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1 Introduction i

i)
i

The production of a "simple™ utterance, such as the
syllable /ba/, involves the cooperation of a large number
of neuromuscular elements operating on different time
scales, e.g., at respiratory, laryngeal, and supralaryngeal
levels. Yet somehow, ' from this huge dimensionality, /ba/
emerges as a coherent and well-formed pattern. Similarly,
were one to count the peurons, muscles, and joints that co-
operate to produce the "simple" act of walking, literally
thousands of degrees .of freedom would be involved. Yet
again, somehow walking emerges as a fundamentally low-di-
mensional c¢yclical pattern--in the language of dynamical
systems, a periodic attractor. In physics, an infinite di-
mensional system, described by a complicated set of par-
tial, nonlinear differential equations can be reduced--when
- probed experimentally or analyzed theoretically--to a
low-dimensional deseription ([1,2]. In all these cases, it
seems, information about the system is compressed--from a

microscopic, basis of huge dimensicnality--to a macroscopic
basis of low dimensionality.

- Our particular interest is how such compression occurs
in the multidegree of freedom “actions of people and
animals. How does an internally complex system "simulate"
a simpler, lower dimensional system? As we shall see, an
important feature of our efforts to understand the control
and coordination of movement is the concept of order param-
eter [3,4, see also 5]. Order parameters define the col-
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lective behavior of the system's many components in terms
of 1its essential variables alcne; they are few in number
even in very complicated physical and chemical systems.
Note how the emphasis on discovering order parameters takes
us away from a focus on individual elements (regardless of
the level at which these elements are described): Just as
the motion of a single molecule is not relevant to the
essential description of the behavior of a gas, so too, one
Suspects, the action of a single reflex is not relevant to
the essential description of an organism's behavior.

Our focus here is on the spatiotemporal patterns formed
by the ensemble activity of neurons, muscles, and joints
during the performance of a coordinated act. As WEISSKOPF
(6] emphasizes in a different context, such problems rest
with defining relations between different aggregates of
atoms or molecules, and of the modes of transition from one
structure to another. The abstraction of a system's order
parameters is thus of paramount importance, because it al-
lows one to separate the essential from the non-essential,
thereby enabling a complex phenomenon to become more trans-
parent. This "macroscopic" strategy is brought to bear
here on our efforts to discover the principles underlying
the control and coordination of movements. In the follow-
ing we first summarize briefly evidence for the existence
of unitary processes in complex actions and denote some of
the characteristic properties of such units. From such
analysis, the phase relation among the motions of skeleto-
muscular components will emerge as a candidate order param-
eter. We then contrast various theoretical notions about
pattern generation in movement and introduce some recent
evidence in favor of a synergetic approach. Synergetics
motivates the treatment of complicated biological motion as
fundamentally a cooperative phenomenon. 1In support of this
view, certain kinds of activities will be shown to display
the features of a nonequilibrium phase transition.

2 A Unitary Process (Coordinative Structure)

For the Soviet physiologist BERNSTEIN [7], the existence of
a large number of potential degrees of freedom in the motor
system precluded the possibility that each was controlled
individually at every point in time. Rather, he hypothe-
sized that the central nervous system (CNS) "collects"
multiple degrees of freedom into functional units that then



behave, from the perspective of control, as a single degree
of freedom. During a movement, the internal degrees of
freedom are not controlled directly, but constrained to re-
late among themselves in a relatively fixed and autonomous
fashion. But is it, in fact, the case that in coordinated
actions, the many neuromuscular components actually func-
tion as a single degree of freedom?

Support for the hypothesis that a group of relatively
independent muscles and joints forms a single functional
unit would be obtained if it were shown that a challenge or
perturbation to one or more members of the group was, dur-
ing the course of activity, responded to by other remote
(non-mechanically linked) members of the group. We have
recently found that speech articulators (lips, tongue, jaw)
produce functionally specific, near-immediate compensation
to unexpected perturbation, on the first occurrence, at
sites remote from the locus of perturbation [8]. The re-
sponses observed were specific to the actual speech act be-
ing performed: for example, when the jaw was suddenly per-
turbed while saying the syllable /baeb/, the 1lips
compensated so as to produce the final /b/, but no compen-
sation was seen in the tongue. Conversely, the same
perturbation applied during the utterance /baez/ evoked -
rapid and increased tongue muscle activity (so that the ap-
propriate tongue-palate configuration for a fricative sound
- was achieved) but no active lip compensation.

Recent work has also varied the phase of the jaw pertur-
bation during bilabial consonant production. Remote reac-
tions in the upper lip-were observed only when the jaw was
perturbed during the closing phase of the motion, that is,
when the reactions were necessary to preserve the identity
of the spoken utterance. Thus the form of cooperation ob-
served is not rigid or "hard wired": the unitary process
is flexibly assembled to perform specific functions (for
additional evidence in other activities, see [8]). Else-
where we have drawn parallels between these findings and
brain function in general [5]. Just as groups of cells,
not single cells are the main units of selection in higher
brain function [9], so too task-specific ensembles of neu-
romuscular elements appear to be the significant units of
control and coordination of action.



Stunning evidence attesting to this self-organizational
style of neural and behavioral function comes from recent
microelectrode studies of somatosensory cortex in adult
squirrel and owl monkeys by MERZENICH and colleagues (see
(10] for review): when the middle finger of the monkey's
hand was surgically removed, brain regions representing the
other adjacent fingers progressively shifted (over the
course of a few weeks) into the missing finger's hitherto
"exclusive brain region. Also, if a portion of cerebral
cortex was injured, the appropriate somatosensory '"map"
moved to the region surrounding it--a spatial shift of
nerve cell activity as it were. These data challenge a
view of neural functioning that is determined by
"hard-wired" or "fixed" anatomic connections established
before or shortly after birth. Just as we have observed
rapid "soft" forms of compensation in speech production, so
it seems, the brain has a functionally fluid, self-organiz-
ing character that allows longer-term compensation for in-
Jury.

3 Characteristic Properties Of A Unitary Process

A main way to uncover the intrinsic properties of a func-
tional unit of action is to transform the unit as a whole
(e.g., by scaling on movement rate; amplitude etec.) and
search for what remains invariant across transformation.
The discovery of such "relational invariants" (e.g., [11])
could provide a useful step toward explicating the design
logic of the motor system.

Much evidence now exists from a wide variety of movement
activities that relative timing among muscles and kinematic
components is preserved across scalar changes in force or
rate of production. For example, when a cat's speed of
locomotion increases, the duration of the "step cycle"
decreases [12,13] and an increase in activity is evident in
the extensor muscles during the end of the support phase of
the individual 1limb. Notably, this increase in muscle
activity (and corresponding development of propulsive
force) does not alter the relative timing among functional-
ly linked extensor muscles, although the duration of their
activity may change markedly (see [12,13] for reviews).




Interestingly, there is some limited evidence that this
style of organization applies also to speech production.
What makes a word a word in spite of differences among
speakers, dialects, intonation patterns and so on? Our
view is that the key to this question lies in understanding
how the coordinated movements of the vocal tract articula-
tors structure sound for a listener. According to this
view, the invariance which allows us to perceive the sounds
of a language in so many different contexts exists in the
functionally-defined behavior of the articulatory system.
But how 1is such ©behavior to be described? It |is
well-known, for instance, that the same word has markedly
different kinematic, electromyographic, and acoustic
attributes when produced in different contexts. A solution
to this dilemma may lie in the finding by TULLER, KELSO,
and HARRIS [15] that the relative timing of activity in
various articulatory muscles is preserved across the very
substantial metrical changes in duration and amplitude of
muscle activity that occur when a speaker varies his/her
speaking rate and stress pattern (for evidence in other mo-
tor skills see [14]). An important extension of these ear-
lier EMG findings is the discovery that the relative timing
of articulator movements is stable across different speak-
ing rate and stress patterns. Presently, these results ap-
ply to the cooperative relations among lips, tongue, jaw
and larynx (see [16] for review).

How is the relative timing invariant to be rationalized?
A popular view is that time is metered out by a central mo-
tor program (see below) which instructs the articulators
when to move, how far to move and for how 1long. A
reconceptualization and consequent reanalysis of the TULLER
and KELSO [16] data, however, strongly suggests that time,
per se, 1is not directly controlled. Using phase plane
techniques to represent the motions geometrically, we have
shown that critical phase angles--relating one articula-
tor's position-velocity (x,%) state to another--appear to
be most crucial for orchestrating the coordination among
articulators [17,18]. The beauty of this gestural phase
analysis (which is autonomous and does not require an ex-
plicit representation of time) is that it provides a topo-
logical description of articulatory behavior that remains
unaltered across manifold speaker characteristics. Moreo-
ver, critical phase angles are revealed by the flow of the
dynamics of the system, not externally defined. Thus, they



can serve as natural sources of information for guarantee-
ing the stability of coordination in the face of scalar
(metrical) change (for more details, see [18]).

Finally, there is a strong hint that phase constancy re-
flects an evolutionary design principle. From the
invertebrates, in which many groups employ large numbers of
propulsive structures (limbs, tube feet, or cilia) for
- swimming and locomotion, to the vertebrates which walk, run
or jump using one, two, three or four pairs of legs, the
same design property 1is apparent, viz. all of these
creatures possess processes that communicate information
about the phase of activity among component structures
[19,20]. Below we will develop in more detail the notion
that phase is an essential parameter of complex, coordinat-~
ed action. Suffice to emphasize at this point that a phase
constancy indicates a functional constraint on movement,
what we call a coordinative structure or unit of action
(ef. [21,22,23,24]). Thus, during an activity the
spatiotemporal behavior of individual components is con-
strained within a particular relationship. Flexibility can
then be attained by adjusting control parameters over the
entire unit.

4 Theories of Pattern Generation

The core idea expressed in Sections 2 and 3 above--that a
system possessing a large number of potential degrees of
freedom is compressed into a single functional unit of ac-
tion (or coordinative structure) that requires few control
decisions 1is unorthodox. It differs in significant ways
from more conventional treatments of movement which are
based on either the information processing notion of a mo-
tor program or the neurally-based notion of a central pat-
tern generator. The motor program, by definition, is an
internal representation of a movement pattern that is
prestructured in advance of the movement itself. Analogous
with a computer program, it constitutes a prescribed set of
instructions to the skeletomuscular system. In MACKAY's
[25] analysis of a dynamic activity, the locomotory step
cycle, the many kinematic details are ordered a priori by a
sequence of commands/instructions to the skeletomuscular
apparatus whose role is to implement these instructions.
The format of the program is that of a formal machine; sym-



bol strings are employed to achieve (or explain) the order
and regularity of the step cycle. As in most programming
accounts; the control prescription is highly detailed and
the role dynamics play in fashioning the pattern is ig-
nored. So also is the interface between the small-scale
"informational" contents of the program and the
large-scale, energetic requirements of the muscle- Jjoint
system. Finally, the contents of the program are not ra-
tionalized: a principled basis for selecting desired quan-
tities (e.g., apply flexion torque for 100 ms) is omitted.

The neural counterpart of the motor program is the cen-
tral pattern generator (CPG). Here too, the order and
regularity observed in the world is attributed to a device
inside the CNS (a neural circuit) that when activated coor-
dinates the different muscles to produce movement [26].
Though subject to feedback influences, the circuit is
"hard-wired" and the goal is to locate the neurons that
constitute the network and to define their properties and
interrelations. Though an admirable enterprise, there are
questions about its propriety. For example, the parameter
space of a CPG, e.g., the membrane properties of its ele-
ments, synaptic connections, ete. has been variously
estimated to be 46 or 55 (compare [27] to [28]; also [29]).
Presumably not all of these are necessary to understand a
CPG, but principles beyond those of neurophysiology are
surely needed to guide the selection of relevant parameters
in such a high-dimensional space. As LOEB and MARKS [30]
emphasize, principles of operation constitute the knowledge
for understanding a CPG and these are disembodied from the
actual device (or its model). 1In addition, even if all the
details of a putative CPG were known, the problem of relat-
ing the known microproperties to characteristic
macroproperties such as the amplitude, phase and frequency
of a wing beat or a step cycle would still remain.

The question then is this: where do the necessary
principles come from? For some years now, we have advocat-
ed an approach in which problems of biological motion are
treated in a manner continuous with cooperative phenomena
in other physical, chemical, and biological systems, i.e.,
as synergetic or dissipative structures [5,31,32]. Common
features of the latter are that--like movement--they con-
sist of very many subsystems. Unlike the theoretical ap-
proaches discussed above, however, where the emphasis is on



detailed prescriptions for control, in synergetics, when
certain conditions (sc-called "controls") are scaled up
even in very non-specific ways, the system can develop new
kinds of spatiotemporal patterns. The latter are main-
tained in a dynamic way by a continuous flux of energy (or
matter) through the system [4]. Although there is pattern
formation in the nonequilibrium phenomena treated by
synergetics, e.g., the hexagonal forms produced in the
Bénard convection instability, the transition from incoher-
ent to coherent light waves in the laser, the oscillating
waves of the Belousov-Zhabotinsky chemical reaction, etc.,
there are strictly speaking no pattern generators. That
is, the emphasis is on the lawful basis, including the nec-
essary and sufficient conditions, for pattern formation to
oceur. The explanation is derived from first principles:
it never takes the form of introducing a special mechan-

ism--like a motor program--that contains or represents the
pattern before it appears.

5 Phase Transitions in Biological Motion

There are already strong hints in the motor system's
literature that a highly detailed prescription from higher
neural centers is-not necessary to produce either a stable
spatiotemporal pattern (say among the legs of a locomoting
animal) or an abrupt change in ordering among the legs, as
in locomotory gait changes. An early indication comes from
remarkable experiments by VON HOLST [19] on the centipede
Lithobius. By amputating leg pairs until only three such
pairs were left, von Holst transformed the centipede's gait
(a pattern in which adjacent legs are about one-seventh out
of phase) into that of a six-legged insect. Further, when
all but two pairs of legs were left, the asymmetric gaits
of the quadruped were exhibited. It is hard to imagine
that the nervous system of the centipede possessed stored
programs or pattern generators for these gaits in anticipa-
tion of its legs being amputated by an innovative experi-
menter. Rather, given a novel configuration, the system
appears to adopt spontaneously those modes of locomotion
that are dynamically stable. Synergetics attempts to pre-
dict exactly which new (or different) modes will evolve in
complex systems particularly when the system undergoes
qualitative macroscopic changes [4].



More direct evidence that rather diffuse inputs ("con-
trols") can lead to highly ordered behavior comes from Rus-
sian studies on (decerebrate) locomoting cats [33]. A
steady increase in midbrain electrical stimulation was
sufficient not only to induce changes in walking velocity,
but also--at a critical stimulation level--abrupt gait
changes as well. Interestingly, unstable regions were also

noted in which the cat vacillated between ¢trotting and
galloping.

A final clue suggesting that gait transitions belong to
the class of nonequilibrium phase transitions comes from
work on the energetics of horse locomotion. It is
well-known that animals use a restricted range of speeds
(within a given gait) which corresponds to minimum energy
expenditure. HOYT and TAYLOR [34], however, forced ponies
to locomote away from these "equilibrium states" (see
Fig. 1) by increasing the speed of a treadmill on which the
ponies walked. As shown in Fig. 1, it becomes metabolical-
ly costly for the animal to maintain a given locomotory
mode as velocity is scaled: For example, the walking mode
becomes unstable, as it were, and "breaks" into a trotting
mode (the next local minimum). Likewise, it is energeti-
cally expensive to maintain a trotting mode at slow
velocities, a fact that appears to require switching into
the walking mode (although no data on hysteresis are giv-
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en). As in many other systems treated by synergetics, when
a critical value is reached, the system bifurcates and a
new (or different) spatiotemporal ordering emerges. Note
that in Fig. 1 these locomotory mode changes are not
necessarily hard-wired or deterministic. Horses can trot
at speeds at which they normally gallop, but it is metabol-
ically costly to do so.

The notion that gait shifts correspond to instabilities
that arise as the system is pushed away from equilibrium
would be greatly enhanced if qualitatively similar phenome-
na were observed in other types of activities--perhaps even
of a less stereotypical "innate" kind than locomotion. The
remainder of this paper will be devoted to the elaboration
of a phase transition that occurs in voluntary cyclical
movements of the hands [11,35]. Below we will describe the
phenomenon and illustrate briefly how it has been modeled
using concepts of synergetics and the mathematical tools of
nonlinear oscillator theory [36]. Finally, we will show
that the phenomenon contains some of the principal features
of other nonequilibrium phase transitions in nature.
Interestingly, this synergetic account not only handles a
variety of phenomena typically described by motor pro-
grams/CPG accounts, but generates new predictions that have
not come to light from either of these theories.

6 Nonequilibrium Phase Transitions In Bimanual Action

6.1 The Basic Phenomenon [5,11,35]

Consider an experiment in which a human subject is asked to
cycle his/her fingers or hands at a preferred frequency us-
ing an out-of-phase, antisymmetrical motion. Under
instructions to increase cycling rate, it was observed that
at a critical frequency the movements shifted abruptly to
an in-phase, symmetrical mode “involving simultaneous
activation of homologous muscle groups. When the transi-
tion frequency was expressed in units of preferred frequen-
¢y, the resulting dimensionless ratio or critical value was
constant for all subjects, but one {(who was not naive and
who purposely resisted the transition-~although with cer-
tain energetic consequences, see [35]). A frictional re-
sistance to movement lowered both preferred and transition
frequencies, but did not change the critical ratio (71.33).



As an interesting aside, the ratio of transition speed to
preferred speed for walk-trot and trot-gallop gait shifts,
shown in Fig. 1, also gives a value "1.32. This dimension-
less number (analogous, perhaps to a Reynolds' number in
hydrodynamics) may provide a rough estimate of "distance
from equilibrium.”

In summary, the main features of the bimanual experi-
ments are: a) the presence of only two stable phase (or
"attractor") states between the hands (see also [23,37],
for further evidence); b) an abrupt transition from one
attractor state to the other at a critical, intrinsically
defined frequency; c) beyond the transition, only one mode
(the symmetrical one) is observed; and d) when the driving
frequency 1is reduced, the system does not return to its
initially prepared state, i{.e., it remains in the basin of
attraction for the symmetrical mode.

6.2 Modeling [36]

In complex systems it is clearly hopeless to try to inves-
tigate the motion of each microscopic degree of freedom.
Rather the challenge is to identify and then lawfully re-
late singular macroscopic quantities to the interactions
among very many sub-components. Close to instability
points, it can be shown that the the behavior of the whole
system is determined by one or a few order parameters [3].
Such order parameters are not only created by the coopera-
tion among the individual components of a complex system
(e.g., by the interactions among atomic spins in a magnet),
but in turn govern the behavior of those components (e.g.,

the magnetic field 1is an order parameter for a
ferromagnet).

Identifying order parameters, even for physical and
chemical systems, is not a trivial manner. Certain guide-
lines exist, however, which can be used for the selection
of viable candidates. Two such selection criteria are: 1)
the order parameter, by definition, changes much more slow-
ly than the subsystems, i.e., its time constants are much
longer than the time constants of the components; and 2)
the order parameter's long term behavior changes qualita-
tively at the critical point.



In the case of our bimanual experiments and, we suspect,
many other kinds of biological motion also, relative phase,
¢, meets these criteria quite well (cf. Section 3.0), Us-
ing relative phase as an order parameter, HAKEN, KELSO, and
BUNZ [36] modeled the bimanual data by specifying a poten-
tial function, V (corresponding to the layout of attractor
states defined above) and showed how that function was de-
formed as a control parameter (corresponding to driving
‘frequency) was changed. The choice of V--a superposition
of two cosine functions--represented the simplest form that
could describe the pattern of results. The series of
potential fields generated for varying values of b/a (the
ratio of the cosine coefficients) is shown in Fig. 2.
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Fig. 2. The potential V/a for the varying values of b/a.
The numbers refer to the ratio b/a {(from [36]).

It can be seen that at a critical value, w,, the system
jumps into a local minimum, i.e., there is a transition
from the anti-phase' mode (¢ = =-7) into the symmetric,
in-phase mode, ¢ = 0. Moreover, the system stays in that
minimum even where the driving frequency is reduced below
Wa, thus exhibiting hysteresis.

In a following analysis, HAKEN et al. [36] used nonline-
ar oscillator theory to show how the model equations for
the potential function could be derived from equations of



motion for the two hands and a nonlinear coupling between
them. Since the details are published we simply illustrate
briefly some recent results of a consequent computer simu-
lation (see also [36], Figs. 6 and 7).

In Fig. 3, Lissajous portraits of the coupled oscillators
are shown. The equations describing the motion are

£, 4 (X2 = D%, + kx, = alX, - %) + 8(X, - %,)(x,-%,)2
* Fnoise (M

Ry + (X3 - DX, + kx, = alk, = X,) + B(X, - X,)(x,-x,)?
noise

In (1) ~and (2) above, the LHS corresponds to a Ray-
leigh-type, nonlinear oscillator (Equation 3.6 of [36]);
the RHS 1s a Van der Pol coupling term plus some noise to
simulate fluctuating forces (Equation 3.25 of [36]). The
only difference between the two simulations lies in the
magnitude of fluctuations. Indeed, the transition shown in
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Fig. 3. Lissajous portrait of behavior of two coupled

' Rayleigh oscillators (see text for details). In-

trinsic frequency continuously scaled. Initial

conditions of simulations: x, = 25°, x, = -25°, %,

= X, = 0, A and B differ only in level of noise
component (Bruce Kay performed the simulations).



Fig. 3(b) is remarkably like the behavior we observe typi-
cally (see e.g., [51). Though we have not made a full
study of the effects of initial conditions, coupling param-
eters and fluctuations, our impression is that--given
sufficient coupling strength--fluctuations play a major
role. Suffice to note at this point that the model cap-
tures not only observed decreases in hand movement ampli-
tudes as w 1is increased, but also the abrupt change in
qualitative behavior from antisymmetric to symmetric modes.

6.3 Theoretical Underpinnings

If the bimanual phase transition constitutes a critical
instability far from equilibrium then certain specific
predictions can be generated regarding the system's behav-
ior near the transition. In particular, the hypothesized
order parameter (relative phase) should exhibit at least
two major properties: 1) critical slowing down as the
transition is approached, i.e., the relaxation time of the
order parameter to any perturbation should diverge at the
transition. 1In general, the system exhibits a symmetry
breaking instability, i.e., a constraint arises during the
transition that restricts the future configuration of the
system; and 2) enhanced fluctuations of the order parameter
in space and time near the transition. The data presented
next represent a preliminary attempt to explore the degree
to which these theoretical predictions may or may not apply
to phase transitions in hand movements.

6.4 New Experiments

Two kinds of experiment were performed. In each, subjects
were seated comfortably with pronated forearms, supported
up to the metacarpal heads of the hand. The forearm was
stabilized to restrict movement to the fingers alone. .On
each trial, the subject oscillated the index finger
bilaterally in the transverse plane (i.e., abduction-adduc-
tion). Continuous finger displacement in the transverse
and parasagittal (i.e., flexion-extension) planes was mea-
sured using a modified Selspot camera system. The
"electromyographic (EMG) activity of the right and left
first dorsal - interosseous (FDI) muscle was obtained with
platinum fine-wire electrodes (see Fig. 4). All data were

recorded on 12-channel FM-magnetic tape recorder for later
off-line computer analysis.
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Fig. 4., General experiment set-up for recording EMG. Sup~
port splints not shown (drawing by C. Carello).

Initially, subjects were instructed to move in one of
two ways: oscillation of the right (R) and left (L) index
fingers in either 1) the symmetrical mode or 2) the
antisymmetrical mode, at their preferred rate. The fre-
quency of oscillation was gradually increased to a maximum
of approximately 3.5 Hz. In Experiment 1, the frequency of
oscillation was increased every 2-3 sec by asking the sub-
Ject to slightly increase his rate. Thus, the rate of in-
crease was not strictly controlled. In Experiment 2, the
frequency of oscillation was systematically increased in
0.25 Hz steps every 4 seconds paced by a metronome. Data
from trials in this experiment could therefore be averaged
in time. Averages for Experiment 1 required alignment of
trials by similar frequencies of oscillation. However, de-
spite the lack of exact frequency equivalence, results from
the two experiments are surprisingly consistent.

6.5 Order Parameter Behavior

6.5.1 Critical Slowing Down

The time series of one trial of finger oscillation, when
the system is prepared initially in the antisymmetrical



mode, . is depicted in Fig. 5a (note: the figure shows only
a portion of the trial in the vicinity of the phase transi-
tion). Here, one can clearly see the transition to the
symmetrical mode with an increase in the frequency of
oscillation. In Fig. 5b a point estimate of relative phase
for the same sample record, based upon the peak displace-
ment of the R and L fingers, is shown. A slow oscillation
in phase, particularly before the transition, is evident.
As the transition is approached the frequency of this phase
oscillation slows; the system takes longer and longer to
return to its stationary state from a small deviation.
This finding is a consistent feature of the experiments and
is taken as preliminary evidence for the phenomenon of
critical slowing down. Future work will calculate the
relaxation time of the hypothesized order parameter

explicitly using correlation techniques and perturbation
experiments.
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A continuous estimate of relative phase may be found in
Fig. 5c, based upon the continuous phase angle difference
between each oscillator. Note that this estimate reveals
some of the microscopic details of the phase fluctuations,
while preserving the slow modulations in phase described
above. A clear reduction in these fluctuations occurs
following the transition. All remaining data on relative

phase to be reported are based upon this continuous esti-
mate,

6.5.2 Enhancement of Fluctuations

An important feature of critical phenomena is the increase
in variance of the order parameter near the phase transi-
tion. The system is said to become "soft" and thus unable
to suppress critical fluctuations. The variance of the
order parameter in the finger experiment is presented in
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Fig. 6. The SD of continuous phase was calculated in the
stable regime with the transient removed, i.e., over the
last 3 seconds (= 600 data points) of oscillation at each
frequency. Each point on the graph represents an average
of 10 trials from Experiment 2. Mean phase is presented as
well,

Consideration of trials in which the system was initial-
ly prepared in the antisymmetrical mode reveals a clear in-
crease in relative phase fluctuations as the transition is
approached. The phase variance maximum at the transition
is somewhat artifactual, since the phasing must change in
order for a new mode to be exhibited. Note also that after
the transition the variance eventually stabilizes at a
lower 1level (corresponding to the symmetrical mode) than
before the transition. So-called control trials in which
the system is initially prepared in the symnetrical mode,
exhibit no such fluctuational amplification with increasing
driving frequency. These findings are therefore consistent
with theoretical predictions and the results of the nonlin-
ear oscillator modeling shown earlier.

Order parameter dynamics can be further explored by exa-
mining the spectral content .of relative phase. Each sample
record of continuous relative phase was divided into eight
segments corresponding to the increments in driving fre-
quency. The power spectral density function (PSDF) of each
segment was then determined by Fast Fourier Transform.
Average PSDFs were obtained for trials in which subjects
were initially prepared in the antisymmetrical mode, as
well as those prepared in the symmetrical mode, The re-
sults are displayed in Fig. 7. The DC component has been
removed from each plot, since it represents the mean phase
value, and overwhelms the other components, particularly in
the anti-phase mode. :

Fig. 7a .displays the average PSDF for trials initially
prepared in the antisymmetrical mode. Note that as the
driving frequency (w) increases, a gradual increase in the
frequency of the dominant spectral peak occurs. This in-
crease appears to represent, in part, the influence of the
driving frequency. Just prior to the transition, at 2.25
Hz, a dramatic increase occurs in the amplitude of the low-
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Fig. 7. Average PSDF of continuous measure of relative
’ phase computed at each driving frequency (w) for

trials prepared in A, antisymmetrical and
B. symmetrical modes.

est frequency band, 0.8 Hz, along with the disappearance of
higher frequency components. The stippled PSDF represents
the transition region alone and reveals spectral broaden-
ing. With further increases in driving frequency the spec-

trum remains relatively broad and 0.8 Hz remains as a
strong harmonic.

The average PSDF of trials initially prepared in the
symmetrical mode is shown in Fig. 7b. While higher spec-
tral components are present as the driving frequency is in-
creased, the 0.8 Hz component is always strong, even at low
driving frequencies. Driving frequency appears to have
relatively less effect on the PSDF of the symmetrical mode
than that of the antisymmetrical mode. The dramatic in-



crease in the amplitude of the 0.8 Hz component in the
antisymmetrical mode just prior to the phase transition may
represent the "swamping" of this mode's energy by that of
the more stable symmetrical mode. That is, the longest
lasting mode--symmetrical, in-phase--appears prominently
before the transition itself. Though this interpretation
is speculative at present, there does seem to be evidence
that the antisymmetrical mode "feels" the driving frequency
move strongly than its in-phase counterpart condition. In
the language of synergetics, the order parameter is "slav-

ing" 1its components less strongly in the former case than
the latter.

6.6 Exploring the Neuromuscular Basis of the Transition

6.6.1 The n Parameter

In order to determine the extent to which changes in EMG
activity map onto those of the hypothesized order parameter
already described, the parameter n was calculated. Fig. 8a
shows how this was done. R, and L, were obtained for each
cycle of a sample record by determining the percent of to-
.tal mean rectified EMG of one FDI that overlapped in time
with that of the contralateral FDI. Note that n is thus a
sample estimate of the total energy of motor unit activity
within a time interval defined by the phase between the
fingers. It therefore constitutes a way of observing how
the "microscopic" quantities relate to the macroscopie
phasing parameter. A plot of n vs. time (and increasing
frequency) for one representative trial is provided in
Fig. 8b. The change in n maps quite nicely onto the change
in the kinematic order parameter, as might well be expect-
ed. The n parameter change appears to occur more abruptly

as compared to the change in relative kinematic phase, how-
ever,

6.6.2 EMG Autocorrelograms

One question concerns the nature of the neuromuscular
reorganization underlying these phase transitions. In a
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preliminary attempt to examine this issue we looked at the
autocorrelograms of mean rectified EMG for RFDI and LFDI,
assuming they provide a measure of the temporal coherence .
of an individual muscle's activity. Two second segments of
sample records prior to, during, and immediately following
the transition were analyzed. The calculation of each sam-
ple autocorrelogram was adjusted according to the oscilla-
tion frequency of the fingers so that the same number of
peaks occurred in each function. The mean value of the
peaks in each function and their coefficient of variation

were calculated as measures of temporal coherence. Both
measures yielded similar results.



The mean peak autocorrelation of seven trials (Experi-
ment 1) is presented in Fig. 9. The striking finding is
the similarity between the coherence measures of the RFDI
and LFDI before and after the transition, and their
divergence at the transition. In the former two cases,
even when the temporal coherence of one muscle is low, the
contralateral FDI exhibits similar behavior. The correla-
tion between the temporal coherence measures before and
after the transition was above 0.90. This presumably in-
dicates a tight coupling of their activity patterns, even
when operating antisymmetrically. By contrast, one muscle
always becomes more or less coherent in the transition re-
gion. Here, correlation of the R and L coherence measure
was low, negative and non-significant. Note also that the
muscle showing the lowest coherence, and the direction of
coherence change (compare with pre-transition measures) is
never the same from trial to trial. Therefore, the under-
lying neurophysiologial mechanisms do not appear to be
strictly deterministic as one might assume from a program-
ming model of phase transitions.
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Fig. 9. Measure of temporal coherence of right FDI (@) and
left FDI (O) 2 sec before, during, and 2 sec after
phase transition (see text for details).



6.7 Second Kinematic Phase Transition

As subjects move toward the upper extremes of oscillation
frequency used in these experiments (~3.25-3.5 Hz) we have
observed that a second instability occurs +irrespective of
the initial mode in which the subjects are prepared.
In-phase modal behavior in the horizontal plane Dbecomes
unstable and gives way to a similar pattern in the vertical
plane. A sample record of such an event is shown in
Fig. 10 in which the displacement of each finger in both
horizontal and vertical planes is plotted versus time (and,
therefore, inereasing oscillation frequency). Motion
frequently becomes rotary in nature Dbefore simultaneous
flexion-extension occurs. Further analysis, using compar-
able procedures to those described above, is underway.

SECOND KINEMATIC PHASE TRANSITION
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Fig. 10. Time series of oscillation of R and L index finger
in horizontal (abduction-adduction) and vertical
(flexion-extension) planes for oscillation fre-
quency above 3 Hz. See text for details.



Note that in this situation there is an additional de-
gree of freedom available for energy dissipation. Thus a
new (or different) configuration among the oscillatory com-
ponents can occur--an additional basin of attraction ap-
pears spontaneously. The basis for this second transition
is not altogether clear and requires further exploration.
It may be determined, in large part, biomechanically,
linked to the relaxation times of the participating muscles
(i.e., FDI and first palmar interosseous, FPI). As the
frequency of oscillation increases the relaxation times be-
gin to exceed the 1/2 period of each cycle, resulting in
maximum agonist-antagonist coactivity [38]. Energy can no
longer be dissipated through motion in the transverse
plane. However, because the experiment left open an addi-~
tional degree of freedom, parasagittal motion, the system
adopts this new configuration, apparently in order to dis-
sipate the increasing energy. Both the FPI and FDI have
lever arms which provide contribution to finger flexion.
The extent to which the long finger flexors and extensors

are also facilitated cannot be determined by .the present
data.

7 Concluding Remarks

Neuroscience has not looked seriously to contemporary phy-
sical theory for ways to think about brain-behavior rela-
tionships. And, with few notable exceptions (this confer-
ence being one, see also [39]), physics has made little
contact with organic phenomena. Here we have shown in a
very preliminary fashion--how some of the tools and
concepts of nonequilibrium phase transitions may offer in-
sight into the emergence of space-time order at a macro-
scopic level. In our simple experiments we have begun to
identify some of the main features of non-equilibrium
transitions, including symmetry breaking, critical slowing
down, and enhancement of fluctuations. Further work--both
theoretical and experimental--will be necessary to converge
on these and other characteristics, e.B., identification of
the system's time scales and especially measurement of mode
relaxation times using correlation functions and perturba-
tion techniques, classification of the stochastic nature of
fluctuations, exploring the system's sensitivity to param-
eter change, etc.



The central thrust here, of course, is to understand co-
ordination in the multi-degree-of-freedom motions of
animals and organisms. Even if we knew all the microscopic
details about the system's components we would still need a
lawful description of how the components relate among them-
selves. An attraction of synergetics is that it deals with
the formation of functional structures based on the
cooperation among the system's many individual components.
The theory achieves its full rigor when the system's behav-
lor changes qualitatively, when newly emerging patterns are
defined solely in terms of a few characteristic quantities,
the so-called order parameters. A chief mechanism for the
emergence of order lies in the competition between energy
flowing into the operational components (i.e., a scaling
influence) and the ability of those components to absorb
the energy flow in their current configuration. As we have
shown here (see e.g., Section 6.7) in the case of certain
biological motions, higher bifurcations are possible if the
' system has available additional degrees of freedom, i.e.,

when a given configuration can no longer absorb the energy
input. Moreover, fluctuations may permit the system's dis-
covery of new modes or phasing structures.

If nature operates with ancient themes, as we suspect,
then the same laws/strategies should appear at every level
of description, and despite differences in material struc-
ture. Thus, the reductionism advocated here is not to any
privileged scale of analysis, but rather to a minimum set
of principles. The present treatment, preliminary though
it is, may be just as pertinent to the mysteries of bac-
terial locomotion (see [40]) as it is to the coordinative

patterns among the limbs and the abrupt transitions between
them,
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