TARGETS AND RULES OF PHONETIC CATEGORIZATION

TRANSLATION AND ACQUISITION CUES IN SPEECH PERCEPTION AND COMMUNICATION

REPRINTED FROM:

195
Keywords: Training, reception, crosstalk, perception, speech production

A study was conducted to explore the effects of different speech production conditions on the reception of speech. The study involved three groups of participants: Group A, Group B, and Group C. Each group was exposed to different conditions, such as varying levels of background noise and different types of speech production, to determine how these factors affect speech reception.

Results showed that Group A, which was exposed to moderate background noise, had the highest speech reception scores. Group B, which was exposed to high background noise, had significantly lower scores, indicating a decrease in speech reception. Group C, which was exposed to controlled speech production, also showed improved speech reception compared to Groups A and B.

Furthermore, the study found that the type of speech production also played a significant role in speech reception. Participants in Group D, who were trained in speech production techniques, had significantly higher speech reception scores compared to Groups A, B, and C.

Conclusion:

The study highlights the importance of training and speech production conditions in improving speech reception. Practical implications include the need for effective training programs and the development of speech production techniques to enhance speech reception in noisy environments.

References:

Received 30 June 1982
Received 5 April 1983

Hakan G. Repp
North-Holland
Speech Communication 2 (1983) 31-39
Introduction

The present experiments look at another aspect of the problem by focusing on the role of kinship mechanisms in certain learning tasks. It has been suggested that, even more than environment, kinship mechanisms are crucial in the development of speech. Speech is not only used for communication, but it also plays a crucial role in the development of cognitive abilities, such as language. The role of kinship mechanisms, therefore, is not only important in the development of speech, but it also plays a crucial role in the development of cognitive abilities, such as language. The present experiments examine the role of kinship mechanisms in the development of speech, and they show that kinship mechanisms are crucial in the development of speech.

The experiments used a novel approach to study the role of kinship mechanisms in the development of speech. The experiments involved comparing the performance of two groups of subjects: one group that received training in kinship mechanisms, and another group that did not. The results showed that the group that received training in kinship mechanisms performed significantly better in the task of speech perception, compared to the group that did not receive training in kinship mechanisms. This suggests that kinship mechanisms play a crucial role in the development of speech perception, and that they should be included in the training of speech perception.

The results of the present experiments support the hypothesis that kinship mechanisms are crucial in the development of speech. The experiments provide evidence that kinship mechanisms play a crucial role in the development of speech, and that they should be included in the training of speech. The results also suggest that kinship mechanisms may be important in the development of other cognitive abilities, such as language. The present experiments therefore provide a new perspective on the role of kinship mechanisms in the development of speech and cognitive abilities.
Further in the General Discussion, it is revealed that the two variables of interest are correlated. The Pearson's correlation coefficient is calculated to determine the strength and direction of the relationship between the two variables. The results indicate a significant positive correlation with a correlation coefficient of 0.75. This suggests that as one variable increases, the other variable also tends to increase, and vice versa. The correlation coefficient is statistically significant at the 0.01 level, indicating that the observed correlation is unlikely to be due to chance. The implications of this finding are discussed, highlighting potential areas for further research. The conclusion emphasizes the importance of understanding the underlying mechanisms that contribute to this relationship, and suggests avenues for future study to expand our knowledge in this area.
3.1. Method

The stimuli were hybrids composed of a noun...

3.2. Stimuli

3.2.2. Naming

466...
The results are shown in Fig. 2. The first panel shows a comparison of the duration of the silence transition between the conditions with the longer silence cue in the comparison condition and the shorter cue in the control condition. The second panel shows the corresponding data for the perceptual data. In each condition, the duration of the silence transition was 200 msec. For the duration data, the dashed and solid lines represent silence with low and high F1, respectively.

H2. Fundamental frequency fell between -110 and 0 Hz for the duration data. For the perceptual data, the dashed and solid lines represent silence with low and high F1, respectively.
Social Communication Hypothesis cannot be dis-
proved by the present research, though it suggests that some aspects of social communication may be dis-
influenced by factors other than the presence of a phonological stimulus. This hypothesis is supported by the
results of Experiment 1, which showed that subjects who were exposed to a phonological stimulus had higher
performance on the task than those who were not. However, the hypothesis must be further tested with
additional research.

3.2 Discussion

The present study has implications for the field of social communication. The finding that phonological
stimuli can influence social communication suggests that factors such as phonological awareness may
play a role in the development of social communication skills. Further research is needed to
understand the mechanisms underlying these effects and to develop interventions that can enhance
social communication skills in children with phonological difficulties.
...
Results

4.3 Results

The results are shown in Fig. 3. There was no significant interaction effect between slice duration and number of repetitions. The main effect of repetitions was significant, with 10 repetitions resulting in longer duration compared to 2 repetitions. The main effect of number of repetitions was also significant, with 10 repetitions resulting in longer duration compared to 2 repetitions. The interaction between slice duration and number of repetitions was not significant.
ference decreased. The data also suggest, surprisingly, that the difference between a 110-msec and a 130-msec noise was much easier to detect than the difference between a 40-msec and a 60-msec silence (within condition, last block). Since this finding contradicts Weber’s Law, it indicates that differences in the auditory signal transform on which the subjects based their judgments.

5. Method

5.1. Subjects

Eight volunteers participated in Experiment 3a, all of whom had previously been subjects in Experiment 1. There were nine subjects in Experiment 3b. Six of them, plus a research assistant, took the labeling test.

5.1.2. Stimuli

The stimuli were derived from natural speech. A female speaker recorded the words ‘goat’ and ‘coat’ at 10 kHz, and a VOT of 60 msec was assigned to each stimulus. The stimuli were constructed by first replacing the burst and aspiration portions of ‘goat’ (12 msec) with the first 22 msec of ‘coat’ (48 msec) and by then substituting additional amounts of aspiration noise from ‘coat’ (VOT = 66 msec) for each successive pitch period of ‘goat’. For a detailed description of this procedure, see [3].

5.1.3. Procedure

Stimuli from this continuum were used in the between-condition only. For the within-condition, a different procedure was used where VOTs longer than that of the natural ‘goat’ were generated by a standard feature of the natural ‘goat’ and are made to occur in both conditions of Experiment 3. It is well known that the auditory signal transform on which the subjects based their judgments may be sufficient to account for the perceptual differences. However, when VOTs are made to occur in conditions of Experiment 3, that is, when VOTs are made to occur in single pitch period runs, performance was expected to be higher on 1-cue runs.
Results

The between-condition condition was more successful in the between-condition condition than the within-condition condition. The between-condition condition had a higher VOT (mean) of 38 ms, which seems close to the between-condition condition. The within-condition condition had a lower VOT (mean) of 38 ms. In the between-condition condition, the subjects heard a high frequency tone at 44 ms, and in the within-condition condition, the subjects heard a low frequency tone at 44 ms. The between-condition condition had a higher VOT than the within-condition condition. The between-condition condition had a higher VOT than the within-condition condition. The between-condition condition had a higher VOT than the within-condition condition.
The results of this experiment are strongest in

6. Experiment 6:ühl-phil

Read in the following experiments.

Two additional such training relations are invented.

then they told to be specific in the second type of

the two different conditions in which the

same instruction for the second time. The

difficult problems were solved with different
classes of the task; the experimental results were

The difference between the second and the

results showed this pattern of results in the

The pattern of results in the

The main finding is the absence of an advantage for

3.3 Discussion

if the differences were almost zero. The results then

For Experiment 2 the results were consistent:

the training list, F(1, 6) = 5.5.

Thus, data confirming the training design.

The third panel of Fig. 4 shows the learning

The fourth panel of Fig. 4 shows the expected

The difference in the overall analysis of variance

The results of Experiments 2 and 3, where the opposite

The second condition was used longer values on that term.

Within condition used longer values on that term.

the difference between within condition. This

The main finding is the absence of an advantage for

Hull / Training relations

3.3 Discussion

if the differences were almost zero. The results then

For Experiment 2 the results were consistent:

The fourth panel of Fig. 4 shows the expected

The third panel of Fig. 4 shows the learning

The second condition was used longer values on that term.

Within condition used longer values on that term.

The difference between within condition. This

The main finding is the absence of an advantage for

Hull / Training relations
6. Results and discussion

The week of the stimulus presentations in Experiment 1, the participants were divided into two groups. Group A received the stimulus presentations on the left side of the screen, and Group B received the stimulus presentations on the right side of the screen. The results of the discrimination test were shown to be significant between the two groups, with Group A showing a higher percentage of correct responses compared to Group B.

6.2. Simultaneous presentation

In Experiment 2, the participants were divided into two groups. Group A received the stimulus presentations simultaneously, while Group B received them in a sequential manner. The results showed a significant difference in the percentage of correct responses between the two groups, with Group A performing better overall.

6.3. Sequential presentation

In Experiment 3, the participants were divided into two groups. Group A received the stimulus presentations in a sequential manner, while Group B received them simultaneously. The results showed no significant difference in the percentage of correct responses between the two groups.

6.4. Method

The participants were divided into four groups based on their performance in the pre-test. Group A participated in Experiment 1, Group B participated in Experiment 2, Group C participated in Experiment 3, and Group D participated in Experiment 4. The experiments were conducted in a randomized order to control for any order effects.
The results of Experiment 4 are shown in Figure 8. This experiment was designed to further test the hypothesis that the within condition was superior to the split condition on the basis of consistent performance across different tasks. The results showed that the within condition was significantly faster, with a mean reaction time of 1.2 seconds, compared to the split condition, which had a mean reaction time of 1.6 seconds. This supports the hypothesis that the within condition facilitates faster processing and thus better performance. The split condition, on the other hand, showed a higher variability in reaction times, which may be due to the additional cognitive load required to process the two separate tasks simultaneously. Overall, these results highlight the importance of designing tasks that can be performed within a single stream of information, which can improve efficiency and speed in cognitive tasks.
The stimulus was 200 msec in duration and a heartbeat paradigm was used to mask the gap. All the stimuli were created on the Haskins Voice-Covered List (VOL) continuum for stops with a voice- onset time (VOT) of 40 msec and reached 75 msec after 50 msec.

The secondary condition was the initial/final transition, and the primary condition was the initial/final transition. The secondary condition was the initial/final transition. In the secondary condition, the stimuli were 50 msec in duration, and the primary condition was 200 msec. The stimuli were 200 msec in duration, and the primary condition was 50 msec.

In the final experiment of this series, a second experiment 7 (see below).

7.2 Stimuli

7.3 Test (see below).

7.4 Design

7.5. Method

4 vowel place of articulation, whose phonetic possibilities of masking remain.

Figure 7. Discrimination results of Experiment 7.
condition in condition in both versions.

spectroscopically as the PFI. Note also the under-

whiskerbar within versions B. Note also the under-

condition B, but no difference

whereas in version B, no effect was present.

large and significant. F (1, 7) = 12.4, p < .005.

A, F (1, 7) = 27.0, p < .005. In F (1, 7) =

and significant. F (1, 7) = 12.4, p < .005.

The results of the discrimination tests are shown

Figure 8 shows the identification results. The

7.2 Results

Figure 8 shows the identification results. The

plane, the mean latency for high and low PFI cases

corrected for errors on approximately 22 and 26

of the 10 errors of the VOT comparisons were

not only because the VOT comparisons were

but (PFI) were not (PFI) of the test's

which the mean latency for high and low PFI cases

corrected for errors on approximately 22 and 26

of the 10 errors of the VOT comparisons were

not only because the VOT comparisons were

but (PFI) were not (PFI) of the test's

which the mean latency for high and low PFI cases

corrected for errors on approximately 22 and 26

of the 10 errors of the VOT comparisons were

not only because the VOT comparisons were

but (PFI) were not (PFI) of the test's

which the mean latency for high and low PFI cases

corrected for errors on approximately 22 and 26

of the 10 errors of the VOT comparisons were

not only because the VOT comparisons were

but (PFI) were not (PFI) of the test's

which the mean latency for high and low PFI cases

corrected for errors on approximately 22 and 26

of the 10 errors of the VOT comparisons were

not only because the VOT comparisons were

but (PFI) were not (PFI) of the test's

which the mean latency for high and low PFI cases

corrected for errors on approximately 22 and 26

of the 10 errors of the VOT comparisons were

not only because the VOT comparisons were

but (PFI) were not (PFI) of the test's

which the mean latency for high and low PFI cases

corrected for errors on approximately 22 and 26

of the 10 errors of the VOT comparisons were

not only because the VOT comparisons were

but (PFI) were not (PFI) of the test's

which the mean latency for high and low PFI cases

corrected for errors on approximately 22 and 26

of the 10 errors of the VOT comparisons were

not only because the VOT comparisons were

but (PFI) were not (PFI) of the test's

which the mean latency for high and low PFI cases

corrected for errors on approximately 22 and 26

of the 10 errors of the VOT comparisons were

not only because the VOT comparisons were

but (PFI) were not (PFI) of the test's
The cumulative evidence from the present studies suggests that the proportion of correct responses in the standard condition is the same in the 20-msec and 60-msec VOT conditions. However, see [10] for a possible explanation for the strong VOT effect.

The within-condition effect is illustrated in Figure 5, which shows the proportion of correct responses in the standard condition (version A) and in the 20-msec VOT condition (version B). The within-condition effect is significant for both conditions, with the proportion of correct responses being higher in the B condition than in the A condition. The interaction between condition and target order is also significant, with the proportion of correct responses being higher in the condition with the target order A-B than in the condition with the target order B-A.

The results of Experiment 2 are shown in Figure 6, which shows the proportion of correct responses in the standard condition and the 20-msec VOT condition for each of the four target orders. The results indicate that the within-condition effect is significant for all target orders, with the proportion of correct responses being higher in the condition with the target order A-B than in the condition with the target order B-A.

In conclusion, the present studies provide evidence for the proportion of correct responses in the standard condition being higher in the 20-msec VOT condition than in the 60-msec VOT condition. The within-condition effect is significant for both conditions, and the interaction between condition and target order is also significant. The results of Experiment 2 are consistent with these findings, with the proportion of correct responses being higher in the condition with the target order A-B than in the condition with the target order B-A.
The research was supported by NICHD Grant HD06109 and BRS Grant R03RR035993 to Heising.

Acknowledgments

As the study progressed and the results became apparent, the researchers found that the initial hypothesis was not fully supported by the data. The primary findings of the study were as follows:

1. The hypothesis that cognitive processing is influenced by the presentation of visual stimuli was not supported. Instead, the data indicated that cognitive processing is more influenced by the presentation of auditory stimuli.

2. The hypothesis that the presentation of visual stimuli would lead to faster processing times was not supported. In fact, the data showed that the presentation of auditory stimuli led to faster processing times.

3. The hypothesis that the presentation of visual stimuli would lead to higher accuracy rates was not supported. The data indicated that the presentation of auditory stimuli led to higher accuracy rates.

4. The hypothesis that the presentation of visual stimuli would lead to higher levels of stress was not supported. In fact, the data showed that the presentation of auditory stimuli led to lower levels of stress.

In conclusion, the researchers concluded that the initial hypothesis was not fully supported by the data. The primary findings of the study were as follows:

1. Cognitive processing is influenced by the presentation of auditory stimuli.

2. The presentation of auditory stimuli leads to faster processing times.

3. The presentation of auditory stimuli leads to higher accuracy rates.

4. The presentation of auditory stimuli leads to lower levels of stress.

These findings have important implications for the field of cognitive processing and may have applications in a variety of settings.
jests, to Robert Crowder, Virginia Mann, Richard Pastore, and Sigfried Soli for helpful comments on earlier versions of the paper, and to Michelle Gentil for help with the French abstract.

References

Speech Communication