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- The acoustic manifestation of nasal murmurs is significantly context dependent. To what extent can the
class of nasals be automatically detected without prior detailed knowledge of the segmental context? This -
contribution reports on the characterization of the spectral change accompanying the transition between
vowel and nasal for the purpose 'of automatic detection of nasal murmuss. The speech is first segmented

into syllable-sized units, the voiced sonorant region within the syllable is delimited, and the points of

maximal spectral change on ecither side of the syllabic peak are hypothesized to be potential nasal
transitions. Four sxmply extractible acoustic parameters, the relative energy change in the frequency bands
0-1, 1-2, and 2-5 kHz, and the frequency centroid of the 0~500-Hz band at four points in time spaced

12.8 msec apart are used to represent the dynamic transition. Categorization of the transitions using
rultivariate statistics on some 524 transxtlon segments from data of two speakers msulted in a2 91% correct

nasal/non -nasal decision rate.

PACS numt_)crs. 43.70.8c, 43.70.Gr

'INTRODUCTION .

While the perceptual cues that indicate the presence
of nasal murmurs in the speech signal have been care-

fully studied,? successful extraction of these cues for . .
" recognition of continuous speech has proved a difficult
problem.®* Most recognition systems classify short e

segments of the signal on the basis of the spectral
properties of the segments without paying particular
attention to the time-varying spectral characteristics
of phone-sized segments. This paper reports results

" obtained when acoustic measurements near hypothesized
transitions into and out of the nasal murmur are used to

detect the class of nasals, ' The results suggest that '
improved nasal detectxon rates are attainable thh this

)

" The general framework of our approach to the recog-
nition of continuous speech is one which first segments
the signal into syllable-sized units, and then carries
out a hierarchic sequence of segmentation and labeling
steps for segments differentiated by voicing and man-
ner of production,® Based on the structure of voicing
and manner of production segments found, hypotheses

. for full phonetic transcription of the unit are derived

from a dictionary of admissible syllabic forms. De-
tection of nasals is one step in this process. The syl-
lable-sized units are detected on the basis of minima
in a newly defined loudness function, a summation of
the short-time energy weighted to deemphasize fre-
quency components below 500 and above 2000 Hz, The
voiced subsegment of the syllable-sized units is next
delimited, and segments corresponding to the voice~

. bar of stops and to voiced fricatives are trimmed off,

The segment that remains may be entirely nasal, a

" syllabic nasal., Otherwise, constraints on the phonetic
‘structure of syllables allow the existence of at most -

one manner of production change from nasal to non-
nasal prior to the syllabic peak and one reverse change
from nonnasal to nasal after the syllabic peak., The
points of maximal spectral change within the delimited
segments on either side of the syllabic peak are hypoth-
esized as potential transition points between the vowel

(possibly also glide or liquid) and the nasal., The re-
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"to both nasal vowels and nasal murmurs.

AR

gions in the acoustic signal near these points are char-
acterized on the basis of acoustic measurements with-
in the region as nasal or nonnasal,

We first review the acoustic cues that give rise to
the nasal consonants. Acoustic measurements, select-
ed to extract those cues, are next described. We then
detail our method for detecting potential nasal transi-
tions and formulate decision rules for their categoriza-
tion, Categorization results are reported for data from
11 sentences from each of two speakers. These re-
sults, encompassing 524 transition segments, demon-
strate the usefulness of this method.

1. ACOUSTIC CUES AND MEASUREMENTS

The distinctive manner feature “nasalized” pertains
This study
is concerned with the transition from vowel (nasalized
or not), glide or liquid to nasal murmur where the
primary articulatory change is oral closure in the ab-
sence of velopharyngeal closure. Instead of searching
separately for the acoustic correlates of the oral clo-
sure and velopharyngeal opening, which canbe expected
to show gross variations depending on the state of the
other features, it appears worthwhile to look for cor-
relates of the composite articulatory event directly.

The search for invariant acoustic cues that indicate
the presence of nasal murmurs in continuous speech
has a long history, Fujimura® reported the spectral
characteristics of nasal murmurs in intervocalic con-
texts. He found three essential features: first, the
existence of a very low first formant in the neighbor-
hood of 300 Hz; second, the relatively high damping

- factors of the formants; and third, the high density of

the formants in the frequency domain. Fant? reports
that a voiced occlusive nasal (nasal murmur) is char-
acterized by a spectrum in which the second formant

is weak or absent; a formant at approximately 250 Hz

~ dominates the spectrum but several weaker high-fre-

quency formants occur, and the bandwidths of nasal
formants are generally larger than in vowellike sounds.

A preliminary exploratory study used bisyllabic non-
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~ fricative central section of a syllabic unit,
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FIG. 2, Welghting functions for the determination of spectral
coelficients. .

The definition of spectral variation with time is )
guided by the following rationale. Pols® has computed’
the eigenvectors accounting for the two dimensions of
maximal variance for sonorants. These roughly cor-
respond to measures of speech spectra along the di-*
mensions of low-frequency versus high-frequency en-
ergy, and the low-plus-~high-frequency versus mid-
frequency difference, In an attempt to approximate
equal perceptually significant changes in vowel spectra
by equal increments in our two-dimensional spectrum
representation, we first transform the spectra from a
linear frequency scale to a technical mel scale (linear
up to 1000 Hz, logarithmic thereafter). Next we com- ¢
pute the first two coefficients of the Fourier cosine
transform of the log power spectrum of the signal using
the weighting functions shown in Fig. 2. The direc-
tions in multidimensional spectral space defined by
these coefficients roughly correspond to the maximal
variance directions of Pols. Our dimensions are or-
thogonal, and coefficient values are independent of spec-
trally uniform signal amplification or attenuation, In-
dividual spectra at time & can now be represented by
the coefficient pair

£=4 kHs | '
Ci(k) =_]!-.o w(f) ex(f), i=1,2

where the w; are the respective mel-based cosine
weighting functions and ¢,(f) is the measured energy
function of frequency at time k.°

Let &, and &, be the boundaries of the voiced, non-
' Now define
» the spectral difference metric at time-sample % as '

e
D) = (Z[c,(ku) =Cilk - 1)]2)

" where the C,(k) are the coefficients computed for the
kth spectral cross sections and unit spacing in k cor-
responds to a time spacing of 12.8 msec. This is the

* same metric as used by Itahashi'® for phonetic segmen-
tation, except that our definition is symmetric with
time so that it is independent of movement forward or =
backward in time from the syllabic peak, u

Define the concave hull of the difference function over
the interval {k,, k5], as shown in Fig. 1, with the aid
of kp, the time frame of the syllabic peak, such that
ky<kp<kg, and :
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nasal termination or onset.

. namely, frames S, =S(ky ~n), S;=S(ky+n), n=1

" normal distributions.

583
H(k)= min  D@®'), ky,<k=k,
. RaSh'Sk
"= min DR®'), kp<k=k,.
RSHSay T

© Now find the maximum difference in the spectral differ-

ence less the hull, on either side of the syllabic peak:

D'(kg)= max [D(k)-H(r)],

. kR4S hSkp ’

- D'(kp)= max [D()-H()] .
kpSk<kp

Then kg =kg+1 and kp =k —1 are points of potential
Now consider the acoustic
characteristics of the spectral regions on the time-
negative side of kg and the time-positive side of £,
T %
If a nasal segment forms all or part of the prevocalic
or postvocalic consonantal cluster in the syllabic unit,

then the spectra S, can be expected to reflect that fact.

'We now define our basic measurements. Let AEL*
=E},, - E} be the relative energy (dB) in the ith fre—
quency band of the nth frame relative to the energy in
the same frequency band at the onset or termination of
the hypothesized segment. Approximate the first for-
mant frequency at time % +n by the centroid or first
moment of the energy in the frequency range 0-500 Hz,

8= 2 freralfi / 2 ewlfd T

- The f, are power spectrum values computed with 40-Hz

frequency spacing, thus the summation over i ranges
over the first 12 spectral samples. The above mea-
surements can be easily derived from the speech signal
even under relatively noisy conditions and were there-
fore considered to be potentially robust cues for nasal
segments. The question to be investigated is to what
extent the parameters AE!, and g, differentiate the
nasals from the nonnasals, and thus represent useful
cues for automatic nasal detection.

B. Categorization of transitions

Since we are dealing with a dynamic articulatory
event, we would like to treat our parameters as multi-
variate in space and time. For example, transitions
to obstruents are accompanied by a large energy drop
and a small value for the low-frequency centroid. Liq-
uids may show a significant drop in the 2-5-kHz band,
but much less of a drop in the 1-2-kHz band. Transi-
tions to nasals are relatively short, generally not ex-
ceeding 50 msec, thus measurements must be based on
carefully selected intervals of the signal. In the ab-
sence of a priori information regarding the distribution
of the acoustic parameters, we assumed multivariate
Four-dimensional measurement
vectors X" were measured at four points in time,
n=1,...,4, so that they spanned 51 msec of spectral
data, derived in turn from some 64 msec of waveform
data. Determination of the complete covariance ma-
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sense words with nasals in intervocalic environment
.. as well as in intervocalic clusters where the nasal pre-
ceded or followed a stop consonant, Examination of -
spectrograms and spectral cross sections essentially

confirmed Fujimura’s report.! A low-frequency nasal
. resonance and drop in mid-plus-high-frequency energy

(above roughly 1000 Hz) in the absence of a significant
drop in low-frequency energy (below 1000 Hz) were
found to be reliable cues for nasals. Suitable qualita-~
tive parameter differences were easily found by in-
spection, However, when the same cues were tested
on continuous speech, differentiation between nasals
and nonnasals proved markedly poorer. Accordingly,
a new study was carried out in an attempt to quantita-
tively characterize these parameters in continuous
speech and evaluate their utility for nasal detection,

The first parameter selected, the energy centroid
in the 0--500-Hz frequency band, can be looked upon as
a rough approximation to the first formant frequency,
A value for this parameter near 250 Hz is a necessary

. but not sufficient condition for the existence of nasal

murmurs because this property is shared by the first

formant frequency of high vowels. The energy param-
eters defined below are intended to discriminate be-
tween the nasals and the high vowels. The energy cen-
troid, although independent of overall signal level, is
dependent on linear spectral distortion such as the 300-
Hz high-pass filtering of telephone speech. -

Fant® suggests that the physical phenomena under-
lying a particular distinctive feature need exhibit only

relational invariance, For example, the weakness of -

a second formant may be best judged relative to the
intensity of that formant in the adjacent vowel rather
than in absolute terms. We employ three spectral en-
ergy parameters, all defined in relational terms with
respect to the energy in the respective frequency bands
prior to the transition. This definition makes the pa-.
rameters independent not only of the overall signal

amplitude as well as any linear spectral distortion, but

corrects to a limited extent for the overall spectral
shape imposed by the syllabic vowel. Since none of
the parameters alone is sufficiently effective to sep-

arate the nasals, our effort has focused on the effective

combination of information from several independently

measured parameters in an attempt to attain classifica-

tion performance superior to that obtainable by any -
single parameter, S
) I

il, EXPERIMENTAL PROCEDURE

Our prime interest lay in recognizing nasals in a
variety of contexts such as may be encountered in free
text rather than in the study of speaker-dependent vari-
ations, Therefore, previous recordings of the “rain-

bow passage” and five additional sentences by two male -

speakers were studied, The speech text, listed in the
Appendix, was roughly 90 sec long and included a large
number of nasals in word-initial, word-final, inter-
vocalic, and clustered phonetic environments. The
speech material was recorded in a noise-free environ-
ment at the subjects’s comfortable reading rate, digi-
tized using a 10-kHz sampling frequency and spectra
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FIG. 1. Loudness and spectral difference functions for a typl~
cal syllabic segment. '

were computed using a 25.6-msec Hamming time win-
dow. Adjacent spectral computations were spaced
12,8 msec in time and yielded spectra at 40-Hz fre-
quency intervals. The material was segmented into

" syllabic units following procedures reported separately. ?

A. Detection of potential nasal transitions

To test the hypothesis that points of maximal spectral
change are potential nasal indicators, we need to de-
fine operationally the term “syllabic peak” and find an
appropriate metric for “spectral derivative.” It is our
intent that the syllabic peak be located within the
vocalic region of any syllable at the point of minimal
spectral change so that it best reflects the color of the
syllabic vowel, Having established this point of mini-
mal spectral change within the vocalic region, the
spectral derivative function within the voiced regions
may be computed and the maximum points found on
either side of the.syllabic peak. By evaluating the
acoustic information in the neighborhood of the maxi-
mal spectral changes we shall try to classify the tran-
sition as to whether it denotes the onset or termination
of a nasadl, '

‘The syllabification algorithm evaluates minima in a

. “loudness function” (a time-smoothed, frequency-

weighted energy function) as potential syllabic bound-
aries. Tested on roughly 400 syllables of continuous
text, the algorithm results in 6. 9% syllables missed
and 2.6% extra syllables relative to a nominal, slow-
speech syllable count. The maxima in loudness are
potential syllabic peaks. ‘Qualitative study of spectro-
grams augmented with loudness curves reveals that
frequently the maximum in loudness occurs prior to the
point in time where the formants appear to be maxi-
mally steady. Hence we construct a 6-dB loudness
range below the maximal loudness level of the syllabic
unit and search for the point of minimal spectral change
within corresponding time interval, Figure 1 shows
typical plots of loudness and spectral differences for
one segment,



P. Mermelstein: On detecting nasals in continuous speech

0 05 1.0 20 40
Frequency in kHz

FIG. 2. Weighting functions for the determination of spectral
coefficients,

The definition of spectral variation with time is
guided by the following rationale. Pols® has computed’
the eigenvectors accounting for the two dimensions of
maximal variance for sonorants. These roughly cor-
respond to measures of speech spectra along the di-"
mensions of low-frequency versus high-frequency en-~
ergy, and the low-plus-high-frequency versus mid- .
frequency difference. In an attempt to approximate
equal perceptually significant changes in vowel spectra
by equal increments in our two-dimensional spectrum
representation, we first transform the spectra from a
linear frequency scale to a technical mel scale (linear
up to 1000 Hz, logarithmic thereafter), Next we com- '
pute the first two coefficients of the Fourier cosine °
transform of the log power spectrum of the signal using
the weighting functions shown in Fig. 2. The direc-
tions in multidimensional spectral space defined by
these coefficients roughly correspond to the maximal
variance directions of Pols. Our dimensions are or-

- thogonal, and coefficient values are independent of spec-
trally uniform signal amplification or attenuation, In-
dividual spectra at time & can now be represented by
the coefficient pair

fa=4 kHg .
C,(k) = [ T waw, 1,2

where the w; are the respective mel-based cosine
weighting functions and ¢,(f) is the measured energy
function of frequency at time &.°

Let %, and k, be the boundaries of the voiced, non-
fricative central section of a syllabic unit, Now define.
the spectral difference metric at time-sample k as '

2 ' VLI
D(k)=(§[C,(k‘+1)l-C,‘(k—1)]2)‘ |

" where the C,(k) are the coefficients computed for the
kth spectral cross sections and unit spacing in b cor-
responds to a time spacing of 12.8 msec, This is the
same metric as used by Itahashi'® for phonetic segmen-
tation, ‘except that our definition is symmetric with |
time so that it is independent of movement forward or =
backward in time from the syllabic peak,!!

Define the concave hull of the difference function over
the interval [k,, k;], as shown in Fig. 1, with the aid
of kp, the time frame of the syllabic peak, such that
ky<kp<kp, and ’
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nasal termination or onset.
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H(k)= min  D('), k,<k=kp
MASRISK
" = min D(k'), Ep<kskg.
kSk'skB .

Now find the maximum difference in the spectral differ-
ence less the hull, on either side of the syllabic peak:

D(k )= max

(D®)-HE),
RySkSkp :

- D'(kp)= max [D()-H()] .
SkSkp

kp

Then kg =kg+1 and ky =k} —1 are points of potential
Now consider the acoustic
characteristics of the spectral regions on the time-
negative side of kg and the time-positive side of &,

. namely, frames S;=S(kq ~n), S;=S(kp+n), n=1,...,4.

If a nasal segment forms all or part of the prevocalic
or postvocalic consonantal cluster in the syllabic unit,

then the spectra S, can be expected to reflect that fact.

‘We now define our basic measurements, Let AE b+
=E},, - E} be the relative energy (dB) in the ith fre-
quency band of the nth frame relative to the energy in
the same frequency band at the onset or termination of
the hypothesized segment. Approximate the first for-

"mant frequency at time % +n by the centroid or first

moment of the energy in the frequency range 0-500 Hz,

£ =Zf,em<m/ 2 enlf) "

- The f, are power spectrum values computed with 40-Hz

frequency spacing, thus the summation over { ranges
over the first 12 spectral samples. The above mea-
surements can be easily derived from the speech signal
even under relatively noisy conditions and were there-
fore considered to be potentially robust cues for nasal
segments. The question to be investigated is to what
extent the parameters AE !, and g, differentiate the
nasals from the nonnasals, and thus represent useful
cues for automatic nasal detection.

B. Categorization of transitions

Since we are dealing with a dynamic articulatory
event, we would like to treat our parameters as multi-
variate in space and time. For example, transitions
to obstruents are accompanied by a large energy drop
and a small value for the low-frequency centroid. Liqg-
uids may show a significant drop in the 2-5-kHz band,
but much less of a drop in the 1-2-kHz band. Transi-
tions to nasals are relatively short, generally not ex-

- ceeding 50 msec, thus measurements must be based on

carefully selected intervals of the signal. In the ab-
sence of a priori information regarding the distribution’
of the acoustic parameters, we assumed multivariate
normal distributions. Four-dimensional measurement
vectors X" were measured at four points in time,
n=1,...,4, so that they spanned 51 msec of spectral
data, derived in turn from some 64 msec of waveform
data. Determination of the complete covariance ma-
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trix would have required the estimation of 256 covari-
ance matrix coefficients. To reduce the computations
. required and to facilitate practical implementation, one
desires to reduce the number of coefficients to be esti-
mated. We have assumed that the significant covari- .-
ance components are those between the respective pa-

rameters at a given point in time or.in a single param--

eter at several points in time. ’ s

Multivariate distance-based pattern recognition tech-
niques suffer from the disadvantage that the distance to
the mean point of the distribution function correspond-
ing to the appropriate category is generally dominated
by the component of the distance along the dimension
where the measurement is farthest from the estimated
mean. Given a finite set of learning data, distance
estimates of points where the distribution curve has a
larger value can be assumed to be more reliable than
the distance estimates in regions where only relatively
few data points have been encountered in the learning
set. Combination of all measurements into one global
decision rule is therefore likely to result in a decigion
rule dominated by its most unreliable components, On
the other hand, combination of groups of measurements
into preliminary scores and combinationof those scores
into a final decision has the advantage that the prelimi-

nary scores can be adjusted based on our confidence in .

’

those scores.

Following Patrick, 2 for two categories, nasal (a)
.and nonnasal (b), with mean parameter vectors r?x, and
1, and covariance matrices 5, and 55,,, the minimum
probability of error decision rule is to decide class a

H . .

Cienet e@l-1E-H) S G-m)] .

P, e
> [EJII'Z(ZW)L/z.exp[‘- %(i—l_l}h)' E;‘(x—mb)]. e

P, and P, are the a priori probabilities of the nasal and .

nonnasal categories and L is the dimensionality of the
measurement vector X. . . .

If we estimate the parameter means and covariances
at the respective measurement times, we can combine
this information into the following decigion rule (deci-
sion rule A): I '

If : - .
RYJZN* expl- 4" - B GO -B0]
>RYIEIM el - 4@ - ) B (- ),

choose categofy a, otherwise choose category b,
Alternatively, the initial estimates may be based on the

time samples of the individual parameters. A prelimi-

nary test showed that better results were obtained by
combining probabilities as derived from the multivarj-
ate measurements at different points in time than by
combining probabilities resulting from each parameter
measured as a multivariate function of time,

If the preliminary decision scores from selected non-
overlapping sets of measurements are combined into a
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final decision score, then the constraint that the un-
known must belong to.one of the two decision classes
may be used to adjust the preliminary probability esti-
mates. If the preliminary probabilities determined by
assuming normal distributions are normalized so that
the total probability that an unknown belongs to the
mutually exclusive classes of nasal and nonnasal sums
to unity, this reduces the effect that a measurement
that is distant from both the category means can have
on the total decision, If the estimates at the other time
points are reliable, the contributions from those mea-
surements will generally outweigh a single unreliable
estimate. This results in decision rule B, i.e., com-

- pute n preliminary scores for each category,

s"(@) =P"(x/a)/[P"(x/a) + P"(x/B)] .

where a=a, b, B=b, aand 0=s(a)=1. It P,%,s"(a)
>P,3,s"(b), choose category a, otherwise b, -

The effects of the a priori probabilities P, and P, may
be embedded ina decision threshold 6 and adjustment of
6 up or down may be used to control the difference be-
tween the relative frequency of false nasal and non-
nasal decisions, To. obtain the results cited, the value
of 6 was adjusted to result in roughly equal probabili-
ties of false nasal and nonnasal decisions, -

. RESULTS

" A preliminary analysis program found the points of
maximal spectral difference. On the basis of spectro-
graphic and auditory examination, these transition
points were hand labeled to indicate whether they cor-
responded to nasal or nonnasal transitions. ‘Roughly
20% of the transitions were in fact to or from nasals,
A single nasal segment could be manifested by two
transitions if in intervocalic context, and one transi-
tion only if in a pre- or postobstruent context. Syllabic
units were treated as independent information-bearing
elements and each transition was classified indepen-

- dently, -Two syllabic nasals were found in the data and

these were eliminated from subsequent consideration._

Statistics were gathered separately for nasal-nonnasal '
and nonnasal-nasal transitions. Differences between

.nasals ininitial and final position in the voiced sequence of

the syllabic unit were not found significant, and the two
classes were therefore pooled to arrive at the following
results,- Figure 3 gives means and standard deviation
values for the measured parameters after pooling of
the differently directed transition groups, One ob-
serves that the distributions of all of the parameters

.show considerable overlap. Only for AE!} do we see

considerable separation by categories. However, AE!
does not separate the nonnasal sonorants from the
nasals. It only serves to exclude the transitions to

-nonsonorants. Parameter g, shows little separation in

category means, but a large difference between the vari-
ances of the two categories. In fact, detailed examina-
tion shows the distribution of the nonnasals to be '
roughly bimodal; the obstruents possess rather low val-
ues of g,, the sonorants have values higher than the
mean nasal value. Clearly, the nonnasal category is
not homogeneous and perhaps a representation of the
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nonnasals in terms of a mixture of normally dlstnbuted
_categories would be more appropriate.

"The classification results are summarized in Table
I. The decision threshold for the two categories was

jects and using the same 524 transitions both to train
the classifier and to test it, Comparison of results ob-
tained with the two decision rules show a drop in the .
error rate from 13.9% to 9, 3% when using rule B,

Evidently, normalization of the conditional probabxllties”

before combining the measurements at different points
in time helps to lower the error rate,

Experiments were continued with decision rule B.
Speaker to speaker variation was estimated by re-
peatedly testing one speaker’s data against measure-
ments derived from the other speaker’s data. A total
error rate of 15% was noted. The most significant
differences in the nasal transition parameter data were
noted in the mean centroid frequency. For n =2, this
value was 222+16 Hz for speaker LL, 256+ 26 Hz for
speaker GK. As discussed below, this parameter was

TABLE 1. Nasal/non-nasal classification results,

2

whk
F S

found to be the most useful contributor to the total cate-
gorization score. Thus it is not surprising that the

" decisions are strongly dependent on small centroid fre-
.quency differences. Based on articulatory considera-

‘ - i 1 i iee t freo
established by pooling the parameter data of both sube . tions, one would expect significant nasal resonant-fre

quéncy differences due to size differences between
speakers’s nasal cavities, The relatively small stan-
dard deviation values for the centroid- -frequency param-
eter are more surprising and indicate its insensitivity

* to contextual variatxons. When training data and test

data were separated by text material rather than

.Speaker, the total error rate was only 11%. The higher

error-rate degradation due to learning and testing on
different speakers rather than different text suggests

© that further improvements in categorization may result

through use of speaker-dependent training data.

To evaluate the relative contributions of the four
measurements, a decision rule was implemented that
treated each measurement as independent, normalized
the conditional probabilities for each measurement, and
summed to contributions from the 16 measurements.

. Decision Error

Training set Test set rule rate
2 speakers, 11 sentences each . same' A 13.9%
2 speakers, 11 sentences each ‘same B 9.3%
2 speakex"s, 11 sentences each same . - 16 independent 13.5%

) parameters
speaker B, 11 sentences " speaker A} B 15%
speaker A, 11 sentences speaker B ,
2 speakers, text 1 same speakers, text 2} o 1% -
2 speakers, text 2 same speakers, text 1

v
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'

Predictably, the error rate on the total data using in-
dependent parameters was higher, 13.5% vs 9.3% using
multivariate statistics. An estimate of the contribution
of each measurement to the total decision score may

be derived from ' o T

. J .
s =} 2. B ska@) -sim)],
=1

where B, is +1 or -1 depending on whether or not the
testitemwas anasal, sj(a) and s!(b) are the respective
normalized probability scores for the two categories - -
obtained from measurement 7 on token 7, and J is the
total number of transition tokens. The low-frequency
energy centroid, the one parameter dependent on the
spectrum at only one moment in time, showed the high-
est contributions, namely, 0.71, 0.77, 0.5, and 0,74
forn=1,...,4. The other parameters were apparently
less effective, their contributions ranged from 0.53 to
'0.65. Measurements at time values n =2, 3 were most
- effective, yet the others still contributed substantially
to reduce the overall error rate. The one significant
difference between prevocalic and postvocalic nasal
transition was found in the relative effectiveness of the
measurements at the distinct time values. Measure-
ments at small-n values give relatively higher contri-
butions for prevocalic transitions, measurements at
larger-n values are more effective for postvocalic
- transitions. One explanation for this may be that a .
nasal is frequently anticipated by nasalization of the
preceding vowel which causes the spectral discontinuity
to be less abrupt and necessitates a longer time delay
before a distinct nasal murmur can be observed.

1V. DISCUSSION

In attempting to compare our results with those of
other workers, ‘we encountered few quantitative results
dealing with substantial amounts of data in the litera-
ture. Niederjohn and Thomas? report that the most
confusion in their system is encountered between the
four sounds /m, n, 1, r/, However, their study in-
cluded only 12 nasals from four sentences by one
speaker. Weinstein ef al.* report confusion statistics
for consonant segment classification, If their confu-
sion matrix is reduced to two categories, nasaland non-
nasal, a misclassification rate of 21% is obtained. The
test applied here to detect nasals makes use of acoustic
measurements similar to that work, However, two
- essential differences should be noted. First, by
averaging formant frequency and amplitude measure-
ments over five points in time before classification,
they implicitly assume a nasal segment model with
static spectral characteristics. Our data reveal sig-
nificant parameter differences with time as one moves
further into the nasal segment. Second, formant com-
putations appear not to be necessary for nasal detec-
tion. In fact, representation of the nasal spectrum by

means of three formants may not be sufficiently precise. -

One of the differentiating characteristics of nasals is
the presence of spectral zeros, - the effects of which are
but poorly captured in a three-formant representation.
In view of our results, the use of broadband spectral
information appears more robust.
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Our results, when speaker-dependent parameters are
used, are comparable to some results recently re-
ported as part of larger speech recognition studies.
Hess'® reported a 90. 2% recognition rate for the class
of nasals in German continuous speech by one speaker,
Dixon and Silverman'* reported a 93. 7% nasal recogni-
tion rate for an 8-min-long continuous English text by
one speaker, The method presented here possesses
advantages of simplicity in both the parameters used
and the classification techniques employed—when atten-

, tion may. be restricted to the detection of nasals alone.

Generalization of the nasal/nonnasal discrimination
to further speakers must await the collection and pro-
cessing of further data. Interspeaker variation appears
the most significant limitation to improvement of the
calssification results, We suspect that a limited
amount of unsupervised ti'aining may suffice to over-
come this limitation, however, no experimental studies
of this question have been carried out.

There are two important additional sources of vari-
ance in our data. The nasal spectrum depends on the
color of the syllabic vowel because that is the underly-
ing articulation on which the nasal murmur articulation
is superimposed. Of course, the nasal spectrum fur-
ther depends on the place of production. No attempts
to use our measurements to categorize the nasal mur-
murs by pace of production have yet been carried out,
Because good nasal/nonnasal classification is obtain-
able without consideration of place or production in-
formation, it appears appropriate for any complete
analysis to do nasal/nonnasal classification first, fol-

" lowed by categorization of the nasal segments.

Most of the false indications result from the confusion
of liquids, glides and semivowels with nasals. In par-
ticular, /1/ and /r/ before high vowels tend to be con-
fused with nasals rather often. In addition, some
voiced fricatives that manifest weak frication, particu-
larly in unstressed environments can be confused with
nasals, Nasals were missed most frequently when they
appeared to be shortened due to a consonantal cluster

_context or when they appeared to be articulated as a

nasal flap. In cases where nasals are shorter than 50
msec, summation of partial scores from four points in
time may be inferior to a sequential classification pro-
cedure that stops consideration of new measurements
whenever the partial sum of scores exceeds a given

. fraction of the total possible score.

V. CONCLUSION

The spectral changes manifested by the transitions
to and from nasal murmurs are good c ues for the recog-
nition of the nasals as a class. Of the four measure-
ments used, the centroid in the 0-500-Hz frequency
band appears to be the most useful parameter, Use of
additional measurements of energy change in three
broad frequency bands allows good separation of nasals

" and nonnasals irrespective of context. The measure-

ments are significantly correlated, thus resort to
multivariate statistics is necessary.

It appears particularly important to treat the transi-
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tion between nasal and nonnasal as a dynamic articula-
tory event with corresponding time-varying acoustic
properties. The individual parameters show significant
variation with increasing time displacement from the
onset of the transition. ‘ '

Maximal separation between nasals and nonnasals is
not achleved at the same point in time for all the pa-
‘rameters. Therefore, the data must not be pooled
over the separate time points of measurement.
Through careful selection of the maximal spectral
variation point, we achieve a time synchronization of
the unknown transition with respect to the correspond-

ing reference data, and thereby obtain improved separa-

tion between the nasal and nonnasal categories..

APPENDIX. SPEECH TEXT USED FOR DETECTION
OF NASALS : '

When the sunlight strikes raindrops in the air, they
act like a prism and form a rainbow. The rainbow is
adivision of white light into many beautiful colors.
These take the shape of a long round arch with its path
high above and its two ends apparently beyond the hori-
zon. There is, according to legend, a boiling pot of
gold at one end. People look but no one ever finds it,
When a man looks for something beyond his search,
his friends say he is looking for the pot of gold at the
end of the rainbow. '

John and I went up to the farm in June, The sun
shone all day and wind waved the grass in wide fields
that ran by the road. Most birds had left on their trek
south but old friends were there to greet us. Piles of
wood had been stacked by the door, left there by the
man who lives twelve miles down the road. The stove
would not last till dawn on what he had cut, so I went
and chopped more till the sun set. :
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