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Conditions that give rise to phase shifts among the limbs when
an animal changes gait are poorly understood. Often a “switch
mechanism” is invoked that has a neural basis which remains
speculative. Abrupt phase transitions also occur between the
two hands in humans when movement-cycling frequency is
continuously increased. The asymmetrical out-of-phase mode
shifts suddenly to a symmetrical in-phase mode involving si-
multaneous activation of homologous muscle groups. The
boundary between the two coordinative states is indexed by a
dimensionless critical number, which remains constant regard-
less of whether the hands move freely or are subject to resistive
loading. Coordinated shifts appear to arise because of contin-
uous scaling influences that render the existing mode unstable.
Then, at a critical point, bifurcation occurs and a new stable
(and perhaps energetically more efficient) mode emerges.

modes of coordination; critical values; bifurcation; scaling

IT IS WELL KNOWN that when quadrupeds change their
mode of gait from a trot to a gallop, the phase relations
of the limbs are altered abruptly from a roughly out-of-
phase asymmetric mode to an in-phase symmetric mode.
Although such discontinuous changes in coordination
are not well understood, it is frequently assumed that
central pattern generators exist (often equated with mo-
tor programs) with a role that is to select the desired
spatiotemporal pattern of muscle activities (1, 4, 12, 19,
25). In the case of so-called stereotypic activities such as
locomotion the basic programs are hypothesized to be
innately given (5, 31). We report here, however, that
under certain conditions phase transitions also exist in
voluntary cyclic movements of the two hands. Under
instructions to increase frequency of cycling progres-
sively, a sudden and spontaneous shift occurs from an
asymmetric, 180° out-of-phase mode in which one wrist
flexes as the other extends, into a symmetric in-phase
mode, which involves simultaneous activation of homol-
ogous muscle groups. When the transition is allowed to
occur naturally, the critical frequency is predictable from
the preferred frequency regardless of whether the hands
move freely or are subjected to resistive loading. We take
these data to support the notion (17) that phase transi-
tions in movement may follow the same laws as the
phase transitions and critical behavior described for
many other natural phenomena (e.g., 3, 6, 7, 10, 24).
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The basic experiments reported here required subjects
to cycle the hands at the wrist in the horizontal plane in
an asymmetical mode, i.e., one in which flexion (exten-
sion) of one wrist was accompanied by extension (flex-
ion) of the other. Similar experiments have been con-
ducted by using movements of the index fingers. A pre-
liminary presentation of the finger-movement data, with
results that were basically identical to the present stud-
ies, has been presented (13, 16). The subjects, seated
with forearms firmly supported in a position parallel to
the ground, grasped a freely rotating handle with each
hand, the positions of which were converted to direct-
current voltages by potentiometers mounted over the
respective axis of motion (cf. 14). These signals were
recorded on FM tape and later subjected to analog-to-
digital conversion at a sampling frequency of 200 Hz.
Time-domain displacement tracings were obtained that
could be displayed and analyzed on a computer graphics
terminal. Instructions to subjects were to commence
cycling the hands slowly and then to increase rate of
cycling either in response to a verbal cue provided by the
experimenter at 15-s intervals or by a metronome with
an interpulse interval that could be adjusted in 100-ms
increments every 15 s. Driving frequencies in the met-
ronome case ranged from 1 to 5 Hz. In another experi-
ment subjects performed a series of trials under identical
instructions but with a resistive load applied to both
limbs. In this case the vertical rods leading to the poten-
tiometers were clamped between fixed wooden blocks,
thus providing a frictional damping force throughout the
range of motion for each limb of approximately 5.9 N.

Before the experimental manipulation, base-line meas-
ures of subjects’ preferred frequency and amplitude in
both asymmetric and symmetric modes were obtained
under free- and resistive-loading conditions. Subjects
were instructed to choose their preferred frequencies and
amplitudes in such a way that they “could perform the
task all day,” if required to do so. Movements of each
limb were then continuously sampled at 200 Hz for 30 s.
Measures of frequency (in Hertz), amplitude (in degrees)
and interlimb phase (in radians) were obtained for each
limb on every cycle. In addition, by the assumption of an
approximately sinusoidal motion, we estimated the total
mechanical energy expended per unit moment of inertia
per cycle (proportional to the square of a given cycle’s
peak velocity).

The results were unequivocal for all the six subjects’
data analyzed. Figure 1A shows the movement trajecto-
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FIG. 1. A: Computer-generated display of displacement-time pro-
files of left (solid line) and right (dashed line) hands plotted against
each other and accompanying phase relationship between the two.
Peaks of 1 hand movement act as “target” file, and their phase position
is calculated continuously relative to peak-to-peak period of other
“reference” file. Display repeats phase curve so that phase lags and
leads can be noted. Subject in this case is simply increasing frequency
of cycling in asymmetric mode in response to verbal cue from experi-
menter. At critical frequency, abrupt shift occurs to in-phase symmetric
mode in which wrists flex and extend synchronously. Asymmetric mode
is equivalent to phase difference of = radians (180°); after phase
transition phase difference hovers around zero. Downward motion
shows wrist flexion; upward motion shows wrist extension. Mean peak-
to-peak cycle frequencies of left and right hands before transition
(indicated by downward-pointing arrow) were 1.852 (period, r = 540
ms, SD = 30 ms) and 1.852 Hz {r = 540 ms, SD = 35 ms), respectively.

ries of the two limbs for one subject as the rate increased;
the rapid shift in phase is obvious. Figure 1B shows the
same data on the Lissajous plane with one limb’s dis-
placement plotted against the other. It can be seen that
the phase relations between the limbs are initially very
stable. Were the two motions perfectly sinusoidal with
phase equal to = radians, a straight line would be ob-
served. As frequency increases, the phase difference be-
tween the limbs becomes more variable, evident in the
widening of the Lissajous phase portrait. After the tran-
sition, phase becomes stable once again. The overall
picture of phasing between the limbs as a function of

After transition (marked by upward arrow) cycle frequencies were 2.400
(7 = 417 ms, SD = 22 ms) and 2.406 Hz (+ = 416 ms, SD = 18 ms).
Corresponding mean peak-to-peak cycle amplitudes were 38.65° (SD =
2.64°) and 34.48° (SD = 2.25°) for left and right hands before transition.
After transition, cycle amplitudes were 33.39° (SD = 1.41°) for left
hand and 35.65° (SD = 2.28°) for right hand. B: data identical to those
shown in A, except displayed on Lissajous plane. Positions of left and
right hands are displayed on ordinate and abscissa, respectively. Viewed
from left to right, hands first preserve a quite stable out-of-phase
relation that becomes more variable (less stable) over time as evident
in widening of Lissajous phase portrait. Eventually hands jump into
next mode, which remains quite stable thereafter. C: average value of
phase plotted over cycles before and after transition. Bars, SD. Each
point is average of 19 different phase transition experiments (11 free
and 8 resisted). Abrupt phase shift is apparent.

cycles is shown in Fig. 1C. Each point on the phase
diagram corresponds to the mean of 19 different phase-
transition experiments (11 free and 8 resisted). In all
cases, an abrupt change in phase was observed. Usually
the jump from one mode to the other occurred within a
cycle; seldom did the transition require more than two
or three cycles. On two occasions, both in the same
subject, temporary transitions occurred in which the
limbs moved from an asymmetric to symmetric pattern
and then returned to an asymmetric pattern. Eventually,
however, a permanent transition to the symmetric in-
phase mode was observed. )
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Others as well as ourselves have shown that in biman-
ual finger movement tasks only two modes, symmetric
and asymmetric, are stable regardless of whether the
subjects are naive or whether they are skilled musicians
(15, 32). This is not to say that other phase relations are
not possible, only that they tend to be much more vari-
able. Skilled pianists, as well as those who study their
motor performance (27), have long recognized the diffi-
culty in performing complex bimanual rhythms. In fact,
characteristic “errors” often occur, manifested as tend-
encies to produce in-phase and out-of-phase patterns,
and are avoided only through much practice.

The present data indicate that when cycling frequency
is increased, one mode becomes unstable only to disap-
pear and be replaced by another stable mode. In this they

share a likeness to studies of locomotion in decerebrate -

cats (28) that demonstrated that a steady increase in
electrical stimulation applied to the midbrain region was
assoclated with increases in rate of locomotion. More-
over, transitions in gait occurred when sufficiently strong
current was employed. Like some of our data, unstable
regions were also noted in which the animal sometimes
trotted and sometimes galloped. Above a certain value of
current (80 pA), however, only galloping occurred. Our
results, similar to these findings on gait, suggest that
changes in coordination may be ordered by changes in
the magnitude of a single parameter.

We have some reason to suppose that the “new” stable
mode is energetically more favorable at a given frequency
than its predecessor. In the free unloaded experiments,
cycle frequency increased significantly across the tran-
sition [from an average of 2.26 Hz over the 5 cycles
before the transient phase to 2.50 Hz averaged over 5
cycles after the transient, t(10) = 3.45, P = 0.006], but
cycle amplitude and energy dropped across the transition
[t(10) = 2.59 and 2.11; P = 0.03 and P = 0.06, respec-
tively]. The pattern was similar in the eight resistive-
loading experiments: frequency increased significantly
across the transition, whereas amplitude and energy
dropped slightly but not significantly. It should be em-
phasized that under both resistive and nonresisted con-
ditions, cycle energy was always substantially greater
before the transition than in either of the corresponding
preferred mode conditions (P < 0.01).

Systematic relationships between energy utilization
and modal behavior have also been reported in studies
of gait in horses (8) and gnus (22). Horses locomoting in
a free environment, for example, elect only those ranges
of speed within a gait that correspond to regions of
minimum oxygen expenditure (8). Moreover, when
horses are forced to maintain a given gait at a speed
other than that preferred, metabolic costs increase dra-
matically, until at some threshold value, a shift into the
next most economical mode occurs. Shifts in locomotory
modes are not hard wired or deterministic (except per-
haps at the very limits of stability). Horses can trot at
speeds at which they normally gallop or walk, but it is
metabolically expensive to do so.

It is also possible to delay the phase transition ob-
served in these experiments consciously. The critical
value at which the transition occurs naturally, however
(i.e., without a purposeful effort to resist it), is highly
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predictable. Though the absolute values of frequency,
amplitude, and energy (measured over the last 5 consec-
utive cycles before the transient phase) vary considerably
between and within subjects, one relative measure does
not. When the frequency at transition is scaled to the
individual’s preferred frequency in the out-of-phase
mode, a highly linear relationship is observed.

This relationship, along with least-squares regression
lines, is plotted in Fig. 2 for free- and resistive-loading
experiments for five subjects’ data (solid lines). The
effect of resistive loading was to reduce both preferred
frequency and transition frequency in a reliable fashion
(P < 0.01). The mean preferred frequencies for free and
resisted experiments were 1.81 (r = 552 ms, SD = 30 ms)
and 1.37 Hz (r = 730 ms, SD = 33 ms), respectively. The
mean transition frequency for the free case was 2.34 (7
= 427 ms, SD = 48 ms) and 1.83 Hz {(r =546 ms, SD =
36 ms) for the resisted case. These findings appear to
eliminate any simple interpretation in which the redun-
dant symmetric mode (which involves homologous mus-
cles) is chosen when the capacity limit for processing
information in the asymmetric mode (which involves
nonhomologous muscles) is reached {2).

Although resistive loading systematically reduced
transition and preferred frequency, it did not alter the
relationship between the two. The slopes of the functions
relating transition and preferred frequency were different
from zero [F(1,3) = 84.95, P < 0.01 for the unloaded
experiments, and F(1,3) = 25.80, P < 0.02 for the loaded
experiments]. However, the slopes were not different
from each other [F(2,6) = 2.04, P> 0.10]. Moreover, the
correlations between preferred and transition frequency
(equivalent to normalized regression slopes) were very
similar (r = 0.95 for resisted and r = 0.98 for unresisted
conditions). Thus whatever the changes in mean and
variance that are introduced by parametric changes in
resistance, the critical behavior, manifested in the func-
tional relation between transition and preferred fre-
quency, remains unchanged. In fact, when the transition
frequency is expressed in units of preferred frequency,
the resulting dimensionless ratio is constant across all
preferred frequencies whether loaded or not. Neither of
the functions shown as dotted lines in Fig. 2 is signifi-
cantly different from zero [F(1,3) = 1.71 and 2.83, P >
0.10 for free and resisted cases, respectively, or from each
other, F(2,6) = 1.67, P> 0.1)]. The mean “critical value”
across both conditions, with and without resistive load-
ing, is 1.313, with a coefficient of variation of 0.077.

It may not simply be chance that if a similar normal-
ization procedure is applied to Hoyt and Taylor’s (8)
locomotion data and a ratio is calculated between the
horse’s preferred speed in a given gait and the speed at
which the transition occurs from one gait to another, a
critical value of approximately 1.33 results for both walk-
trot and trot-gallop transitions. As in our data, regardless
of what the preferred speed is, the transition appears to
occur at some constant proportion of the preferred value.
Stride frequency at the trot-gallop transition in animals
ranging from mice to horses has been shown to scale to
total body mass (M) raised to the power of —~0.14 (9).
This exponent is in close agreement to that of M™%
predicted by McMahon’s (20) model of elastic similarity
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FIG. 2. Solid lines: relationship between subjects’ mean preferred
frequency (F,) in asymmetric out-of-phase mode and mean transition
frequency (F,) calculated over last 5 consecutive cycles before phase
shift. Solid dots, free unresisted conditions; open dots, resistive-loading
experiments. For free case, least-squares linear regression line was F,
= 1.55 F, — 0.48. For loaded case it was F, = 1.02 F, + 0.43. Solid and
open triangles, data from 1 subject who made deliberate effort to prevent
phase transition from occurring. In this case subject’s transition fre-
quency is about 2.5 times greater than her preferred frequency. In
unresisted case, for which estimates of mechanical energy per unit
moment of inertia per cycle are most valid, subject shows by far largest

in which muscle stress (tension per unit cross-sectional
area) is hypothesized to be the same at gait transitions
in homologous muscles in animals of different size. In
the present experiments, when the proposed critical
value (T¢) is scaled to a preferred frequency (F,) for all
observations, an exponent of —0.12 results (T. =
0.14F;°% ). If further work shows preferred frequency to
be tightly coupled to M, then it may be that the elastic
similarity model can be applied not only to gait transi-
tions but also to the modal shifts observed here.

We would be remiss if we did not mention the possi-
bility that the pattern of results observed for hand move-
ments here (and perhaps for gait changes as well) shares
common features with other critical phenomena in na-
ture (3, 6, 7, 10, 21, 23, 24, 29). Systems at many scales
of magnitude and varying widely in material properties
appear to be qualitatively similar with respect to their
behavior at critical points (3, 7). For example, our find-
ings seem consistent with certain aspects of phase tran-
sition theory in physics (11, 30), one of which is that
parameters adjusted in an experiment may shift the
critical point (as resistance does to frequency here) with-
out altering the critical behavior itself (e.g., see Ref. 3).
Moreover, a major characteristic of many physical and
biological systems is that new “modes” or spatiotemporal
orderings arise when the system is scaled on certain
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