atomisms of the ensemble and from above by the field
boundary conditions (Iberall & Soodak, in press). The “atom-
isms” in the case of a virtual single wrist-pendulum system are
the left and right wrist-pendulum systems. The “field boundary
conditions” are the subject’s intentions to swing the pendulums
isochronously, comfortably, and at a particular phase relation.
A cooperativity is demanding. It is a steady state at the level
between field boundary conditions and atomisms that is
achieved at the expense of equilibrium at the lower atomistic
level (Prigogine, 1980). In natural systems, nonequilibrium at
the atomistic level is a source of order at the next, higher level.
Let us consider a pair of wrist-pendulum systems more closely.
Both systems have a preferred period in isolation (a natural pe-
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Figure 5. Log (mean) period by log (mean) mass%?25 length-* as a func-
tion of in-phase and out-of-phase coordinations. (r = correlation co-
efficient; a = intercept; ¢ = slope.)
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Figure 6. Isochrony of coupled wrist-pendulum systems as a function of subject, coupled system, and
intended phase. (If the left and right wrist-pendulum systems were perfectly isochronous, the ratio of right

period to left period would be 1.0.)

riod). For the left system the natural period is proportional to
w; for the right system it is proportional to u,. These natural
periods define time-dependent steady states. When the left and
right systems are coupled by common “boundary conditions,”
the virtual moment variable yu, will most likely differ from both
u;and g,. This means that the stable coupled period, propor-
tional to u,, will not concur with either of the local (left, right)
preferences. Consequently, the resultant coupled period can be
achieved only by the left and right systems departing from their
preferred periods, that is, their steady states.

The S-metric (u;/py — p,/ry) introduced above provides an
index of the degree to which the atomistic level (composed of
the individual left and right wrist-pendulum systems) departs
from steady state. In natural systems, such departures are ordi-
narily accompanied by increasing fluctuations that are propor-
tional (up to a limit) to the magnitude of the departure. Conse-
quently, S and fluctuations of the coupled periodic time (the
variance s77) should be positively correlated. This is another
way of saying that the same/different composition distinction
should prove relevant to the behavior of coupled or virtual sin-
gle systems when the variances of the mean periods, rather than
the mean periods themselves, are the subjects of analysis.

Phase Symmetry and Fluctuations

Would the fluctuations in coupled periodic timing be sensi-
tive, similarly, to the in-phase/out-of-phase distinction? They

would if the two phase relations were not equally attractive (that
is, not equally stable). The early work of von Holst (1935/1973)
on coupled rhythmic fin movements of Labrus and the recent
work of Kelso (Haken et al., 1985; Kelso, 1984; Kelso & Scholz,
1985) on coupled rhythmic finger and hand movements of hu-
mans points to such an inequality. von Holst (1935/1973) de-
tected the difference in attractiveness through a consideration
of the superimposition effect relative to phase. Superimposition
refers to the influence of the amplitude of one fin rhythm gener-
ator on the amplitude(s) of the other(s) to which it is coupled.
Where one fin rhythm generator is dominant, the amplitude of
the dominated fin rhythm generator varies with phase. When
coupled, the fins of the Labrus oscillate at either one of two
phase relations, 180° apart. In one phase relation, the dominant
amplitude is added to the nondominant amplitude. In the other
phase relation, the dominant amplitude is subtracted from the
nondominant amplitude. The coupled fins gravitate to the
phase relation at which amplitudes add. The fish that von Holst
(1935/1973) studied swim with the main body axis immobile.
The pectoral fins of these fish dominate the dorsal fin. Dorsal
fin amplitude is larger when the dorsal fin’s tip displaces towards
the body as the pectoral fin’s tip displaces away from the body
than when the tips of both fins displace towards the body. Be-
cause of the different alignments of these fins to the axis of the
body of the fish, the foregoing contrast in directions of coupled
displacements amounts to a contrast between in-phase and out-
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of-phase coordinations. By von Holst’s analysis, in phase is
more attractive than out of phase.

Kelso (Haken et al., 1985; Kelso, 1984; Kelso & Scholz,
1985) reached this same conclusion through an examination of
the transition from one phase relation to the other. In the basic
experiment, human subjects oscillate the index fingers of the
two hands, or the two hands themselves, in the out-of-phase
coordination. Initially, the coupled oscillations are at a comfort-
able period. As the period is continually decreased (the oscil-
lations get faster), a point is reached at which the coordination
switches spontaneously to in-phase. Beyond this transition
point only the in-phase relation can be sustained. And continu-
ously increasing the period (slowing the oscillations), so as to
pass through the transition point in the opposite direction, does
not result in a spontaneous return to the out-of-phase coordina-
tion. Haken et al. (1985) modeled this “phase transition” phe-
nomenon with a potential function whose local minima corre-
spond to the in-phase and out-of-phase coordinations. In the
model equations for this potential function, the out-of-phase
minimum exceeds the in-phase minimum. Moreover, the out-
of-phase local minimum is annihilated at a critical periodicity.
As further support for the greater attractiveness of the in-phase
coordination, Kelso and Scholz (1985) report that the spectral
content of relative phase for out-of-phase coordination be-
comes biased, at the transition point, to the frequency band
characteristic of the in-phase coordination. A 0.8-Hz compo-
nent is strongly present in in-phase coordination at all periods.
This harmonic becomes increasingly prominent in the power
spectrum of out-of-phase coordination as the coupled period
reduces and approaches the critical period.

To reiterate, in the present article the in-phase/out-of-phase
data of Kugler and Turvey are analyzed with respect to fluctua-
tions in period and phase. On the basis of the foregoing observa-
tions, it is expected that both the composition of a virtual single
wrist-pendulum system and the phasic relation between the
components of a virtual single wrist-pendulum system will have
consequences for the system’s behavior around its mean peri-
odic timing. The analysis is performed, in part, with the help of
Wing and Kristofferson’s (1973) theory, which partitions the
periodic timing variance of rhythmic, biological movements
into two components of independent origin.

Independent Bases of “Clock”
and “Motor” Fluctuations

In the ordinary man-made pendular clock there is a dissocia-
tion of energy and period. The period of the clock is fixed by
the mechanical variables of the pendulum—its mass and
length. The energy injected into a pendular cycle, to offset fric-
tional losses and to sustain the periodic motion, is fixed by the
design of the escapement. An escapement is any process for gat-
ing the flow of energy from a potential energy source to a me-
chanical, kinetic energy sink. In man-made clocks, -escape-
ments are impulsive (they inject energy in squirts). In biological
clocks, escapements are more often continuous than discrete
(Kugler & Turvey, 1986).

Any accidental changes in the magnitudes of the pendulum
of an artifactual pendulum clock will not be accompanied by
changes in the quantity of energy injected per cycle. Kugler and
Turvey’s (1986) theoretical analysis of biological pendular
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clocks in the comfort regime similarly distinguishes between the
basis for the preferred periodic time per se and the basis for the
escapement energy through which the preferred periodicity is
realized. These bases are lawful relations of approximately the
form

T, = a(py )
E=H(f~ fi), &)

respectively. Lawful Relation 4 is a fuller form of Scaling Rela-
tion 1; if the coordinate space (see Footnote 1) that embeds the
relation between T, and u is uniform, then a is a constant co-
efficient and c is unity. In Lawful Relation 5, E is mechanical
energy, fis frequency (that is, 1/T) and f;p, is a positive quantity
representing the lower bound on the frequency range over which
a constancy of action H is realized, tailored to the magnitude of
the wrist-pendulum system. The action constant H is an adia-
batic invariant (roughly, a quantity that remains fixed during
changes that do not move the system far from steady state) of
the chemical-thermal-mechanical engine processes that power
the cycles of a wrist-pendulum system. These processes are
seated in the ensemble of muscle bundles of the radial and ulnar
flexors together with their capillary blood supplies, their lymph
supplies, their afferent and efferent nerve supplies, and the auto-
nomic nerve supplies of their arterioles (cf. Bloch & Iberall,
1982). The important point to be underscored in the present
context is that whereas Lawful Relation 5 guides the soft assem-
bling of the chemical-thermal-mechanical engine processes—
that is, the escapement—Lawful Relation 4 guides the soft as-
sembling of the neural processes whose orderly dynamics com-
pose the cycle duration. We could say, synonymously, that Law-
ful Relation 4 guides the soft assembling of a clock, as long as it
is understood that a clock is simply anything whose states are
ordered in a certain way (Bunge, 1977). The order in question
is strict partial order, that is, asymmetric and transitive, so that
no two states are concurrent (see Bunge, 1977, for the formal
definition). To be a clock, whether of the soft molded neural
kind or of the hard molded mechanical/electrical kind, requires
moveable parts. By definition, a soft molded clock cannot con-
sist of rigid parts in motion, like the hands and gears of an ordi-
nary timepiece. Nor can it, by definition, consist of electrical
signals guided along precisely defined paths. Its character more
closely approximates that of a field. And its role more closely
approximates that of a (local) frame or reference. Anything
connectible with the clock can order its states by reference to
the clock’s states. Although it is customary to think of reference
frames as rigid bodies, they need not be. A fluid field can be a
frame of reference (Dehnen, 1970).

There are, in short, two functionally distinct assemblages
(processes) supporting the periodic behavior of a wrist-pendu-
lum system. [It is noteworthy that von Holst (1935/1973), some
many years ago, drew a similar, though not identical, contrast.
He proposed a functional distinction between (a) single central
cells or populations of central cells that produce a periodic sig-
nal (now referred to as central pattern generators, see Selvers-
ton, 1980) and (b) populations of central cells, under this peri-
odic control, that transmit impulses to the muscles.] Because
both assemblages are soft molded (meaning, in part, that the
resultant neural and metabolic flows are not constrained to pre-
cisely determined kinematic paths), their respective behaviors

and
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straight ahead without looking at either wrist-pendulum system. At the
start of the experimental session, a calibration trial was conducted for
each hand so that an angular reference could be established for later use
in the analyses. These trials consisted of a subject holding a pendulum
first at 60° relative to his horizontally aligned forearms (and, therefore,
to the ground plane) and then at 90° relative to his horizontally aligned
forearms (and, therefore, perpendicular to the ground plane). A chiro-
practor’s plastic goniometer was used in determining these angles.

Upon completion of these calibration trials, the subject was given ver-
bal instructions regarding how he was to swing the pendulums. He was
asked to comfortably grip the pendulum in such a way as to have com-
plete control over the entire movement. He was also instructed to
smoothly oscillate the pendulums forward and back using only the wrist
joint (while continually keeping his forearms parallel to the ground
plane). The subject was further directed to swing both pendulums with
asingle, common tempo either in phase or 180° out of phase (depending
on the experimenter’s instructions for each trial). Importantly, the sub-
ject was told that as he first started swinging, he was to search through
a range of possible frequencies until he felt that he had settled on the
most comfortable, stable tempo. He was given as long as he needed be-
fore each recorded trial to attain this preferred state (usually 5-15 s).
When the subject felt that a comfortable tempo had been achieved, he
verbally signaled the experimenter, who then started the recording pro-
cess. Each recorded trial lasted for 15 s. After each trial had been re-
corded, the experimenter told the subject to stop swinging, and the next
set of pendulums (according to a predetermined condition ordering)
was placed into the subject’s hands. The instruction set was repeated to
each subject a number of times throughout the experiment, and each
subject’s behavior was closely monitored. The experiment lasted ap-
proximately 2% hr for each subject, including a 15-min break, which
occurred halfway through the session.

There were 12 conditions. Conditions 1-6 involved Coupled Systems
1, 2, and 3. Conditions 7-12 involved Coupled Systems 4, 5, and 6.
Within these 12 conditions, in 6 conditions the subjects swung the pen-
dulums in phase (Conditions 1, 3, 5, 7,9, and 11), and in 6 conditions
the subjects swung the pendulums out of phase (Conditions 2, 4, 6, 8,
10, and 12).

Subjects were given 8 trials per condition. The 96 total trials were
divided into 6 blocks of 16 trials each, Within each block, four condi-
tions were performed four times each. The four conditions were com-
posed of two in-phase and out-of-phase pairs, for example, Conditions
1 and 2 and Conditions 7 and 8. Trials within each block were given a
random ordering. Across subjects the order of conditions was balanced
in such a way that each in-phase/out-of-phase pair appeared an equal
number of times in each of the six blocks.

Results

The digitized trials were first analyzed by the AngS and Von-
graph waveform analysis programs at Haskins Laboratories.
The peaks and valleys of the waveforms were “picked” using
the criteria of the lowest and highest points of each cycle. Indi-
vidual and mean peak-to-peak durations were used in calcula-
tion of the trial periods, period fluctuations, and Lag 1 autocor-
relations. Mean valley-to-peak distances (in degrees) were used
in the calculation of trial angular excursion and angular excur-
sion fluctuation. The mean difference of one wrist pendulum’s
peak with respect to the other wrist pendulum’s peak was used
to calculate the trial deviation from intended phase. The data
were further analyzed by the Haskins Laboratories’ CPA pro-
gram, which continuously measures the difference of phase be-
tween the two wrist pendulums on a sample-to-sample (200/s)
basis, allowing the calculation of a fine-grained estimate of the
fluctuations of phase. Exemplary waveforms and deviation
from intended phase are shown in Figure 7.
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Figure 7. Examples of in-phase coordination and out-of-phase coordi-
nation together with point and continuous phase estimates.

In the analyses, the mean of the eight trials per condition was
used for each observation. Analyses of the observed dependent
variables of mean period, mean period fluctuation, and the
mean Lag 1 autocorrelation will be presented first, followed by
analyses of the calculated fluctuations of the motor and clock
components. Next, analyses of the mean deviations from in-
tended phase and phase difference fluctuations will be pre-
sented. All of the analyses performed (except where noted) were
four-way analyses of variance (ANOVAs) with factors of Compo-
sition (same, different), Coupled Systems (System 1, System 2,
System 3), Wrist (left, right), and Phase (in phase, out of phase).
The Greenhouse-Geisser degrees of freedom adjustment for
heterogeneity of covariance was used wherever applicable
(Geisser & Greenhouse, 1959). Where the dependent variable
is fluctuations, the standard deviation is the measure used in
the analyses and in the presentation of the means. Variance
rather than standard deviation (in deference to Wing & Kris-
tofferson, 1973) is used in the figures.

Lag 1 Autocorrelation

The mean Lag 1 autocorrelations of period are presented in
Figure 8. For all six coupled systems, the left and right Lag 1
values were negative. These negative values are a necessary con-
dition for further analyzing the period variance into its motor
and clock components: A cycle must compensate for its adja-
cent cycle’s fluctuations. The four-way ANOVA revealed signifi-
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Figure 8. Mean Lag 1 autocorrelations of the left and right subsystems of the
six coupled systems as a function of intended phase.

cant main effects of wrist, F(1, 3) = 10.55, MS, = 0.0012, p <
.05, and phase, F(1, 3) = 55.19, MS. = 0.0011, p < .01. The
effects speak to the difference in the cycle-to-cycle adjustment
for fluctuations in the two wrists and in the two modes of coor-
dination: More adjustment occurred in the left wrist (—.2407)
than in the right wrist (—.2176), and more adjustments oc-
curred with in-phase coordination (—.2542) than with out-of-
phase coordination (—.2041). The composition, however, did
not differentially affect the Lag 1 autocorrelation—same =
—.2267; different = —.2316; F(1, 3) = 0.27, MS. = 0.0021, p >
.05. The Coupled System X Wrist interaction was significant,
F(1.92,5.76) = 8.36, MS, = 0.0028, p < .05.
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Figure 9. Mean variance of the period timing of the left and right subsys-
tems of the six coupled systems as a function of intended phase.

Period Fluctuations

The four-way ANOVA yielded main effects of phase, F(1, 3) =
29.39, MS, = 11.71, p < .01; composition, F(1, 3) = 28.87,
MS, = 88.98, p < .01; and coupled system, F(1.95, 5.85) =
27.25, MS, = 59.47, p < .001. In-phase coordination showed
less fluctuation in periodic timing (39.59) than did out-of-phase
coordination (42.96). And different systems showed more over-
all period fluctuations (46.45) than same systems (36.10). Fur-
ther there was a Composition X Coupled System X Wrist inter-
action, F(1.57, 4.27) = 20.79, MS. = 22.47, p < .01. As is evi-
dent from inspection of Figure 9, the wrist that showed the most
fluctuations was not the same wrist for the three systems of
different composition. In contrast, the left wrist exhibited more
fluctuations in all three of the same systems. The thrust of this
finding is that with respect to fluctuations in periodic timing,
the different systems were less homogeneous than the same sys-
tems. In sum, the period fluctuations were differentiated by
both the mode of coordination and the composition of the cou-
pled system.>* We will now proceed to the analyses of the pe-
riod variance decomposed into its motor and clock compo-
nents.

Motor and Clock Fluctuations Combined

The first requirement was an analysis that compared the two
kinds of component fluctuations. A five-way ANOVA with fac-

2 A basic finding of Wing and Kristofferson (1973; Wing, 1980) was
not replicated here. They found that periodic fluctuations increased
with an increase in period. An analysis of covariance with a covariate
of period and factors of Composition, Coupled System, Intended Phase,
and Wrist yielded neither an overall effect of the grand mean, (1, 2) =
3.77, MS. = 2,776.4, p > .05 nor an overall effect of the period, F(1,
2) = 1.25, MS, = 3,476.0, p > .05.

3 The angular excursion means and fluctuations were also analyzed.
No significant effects of phase and composition were found.
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Figure 10. Mean motor variances of the left and right subsystems
of the six coupled systems as a function of intended phase.

tors of Fluctuation Source (motor, clock), Composition (same,
different), Coupled Systems (System 1, System 2, System 3),
Wrist (left, right), and Phase (in phase, out of phase) was per-
formed on the combined motor and clock fluctuation data. This
analysis revealed a significant Fluctuation Source X Composi-
tion X Phase interaction, F(1, 3) = 10.64, MS, = 17.65, p <
.05. The significance of this effect is that the motor and clock
fluctuations were differentially affected by phase and composi-
tion. Consequently, the sources of fluctuations can be analyzed
separately.

Motor Fluctuations

A four-way ANOVA was performed on the motor component
fluctuation data. Interestingly, there was no main effect of
phase, F(1, 3) = 2.28, MS, = 19.60, p > .05. Nor was there a
significant interaction of phase and composition, F(1, 3) = 4.59,
MS, =20.42, p> .05, as can be seen from inspection of Figure
10. In fact, in-phase coordination showed more fluctuations
than out-of-phase coordination (in-phase = 19.28; out-of-
phase = 17.91) opposite to the pattern evident in the periodic
fluctuations depicted in Figure 9. There were significant main
effects of composition, F(1, 3) = 4.00, MS, = 16.78, p < .01,
and coupled system, F(1.66, 4.99) = 9.30, MS, = 103.20, p <
.01. There were also significant interactions between coupled
system and wrist, F(1, 1.65, 4.95) = 37.26, MS, = 9.44, p <
.01) and between composition, coupled system, and wrist,
K(1.16, 3.48) = 19.51, MS, = 26.43, p < .05. These effects show
that in the motor fluctuations analysis, as well as in the periodic
fluctuations analysis reported above, the same systems were
more homogeneous in their fluctuations as a group than were
the different systems. In addition, it showed that the left-wrist
different systems were more heterogeneous than the right-wrist
different systems.

Because the motor fluctuations were not affected by phase
and because the motor fluctuations were affected by composi-
tion differently at the two wrists, one can conclude that the
mechanism underlying motor component fluctuations (a) was
unaffected by phase symmetry, (b) was sensitive to the composi-
tion of the coupled system, and (c) was defined locally at each
wrist. This latter conclusion was corroborated in part by the
absence of a significant correlation between left and right motor
variances.

Clock Fluctuations

Clock component fluctuations were subjected to a four-way
ANOVA. In contrast to motor fluctuations, clock fluctuations
differed for the two modes of coordination: out-of-phase clock
fluctuations (32.76) were greater than in-phase clock fluctua-
tions (26.17), F(1, 3) = 19.70, MS, = 52.96, P < .01. There were
also significant main effects of composition, F(1, 3) = 13.77,
MS, = 80.03, p < .03, and coupled system, F(1.93,5.78) = 5.78,
MS, = 29.89, p < .01. There was no significant Composition X
Coupled System X Wrist interaction, F(1.43, 4.30) = .23,
MS, = 52.46, p> .05. Even though the different systems showed
more clock fluctuations than same systems (same = 26.08;
different = 32.85), this difference was constant across the two
wrists (contrary to the case for the motor fluctuations). This can
be seen in Figure 11.

Because the clock fluctuations were greater for systems in
out-of-phase coordination and because clock fluctuations in
both modes of coordination were affected in the same way by
composition, it can be inferred that the mechanism underlying
clock fluctuations was (a) affected by phase symmetry, (b) sensi-
tive to the composition of the system, and (c) a unitary process
in which the two wrists were treated as a single entity. This latter
conclusion was partially corroborated by correlations between
left- and right-wrist clock fluctuations computed over individ-
ual subject data, r(46) = .26, p < .06, and over coupled system
means, r(10) = .71, p < .01.

Deviations From Phase Difference

A three-way ANOVA with factors of Composition, System,
and Phase was performed on the difference between the actual
phase relations and the intended phase relations (of 0° and 180°;
see Figure 12). The analysis was conducted on Subjects 2, 3,
and 4. The data on Subject 1 were lost prior to performance of
the analysis. There was a significant effect of composition, F(1,
2) = 22.11, MS, = 0.001, p < .05, with the different systems
showing a significantly larger phase difference (same = 8.28%
different = 24.84°). The effect of intended phase was not sig-
nificant, F(1, 2) = 0.82, MS, = 0.0003, p > .05.
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Figure 11. Mean clock variances of the left and right subsystems
of the six coupled systems as a function of intended phase.
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Figure 12. Deviation from intended phase as a function of coupled system and intended phase.

Phase Fluctuations

Fluctuations in continuous relative phase are shown in Fig-
ure 13. They were subjected to a three-way ANOVA with factors
of Composition, System, and Phase. The ANOVA revealed only
a significant effect of composition, F(1, 2) = 148.27, MS, =
0.978, p < .01, with different systems showing a significantly
larger amount of phase fluctuations (13.77) than the same sys-
tems (9.76). The effect of intended phase was not significant,
(1, 2) = 3.83, MS, = 27.08, p > .05, although there was a
tendency for out-of-phase coordination to show more phase
fluctuations.* The loss of the data of Subject 1 before the phase
fluctuation analyses were done makes the analyses of phase
fluctuations not strictly analagous to the analyses of other kinds
of fluctuations above.

Discussion

When two wrist-pendulum systems are coupled to oscillate
comfortably at the same tempo, the mean periodicity they as-
sume is governed by Lawful Relation 4. More exactly, the mean
periodic state is a function of M%2°L- or yu, where the single
mass and length quantities for the coupled system are derived
from the two mass and two length quantities of the left and right
systems through equations anchored in the conservations. The
relation between the mean periodic states of coupled wrist-pen-
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Figure 13. Mean continuous relative phase variance for
each coupled system as a function of intended phase.

dulum systems, or virtual single systems (given that a coupled
periodicity is determined by single quantities), and u is un-
affected by phase (in-phase vs. out-of-phase) and composition
(same left/right systems vs. different left/right systems). Con-
siderations of the properties of physical cooperativities and par-
ticular empirical observations (namely those of von Holst and
Kelso) suggest, however, that phase and composition—though
they may be immaterial to mean states—are strongly impli-
cated in the fluctuations about mean states. Fluctuations in pe-
riodic timing were the focal concern of the present article. A
secondary, but closely related, concern was the phase relation
itself. The individual subject’s intention was to oscillate the two
wrist-pendulum systems at either a 0° phase difference or a 180°
phase difference. The accuracy with which an intended phase
difference was achieved was measured coarsely by mean phase
and finely by fluctuations about the mean phase.

Composition and Fluctuations in Periodic Timing

Using the Wing-Kristofferson theory, we can parse the vari-
ance in periodic timing into that due to the chemical-thermal-
mechanical engine processes that power the cyclic movement
and that due to the partially ordered dynamical states (defining
a clock) that function as a reference frame for these engine pro-
cesses. The chemical-thermal-mechanical engine processes are
local. They are largely confined to the region of the immediate
source of chemical fuel from which the cycle’s mechanical en-
ergy (mainly) derives. In simpler terms, the engine processes
are localized in the musculature governing the limb segment in
question. Where two wrist-pendulum systems are coupled, two
local engine processes can be delimited. At each local site the

4 The more common measure of phase difference fluctuations is the
point estimate measure. The phase difference forming the distribution
is measured once per cycle rather than continuously throughout the cy-
cle. Point estimate phase difference fluctuations were subjected to a
three-way ANOVA with factors of Composition, System, and Phase. The
ANOVA yielded no significant effects. This negative outcome is in agree-
ment with the observations of Yamanishi, Kawato, and Suzuki (1979)
for two finger tapping.
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energy flow is conditioned, in part, by the local moment of
inertia.

There are two points in the preceding comments on the en-
gine processes or escapements that should be highlighted. First,
they are tied to local quantities. Second, and related, the engine
processes at one site are largely independent of the engine pro-
cesses at another site. On these two points engine processes and
clock processes seem to contrast sharply. Periodic timing is tied
to distributed quantities. Specifically, periodic timing is tied to
My, Which is derived lawfully from the magnitudes distributed
over the left and right wrists. Consequently, clocking processes
at one site (one wrist-pendulum system) should not be indepen-
dent of clocking processes at another site (the other wrist-pen-
dulum system).

Our goal now is to see how data and theory concur. Coupled
Systems 1, 2, and 3 were distinguished on the S measure from
Coupled Systems 4, 5, and 6. That measure, it will be recalled,
is an approximate index of the compatability between the com-
ponent wrist-pendulum systems and the virtual single system
assembled from them. Variance in periodic timing was less for
Coupled Systems 1, 2, and 3, whose S measures were identically
zero, than for Coupled Systems 4, 5, and 6 whose .S measures
(averaged over subjects) were 0.258, 0.378, and —0.457, respec-
tively. The composition of a virtual single system affected,
therefore, the magnitude of the fluctuations about its mean peri-
odic time. A local perspective on the composition variable re-
veals part of the reason for this effect. Because of the design of
the experiment, Coupled Systems 1, 2, and 3 imposed the same
demands, and Coupled Systems 4, 5, and 6 imposed different
demands, upon the left and right wrist-pendulum systems. For
Coupled System 6, for example, the u, /g, ratio (averaged over
subjects) was 1.76, whereas the p,/u, ratio (averaged over sub-
jects) was .98. In the assembling of the virtual single system, the
left system was forced to depart from its preferred steady state
much more than the right system and in a different direction
than the right system. In Coupled System 6 the left system oscil-
lated much more slowly, and the right system oscillated slightly
more quickly than preferred. For Systems 4 and 5 the opposite
was true. The ratios were g, /u; = 0.93 versus u,/p, = 1.22 and
#o/m1 = 0.96 versus p,/p, = 1.50. The inequality of these ratios
refers to an inequality in the stresses incurred locally. Thus they
should be manifest in motor variance and not in clock variance.
In corroboration, a significant Wrist X Coupled System X Com-
position interaction was observed for the motor variance but
not for the clock variance. Coupled systems whose components
were the same distinguished from coupled systems whose com-
ponents were different in that their motor fluctuations were
more homogeneous. This reflects the equality of the p,/u, and
Ko/u, Tatios in the same couplings and the inequality of these
ratios in the different couplings. The three-way interaction also
points to a greater homogeneity of motor fluctuations in the
right components than in the left components of different sys-
tems. This reflects the smaller contrast among right x ratios
(1.22, 1.50, 0.98) in Coupled Systems 4, 5, and 6 relative to
the contrast among left u ratios (0.93, 0.96, 1.76) in Coupled
Systems 4, 5, and 6. One particularly noteworthy observation
is the left versus right contrast for Coupled System 6 (see Fig-
ures 10 and 11). This contrast, markedly evident in the motor
variance, is absent in the clock variance.

The preceding discussion highlights aspects of the linkage be-

tween a virtual single system’s composition and fluctuations
around its mean periodic state. Other aspects will be noted be-
low. At this juncture we proceed to a consideration of the link-
age between phase and fluctuations about the mean periodicity.

Phase Symmetry and Fluctuations in Periodic Timing

A phase difference close to 0° or 180° is established by the
subject in accordance with the experimenter’s instructions, It is
one of the boundary conditions or constraints that the subject
brings to bear, in the form of intentions, on natural laws (in
particular those that govern oscillatory movements assembled
and sustained by biological tissues and processes). It is to be
supposed that the constraint for in-phase coordination differs
from that for out-of-phase coordination. That is, although an
underlying dynamics of periodic timing (a duration metric) is
common to the two phase relations—for both of them the mean
periodic time scales as u,—how these common dynamics are
constrained differs between the two phase relations. In other
words, the ordering of dynamic states that composes the clock
for in-phase periodic timing is not the same ordering of dy-
namic states that composes the clock for out-of-phase periodic
timing. The required strict partial ordering may be met more
easily in phase than out of phase. If it is, then the stability or
attractiveness distinction observed empirically (e.g., Kelso &
Scholz, 1985; von Holst, 1935/1973) would be rationalized.
This conjecture aside, if phase relation reduces to a constraint
on clock states, then any differential consequences of phase
should be restricted to clock variance. Let us see how the data
fared in this respect.

To begin with, both the Lag 1 autocorrelation and the vari-
ance in periodic timing (s7?) proved to be sensitive to the in-
phase/out-of-phase distinction. That is, although an effect of
phase was not found for the mean periodic times, it was found
for two quantities that reflect the fluctuations about these mean
states. The variance in periodic timing was greater (see Figure
9), and the average Lag 1 autocorrelation was smaller (see Fig-
ure 8), for out of phase than in phase. By Wing-Kristofferson’s
theory, of course, these measures are derivative rather than
pure. They are what they are because of the underlying tempo-
ral imprecision in the (softly assembled) motor and clock pro-
cesses. Each measure is jointly reflective of the two independent
processes. So the question becomes: Did phase affect both pro-
cesses or just one? More particularly, did phase affect just the
clock, as the preceding arguments would imply? Inspection of
Figures 10 and 11 suggests, and the analysis of variance con-
firms, that phase was a significant factor in clock variance but
an insignificant factor in motor variance. Clock variance out of
phase exceeded that in phase. The first conclusion we wish to
draw from this observation is that the attractiveness contrast
between in phase and out of phase noted by von Holst and Kelso
is a contrast at the global level of the softly assembled clock
rather than at the local level of the softly assembled engine or
escapement processes. As conjectured above, clocks for in-
phase coordination are perhaps more stable, generally speak-
ing, than clocks for out-of-phase coordination. A second con-
clusion we wish to draw is that a subject’s intention to swing the
wrist-pendulum systems in phase or out of phase was realized
selectively as a constraint at the global clock level. This second
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conclusion is corroborated by a further consideration of the
effects of the composition variable.

Composition and Steady-State Phase Relation

By Scaling Relation 1 or, synonymously, by Lawful Relation
4, the preferred periodic timing of an individual or right wrist-
pendulum system is determined by its x value. An individual
system’s u value, therefore, as noted in the introduction, is an
index of the individual oscillatory system’s steady state. As
such, it provides a natural unit of measure for the system. Dis-
tance from the steady state can be expressed in terms of this
unit. The left wrist-pendulum system of Coupled System 6, for
example, was displaced a distance of 1.76y,;, or 1.76 natural
units, from its steady state. In general, distance from the steady
state is given by nu, where 7 is a rational number.

Wrist-pendulum systems are individuated by their u values.
They are individuated, more correctly speaking, by their steady
states. This individuality is merely compromised temporarily,
not relinquished, when wrist-pendulum systems are assembled
into a virtual single system. This subsistence of local steady
states as local benchmarks is a most important fact. It was im-
plicitly used in the motor variance analysis. The patterning of
local motor variances was rationalized, in part, by differences
in displacements from the steady state. That individual “atom-
isms” in a cooperativity maintain their individual integrity is a
very general feature of physical, chemical, and biological phe-
nomena. It was a fact well recognized by von Holst (1935/
1973). He referred to the “maintenance tendency” of fin
rhythm generators and meant by this expression the continu-
ance of an individual generator’s intrinsic or characteristic
properties over the various locomotory organizations in which
it participated.

The “maintenance tendency” is visible in cooperative states.
The effect of displacements from the local steady states on mo-
tor variance is an example. Another is provided by the pattern-
ing of mean phase differences. The phase differences for Cou-
pled Systems 4, 5, and 6, when the intended phase difference
was 0°, were right leading by 21.24°, right leading by 29.16° and
left leading by 19.80°, respectively. The phase differences for
these same systems, when the intended phase difference was
180°, were right leading by 21.60°, right leading by 31.68°, and
left leading by 25.20°, respectively. These phase differences are
a manifestation of the “maintenance tendency”: Right-leading
differences are observed when g, < y; (the right wrist-pendulum
system oscillates faster in isolation than the left wrist-pendulum
system), and left-leading differences are observed when p; < p,.
In sum, the phase difference in the steady-state behavior of a
coupled or virtual single system reflects the time-dependent
steady states (natural periods) of its component systems. As
noted in the introduction, von Holst (1935/1973) witnessed
this phenomenon in the pectoral fin/dorsal fin phase relations
of Labrus with medulla transection, and Stein (1973) has ob-
served it in the swimmeret system of the crayfish.

To repeat, the phase relation a subject achieved and the phase
relation a subject intended were not perfectly coincident. In
particular, coupled systems whose components were different
met the intended phase relations of 0° and 180° less well than
the coupled systems whose components were the same. What
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Figure 14. von Holst’s model of a mechanical coupling of two oscillators
through a viscous medium. (See text for details.)

does the steady state phase relation indicate? Why should it be
sensitive to composition?

Establishment of Phase Differences in Nonbiological
and Biological Coupled Oscillators

Consider the coupled oscillatory system devised by von Holst
(1935/1973) and depicted in Figure 14. One oscillator is a pen-
dulum suspended from .S and composed of a weight Wp and a
bath B; the bath contains a viscous mass (e.g., a syrup). The
other oscillator is an axle A rotating around a fixed point F and
driven by a thread that is wound around a cylinder C and linked
to a weight Wa over a pulley P. At the axle’s lower end is a spheri-
cal object 0 immersed in the viscous mass. The pendulum
rhythmically moves the viscous mass to and fro. The frictional
resistance acting on the sphere, together with the weight Wa,
determine the inherent period of rotation of the axle. If the pen-
dulum is immobile, then the axle rotates evenly, producing a
sinusoidal oscillation of the recording lever La. If the pendulum
also oscillates (recorded by the lever Lp), then the axle’s peri-
odic motion is modified by the motion of the viscous mass act-
ing on the axle through the immersed sphere at the axle’s lower
end. The resultant periodicity depends upon the difference be-
tween the inherent periods of the two oscillators and the ampli-
tude of the pendulum’s motion. von Holst (1935/1973) was able
to model the essential features of the rhythmic fin movements
of Labrus with this apparatus, which mechanically couples two
oscillators through a viscous medium.
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When the amplitude of the pendulum’s motion is suitably
large, the pendulum’s period becomes the axle’s period. In von
Holst’s (1935/1973) terms, the two oscillators become absol-
utely coordinated at the tempo of the dominant oscillator. If the
axle’s inherent period is less than that of the pendulum, then it
will oscillate at the pendulum’s tempo but ahead of the pendu-
lum’s phase. If the axle’s inherent period is greater than that of
the pendulum, then it will oscillate at the pendulum’s tempo
but behind the pendulum’s phase. At equilibrium, the phase at
which the axle leads or lags the pendulum is determined by the
overall force structure. More exactly, the balance among the
different forces—the applied force, the gravitational force, and
the viscous force—is achieved at a certain phase relation. A
change in the axle’s inherent period (for example, increasing
the weight Wa), with the pendulum’s size and amplitude of mo-
tion held constant, would result in a different configuration of
the forces at equilibrium and a different phase relation. That is
to say, the coupled phase difference (a) indexes a balance of
forces (or a uniform distribution of conserved quantities) and
(b) depends on the inherent periods of the component oscilla-
tors. Forces tend to distribute evenly when the inherent periods
are the same. They distribute unevenly when the inherent peri-
ods are different. The phase difference “corrects,” so to speak,
for the uneveness. The more uneven (that is, the less uniform)
is the distribution of forces, the larger is the “correction.””

Oscillatory processes of biomechanical origin are distin-
guished from the oscillatory processes described in the pre-
ceding section by the fact that they are information based. The
steady-state phase difference between two biomechanical oscil-
latory processes reflects, nonetheless, forces in balance. These
claims require careful elaboration.

When two wrist-pendulum systems begin to oscillate to-
gether, there will be one mix of conservative and nonconserva-
tive forces centered in the left system and another mix centered
in the right system. The force conditions at one site are not
communicated in the ordinary physical sense to the other site.
By “ordinary physical sense” we mean conservation transport,
that is, the transport of the ordinary conserved quantities—
mass, momentum (linear, angular), and energy. These quanti-
ties are local in origin and remain local. The momentum and
energy of one wrist-pendulum system are not transported to
the other wrist-pendulum system. (Referring to the upper panel
of Figure 1, if the person is swinging only one of the systems,
then the other, motionless system will not be caused to move as
aresult; it will move rhythmically only if the person decides that
it should.) In contrast, momentum and energy are transported
between the two oscillators depicted in Figure 14. From this
transport arises a balanced force configuration and, a fortiori,
a specific phase difference.

Kugler and Turvey (1986) hypothesize that forces localized
to different parts of the body induce field properties of a nonki-
netic nature defined globally over the haptic system (Gibson,
1966). A local play of forces (at a wrist muscles-joint complex)
stresses, in a patterned way, the mechanoreceptors ubiquitously
embedded in the local (muscular, tendinous, ligamentous, vas-
cular) tissues. Haptic stimulation “diffuses” over the nervous
system from a local region to interact with other haptic “diffu-
sions” of local origin and with the backdrop of haptic stimula-
tion resulting from the body’s disposition relative to gravity and
surfaces of support. The consequent distribution of haptic stim-

ulation is fieldlike. But its continuously defined quantities are
not orthodox kinetic quantities. They are quantities restricted
to the dimensions of length and time. (The dimension of mass is
suppressed.) In short, the haptic field’s properties are kinematic
and/or geometric and/or temporal, not kinetic. The continu-
ously defined quantities of a kinetic field are mass based, by
definition. The distribution of forces on the body’s tissues de-
fine such a kinetic field (the dimensions of force are ML/T?).

Following Gibson’s (1966, 1979) treatment of information, it
can be argued that the haptic field’s properties are specific to
the kinetic states of affairs that lawfully generated them. The
haptic (neural) field is information about the kinetic (force)
field. Kugler and Turvey (1986) wish to argue that properties of
the haptic field will specify the attractor states of the underlying
kinetic field. That is, the time-dependent balance of forces dis-
tributed over the left and right wrist-pendulum systems will be
specified haptically. The ultimate significance of this line of ar-
gument is that where oscillators coupled mechanically through
a viscous medium are forcefully impelled to their equilibrium
phase difference, oscillators coupled intentionally through the
nervous system are informationally guided to their steady-state
phase difference. In both situations, however, the phase differ-
ence is lawfully grounded.

Implications of the Independence From Phase
Symmetry of Deviations in Intended Phase

Returning to the data, the difference between the same and
different coupled systems in terms of their departure from 0°
and 180° is interpretable as a difference in the way the underly-
ing forces configure at the steady state. For different systems
the force distribution is less uniform. Consequently, the phase
difference, that “corrects” for the unevenness, is larger. The size
of the “correction,” however, was statistically the same for the
two intended phase relations of 0° and 180°. This insensitivity
of the intended phase-actual phase difference to the intended
phase relation seems to imply three things. The first implication
is that the two intentional constraints—roughly, “left phase
equals right phase” and “left phase equals right phase plus
180°”—harness the laws governing pendular, clocking behavior
to produce tolerable phase differences rather than exact phase
differences. The in-phase and out-of-phase intentions prescribe
and maintain a general orientation of the oscillations of one
wrist-pendulum system to the oscillations of the other. The par-
ticular orientation, that is, the particular phase difference actu-
ally exhibited (0° + x° or 180° + x°) in the comfort state, is
determined by the uniformity of the force distribution which is
linked, in turn, to the local steady states of the two wrist-pendu-
lum systems. This observation suggests that an intended phase
relation between wrist-pendulum systems (or biomechanical
rhythm generators in general) of 0° or 180° will be realized per-
fectly only when the steady states of the two systems are identi-
cal. It also suggests that the two intentions of “phase” and
“comfort” can be realized simultaneously only when the steady
states of the two systems are identical.

From von Holst (1935/1973) we learn that many steady-state
phase differences are achievable by the nervous system. The
second implication of the same “‘correction” for in-phase and
out-of-phase coordinations of a given coupled system bears on
this multiplicity of phase differences. Apparently, if a given cou-



FLUCTUATIONS AND PHASE SYMMETRY IN COORDINATED RHYTHMIC MOVEMENTS 580

pling of rhythmic movements can operate comfortably and sta-
bly at a phase difference of x°, then it can operate comfortably
and stably at x° + 180°. A given coupling always has two attrac-
tor states, exactly 180° apart. From the arguments presented
above, of the two attractor states, the attractor state that is closer
to in-phase coordination, closer to 0° difference, is preferred.

The third implication is closely related to the second. The
balancing of conservative and nonconservative forces in the
steady state coupling of two wrist-pendulum systems was in-
different to the in-phase/out-of-phase distinction. This fact
points away from the locally assembled chemical-thermal-me-
chanical engine processes and toward the globally assembled
clock as the location of the in-phase/out-of-phase distinction.
To repeat the conclusion of above, a subject’s intention to swing
in phase or out of phase appears to be realized as a constraint
on the strict partial ordering of dynamical states that define the
globally assembled clock. By this conclusion, any tendencies for
continuous relative phase to fluctuate more when the coordina-
tion was out-of-phase than in-phase would be attributable to
the fluctuations of the clock. Clock fluctuations, it will be re-
called, were greater under the out-of-phase constraint than un-
der the in-phase constraint.

Summary: The Virtual Single System as
an Up-Down Cooperativity

In concluding, we return to the notions of cooperative dy-
namics and virtual single systems. There are two forms of coop-
erativity (Shimizu & Haken, 1983). The two forms may be re-
ferred to as side-side cooperativity and up—down cooperativity.
“Atomisms” or subsystems at the same level of analysis may
interact directly with each other to fashion a cooperative state.
In the case of two wrist-pendulum systems, the steady state pe-
riodicity and phase difference could derive from the oscillatory
behavior of the left wrist-pendulum system directly affecting
the oscillatory behavior of the right wrist-pendulum system,
and vice versa. von Holst’s (1935/1973) analysis of absolute and
relative coordination of fin rhythms is in the spirit of side-side
cooperativity as are most contemporary, coupled oscillator
analyses of biological rhythms (e.g., Daan & Berde, 1978; Stein,
1976). The analysis of Kugler and Turvey (1986) and that pre-
sented here are closer to the spirit of up-down cooperativity.
Atomisms or subsystems under a common field boundary con-
dition, may give rise to a macroscopic, virtual quantity. This
quantity is lawfully associated with a steady state. It is not the
steady state of the individual atomisms, but it is the steady state
onto which the individual atomisms relax. At the same time,
however, the macroscopic quantity, derived as it is from the mi-
croscopic quantities, remains sensitive to them. There is a circu-
lar (macro-micro-macro-micro- . . .) causality (Kugler & Tur-
vey, 1986; Yates, 1982).

In the case of the wrist-pendulum systems, u, is the macro-
scopic virtual quantity. It is lawfully fashioned from the mass
and length quantities of the individual wrist-pendulum systems
and lawfully related to a natural periodic time (a time-depen-
dent steady state). This virtual property is at an intermediate
level, between the boundary conditions or constraints (the sub-
ject’s intentions) “above” and the left and right wrist-pendulum
systems “below.” The left and right wrist-pendulum systems, it
is hypothesized, cooperate through their interactions with this

intermediate level. That is to say, they cooperate indirectly, in
an up-down fashion.

This up-down perspective on cooperativity suggests that we
should be able to describe the pendular, clocking mode of orga-
nization, defined over two wrist-pendulum systems, in terms of
a closed circle of descending and ascending causal influences.
The common periodic time of the two wrist-pendulum systems,
and its indifference to the phase relation between them, are in-
terpretable as consequences of the higher level to lower level
causal link. The absence, in the clock variance analysis, of any
interactions of phase with wrist or composition is interpretable
as another consequence, albeit more subtle, of downward-pro-
jected influences. In sum, with respect to cycle duration, the
interpretation from the indirect perspective is that the two
wrist-pendulum systems behaved as a single unit, synchronized
through a common set of partially ordered dynamical states
that were lawfully determined by the macroscopic, virtual prop-
erty u,. The correlation between mean left and mean right clock
fluctuations (and the absence of such a correlation for motor
fluctuations) lends support to this interpretation.

Ascending influences can similarly be identified. These
effects, caused by the atomisms (the component wrist-pendu-
lum systems), were not on u, but on the duration metric that it
lawfully engendered. Larger differences between the steady
states of the component wrist-pendulum systems, relative to the
steady state of the virtual single system, led to (a) larger clock
fluctuations and (b) larger fluctuations in continuous relative
phase. The enduring character of the component systems under
the descending influence of the macroscopic, virtual property
was evident. Motor variance was patterned by differences in the
degrees to which components departed from their preferred
steady states. Also, the magnitudes and directions of differences
in phase were determined by the steady states of the component
systems.

In sum, the pendular, clocking mode of movement organiza-
tion is interpretable as an up—down, or synergic (Haken, 1983)
cooperativity. The cooperative state of in-phase pendular, clock-
ing behavior and the cooperative state of out-of-phase pendular,
clocking behavior are basically the same in all respects but one:
The softly assembled, partially ordered dynamical states that
provide the reference frame for clocking are more stable (fluc-
tuate less) in phase than out of phase.
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Appendix

Calculating the Virtual Single-System Magnitudes

A Simple Pendulum Equivalent of a Single
Wrist-Pendulum System

An individual wrist-pendulum system is a compound pendulum re-
placeable by an equivalent simple pendulum. The length of an equiva-
lent simple system can be derived as follows, through repeated use of
Steiner’s parallel-axis theorem (e.g., sce Feynman, Leighton, & Sands,
1973):

1. The rods used in the construction of the pendulums were of uni-
form density and cross-sectional area. The constant product of density
and area was found to be 0.248 kgm™". Consequently, the mass of any
given rod was

Moq = (0.248)L,

where L was a rod’s length in meters.

2. Let the clenched hand be approximated by a disc of radius a (Fig-
ure A1, Panel a), where 2a is the width of the hand measured from the
second to the fifth carpometacarpal joints (Figure A1, Panel b).

:
&

Figure Al. Top panel shows the distance between the second and fifth
carpometacarpal joints. Bottom panel approximates the clenched hand
by a disc.

3. Let bbe the distance from the distal head of the radius bone in the
forearm to the vertical axis of a rod held in the hand so that the top of
the rod is flush with the top of the hand (Figure A2). The distances a
and b will vary with the individual subject. For the 4 participants in the
experiment the length of a was 0.0413 m, 0.0432 m, 0.0445 m, and
0.0413 m, respectively; and b was 0.0914 m, 0.0940 m, 0.0953 m, and
0.0931 m.

4. The center of mass of a rod lies at a distance of [(L/2) — a] from
the center of the hand which is at a distance & (on a line parallel to
the ground plane) from the point of rotation O in the radio-ulnar joint
(Figure A2). These distances are schematized in Figure A3. The dis-
tance from O to the center of mass of the rod is given by

Q=[P+ ((L/2) - a¥)'>
By the parallel-axis theorem the inertia of the rod about O is given by
Lioa = MoyQ? + (Moq L)/12.

5. The added masses were discs attached to a bolt through the rod.
The discs were evenly balanced on either side of the rod, allowing a
construal of the discs as a single thick disc of radius R = 0.03 m at a
distance ¢ from the lower end of the rod. The center of mass of this
“disc” is a distance P from the point of rotation O as shown in Figure
A4

P=[0+(L—a~= P

By the parallel-axis theorem, the inertia of a disc about O is
Tsise = Mgioe P* + (M 3. R?)/2.

6. According to Dempster’s (1955) and Bernstein’s (1967) calcula-
tions, the mass of a hand is approximately 0.006% of a person’s total
mass. For the participants in the experiment, the hand mass was 0.435
kg for Subject 1, 0.468 kg for Subject 2, 0.490 kg for Subject 3, and

b

Figure A2. Distance b from the vertical axis of a hand-held
rod to the axis of rotation 0 in the radio-ulnar joint.
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Mass of Rod

Figure A3. Schematic of rod giving dimensions relative
to center of mass and axis of rotation.

0.435 kg for Subject 4. The distance of the hand’s center of mass from
Ois b (Figure A2). Consequently, the inertia of a closed fist (conceptual-
ized as a disc, Figure A1, Panel a) is, by the parallel-axis theorem,

Im = Mmbz + (Mwaz)/Z.

7. By Huygen’s law the length of an equivalent simple pendulum is
given by the ratio of a compound system’s total moment of inertia to
its total static moment. Determining the latter quantity requires the
distance from the point of rotation O to the compound pendulum’s
center of mass (CM). The CM of the compound pendulum is at @ dis-
tance of Ley from the handle end of a rod as given by

Lo = Moo(L/2) + My L — ¢) + Mypanaa
Mog + Mgse + Mpang ’

The distance 4 from the point of rotation O to the compound pendu-
lum’s center of mass can then be calculated from

h=Low—ay + P]"™.

8. With & known, the length of an equivalent simple pendulum L, is
obtained from
" (Myog + Maise + Myaod)h”

Center
of . _
Mass of Disc ~& M

Figure A4. Schematic of added masses (construed as a disc) giving
dimensions relative to center of mass and axis of rotation.

9. The mass of the equivalent simple pendulum can be considered as
the summed masses of rod, disc, and hand concentrated at a point a
distance of L, from the point of suspension.

A Simple Pendulum Equivalent of a Double Wrist-
Pendulum System

A compound pendulum is usefully thought of as two or more individ-
ual pendulums, rigidly coupled so as to restrict the systems’ indepen-
dent motions to a single common natural Dperiod. Figure 3 applies the
concept of a compound pendulum organization to the double wrist-
pendulum system: Figure 3a identifies a pair of simple pendulum equiv-
alents of independent (isolated) wrist-pendulum systems and their asso-
ciated natural periods; Figure 3b identifies the pair of pendulums cou-
pled to form a double wrist-pendulum system with a single common
period; and, Figure 3c identifies the equivalent “virtual” simple pendu-
lum derived from Huygens’ law. The mass of a virtual system, M,, is
the sum of the masses of the two component systems, and the length of
the virtual system, L,, is given as

_ ML+ M,I2
* ML+ ML,’
where M, and M, are the two individual (equivalent simple pendulum)

system masses, and L, and L, are the two individual (equivalent simple
pendulum) lengths.
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