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Abstract

Previous cue integration studies have examined continuous perceptual dimensions (e.g., size) and have shown that human
cue integration is well described by a normative model in which cues are weighted in proportion to their sensory reliability,
as estimated from single-cue performance. However, this normative model may not be applicable to categorical perceptual
dimensions (e.g., phonemes). In tasks defined over categorical perceptual dimensions, optimal cue weights should depend
not only on the sensory variance affecting the perception of each cue but also on the environmental variance inherent in
each task-relevant category. Here, we present a computational and experimental investigation of cue integration in a
categorical audio-visual (articulatory) speech perception task. Our results show that human performance during audio-visual
phonemic labeling is qualitatively consistent with the behavior of a Bayes-optimal observer. Specifically, we show that the
participants in our task are sensitive, on a trial-by-trial basis, to the sensory uncertainty associated with the auditory and
visual cues, during phonemic categorization. In addition, we show that while sensory uncertainty is a significant factor in
determining cue weights, it is not the only one and participants’ performance is consistent with an optimal model in which
environmental, within category variability also plays a role in determining cue weights. Furthermore, we show that in our
task, the sensory variability affecting the visual modality during cue-combination is not well estimated from single-cue
performance, but can be estimated from multi-cue performance. The findings and computational principles described here
represent a principled first step towards characterizing the mechanisms underlying human cue integration in categorical
tasks.
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Introduction

The problem of combining multiple sources of information (or

cues) is ubiquitous: to perceive the world as a cohesive structure

our brains must integrate cues within and across several modalities

[1,2]. For example, there are at least 12 different visual cues to

depth [2]. A large body of prior work has shown that a speaker’s

facial features, such as the position of the lips or tongue, can

provide useful information for the perception of spoken speech [3–

10]. The influence of visual information on the perception of

auditory information has also been observed in children [11–13],

across languages [14–16] and even in pre-linguistic infants [17–

19]. Given the extensive evidence for audio-visual integration in

speech perception, the question arises as to the precise

computational mechanism that is used by human observers in

carrying out this integration.

Under ideal conditions, where each cue is specified precisely

(signals the true stimulus with perfect fidelity every time), the

process of integration is trivial, because the information being

signaled by each cue is exactly the same. However, in the real

world, sensory signals are inherently uncertain [2,20] and can only

provide an approximation of the true stimulus. This uncertainty

could be due to processing inefficiencies within each sensory

modality or due to noise or variability in the environment [21].

Given such uncertainty, the information provided by a sensory cue

about a stimulus in the world is best characterized by a probability

distribution over possible stimulus values, the mean of which (the

stimulus value that the distribution is centered on) shifts from trial

to trial and across cues. This variability renders cue integration a

difficult computational problem. On a given trial, any estimate

drawn from the distribution representing the information provided

by each cue will have uncertainty associated with it and the

estimates drawn from different cues need not match each other. As

a result, the brain has to infer the ‘‘true’’ value for the stimulus

based on several uncertain sensory signals (Fig. 1A).

Contemporary research on cue integration has focused largely on

the problem of estimating continuous stimulus variables from

multiple sensory cues. Under certain assumptions [1,22,23], a

statistically optimal mechanism for combining multiple uncertain

cues is equivalent to using a linear combination rule where the

estimate from each cue is weighted by its relative uncertainty.

Formally, given two sensory signals A and B, we can write the

information provided by the individual signals about a stimulus S in

the world, as a pair of likelihood functions, p AjSð Þandp BjSð Þ. If the

sensory signals are conditionally independent (e.g., the sensory

uncertainty associated with each modality is independent), the

information provided by both the cues together can be written

asp A,BjSð Þ~p AjSð Þp BjSð Þ. The value of S that maximizesp AjSð Þ
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may be thought of as the estimate of S suggested by A and the value

of S that maximizesp BjSð Þ may be thought of as the estimate of S

suggested by B (labeledŜSA andŜSB respectively). Assuming that the

individual cue likelihood functions are Gaussian, the peak of the

combined likelihood function can then be written as a weighted

average of the peaks of the individual likelihood functions,

ŜS~wAŜSAzwBŜSB ð1Þ

where

wA~

1

s2
A

1

s2
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A and s2

B are the variances of p(A| S) and p(B| S), respectively

(when normalized over the domain of S). The variance of the

combined likelihood functionp A,BjSð Þ is given by:
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Equations (1–3) describe the information provided by a pair of

cues and an estimator that computes a weighted average of the

individual cue estimates (Fig. 1B). Using this weighted average

comprises a normative, or statistically optimal, method for

integrating the information provided by two cues for a given

sensory stimulus, because the variance of the resulting estimates is

guaranteed to be as small as possible (for an unbiased estimator)

[20]. Numerous recent studies have shown that humans weight

information from different sensory cues based on the relative

sensory variability affecting them in a manner consistent with

optimal integration [20,24–31].

When tasks are defined over categorical dimensions, on the

other hand, they involve the added computational requirement of

mapping noisy sensory features from each modality onto task-

relevant categories (see Feldman & Griffiths 32] for a prior study

considering the effect of categories on speech perception). Thus,

the optimal cue weights in such tasks would be expected to depend

not only on the sensory variability affecting each cue but also on

the precise characteristics of the task-relevant categories. Consider

one such categorical cue-combination problem-the task of labeling

a joint audio-visual signal as a ‘ba’ or a ‘da’. For simplicity assume

that the visual and auditory cues each vary along a single feature

dimension. Figure 2 shows a schematic of the categorization

problem. Signals are represented as points, S~ a,v½ �T in a two-

dimensional feature space, where a is the strength of the auditory

feature and v is the strength of the visual feature. The red and blue

ellipses represent the mean and covariance of the sensory feature

vectors received by an observer when a ‘ba’ or a ‘da’ is produced

by a speaker in the environment, respectively. The normative

model for integrating sensory cues in such a categorization task is

somewhat different from the model for integrating sensory

cues when estimating a continuous stimulus value (equations 1–3

above). In a categorization task, assuming that the covariance

matrices for the two categories are equivalent, the optimal

categorizer 33] computes a decision variable D by projecting a

received signal, S, onto a linear discriminant vector w (represented

by the green line in Fig. 2) and labels the signal ‘ba’ when D is less

than some criterion value k and ‘da’ when it is greater than k. If we

further assume that the variance in the two sensory features is

uncorrelated, the optimal mechanism for computing the decision

variable D turns out to be a simple linear rule:

D~waazwvv ð4Þ

where the weights wa and wvare given by

wa~
Dma

s2
a,sensezs2

a,env

wv~
Dmv

s2
v,sensezs2

v,env

ð5Þ

s2
a,sense and s2

v,sense are the variances in the auditory and visual

signals due to sensory uncertainty;s2
a,env and s2

v,env are the vari-

ances in the auditory and visual signals due to variability in

environmental production (what the listeners hear), andDma and

Dmvrepresent the separation between the means of the

two categories in the auditory and visual feature dimensions,

Figure 1. Characterizing sensory information in terms of
likelihood functions. Given two sensory signals A and B, we can
write the information provided by the individual signals about a
stimulus S in the world, as a pair of likelihood functions, p(A|S) and
p(B|S) (A) An example cue combination scenario in which the likelihood
functions for the two cues are centered at different stimulus values. As a
result, the cue combination task involves choosing between multiple
uncertain, and conflicting, cues. (B) The likelihood function for a
combination of cues is, under some independence assumptions, simply
the product of the likelihood functions for each cue. This results in the
peak of the joint likelihood function for the two cuesS

_

, being biased
toward the peak of the narrower likelihood functionS

_

A . The variance of
the joint likelihood function is also smaller than the variance of either of
the individual likelihood function.
doi:10.1371/journal.pone.0019812.g001
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respectively. Thus, in a categorization task, the weights used to

compute the optimal decision variable depend not only on the

sensory variance affecting the perception of each cue but also on

the precise distributional properties (parameterized by the mean

and variance in the Gaussian case) of the task-relevant categories.

In order to understand the factors that determine how humans

integrate auditory and visual signals for phonemic labeling, one

would like to estimate all of the above parameters and compare the

‘‘optimal’’ weights to the weights that subjects actually assign to

the two cues. Performing such a comparison, however, is a difficult

problem largely because of what would be required to estimate the

environmental variance (i.e. the variance in the auditory and visual

signals to which a listener/viewer is exposed from speech

productions in their natural linguistic environment) associated

with each phonemic category. Such an estimate would require

either knowing the precise distribution of all the instances of the

category that the individual was previously exposed to, or being

able to estimate the individual’s internal model of that distribution

(see Discussion).

Here, we take an alternative approach to the problem. We

measure the sensory uncertainty associated with auditory and

visual cues in a phonemic labeling task and use the measurements

to derive a provisional normative model for phoneme categoriza-

tion that computes ideal weights for each cue based only on the

sensory uncertainty affecting each cue (as described in equations

1–3). If humans categorize phonemes in a Bayes’ optimal way, we

should see two patterns in their behavior. First, the weight that

they give to a sensory cue should decrease as the sensory

uncertainty in that cue increases. This is easily testable: we can

experimentally manipulate the sensory uncertainty in sensory cues

by degrading the stimuli presented to participants in various ways

(such as by adding noise or by blurring). Second, if in addition to

sensory uncertainty, participants’ cue integration behavior is also

influenced by the environmental variability in the sensory signals

associated with each phonemic category, the change in observed

weights (the weights participants assign to each cue) as sensory

uncertainty is manipulated should be ‘‘flatter’’ than is predicted

by the provisional normative model that only takes sensory

uncertainty into account. This is because degrading the sensory

stimulus does not change the environmental variability associated

with each phonemic category. Note that our approach is

somewhat different from traditional studies of cue integration.

Rather than testing whether or not humans are quantitatively

optimal, we test whether they behave qualitatively in the manner

predicted by a Bayes’ optimal observer and, finding that they do,

use the Bayesian framework as an analysis tool to characterize the

factors that determine participants’ performance.

In this article, we describe the results of an experiment in which

we measured the weights that human participants assigned to

auditory and visual cues when categorizing phonemes presented

along a /ba/-/da/ continuum, in an audio-visual stimulus. To

examine the effect of changes in sensory uncertainty on par-

ticipants’ cue weights, we varied the sensory uncertainty associated

with the visual cue by blurring, to varying extents, the visual signal

used in the experiment. We compared the weights that

participants assigned to each modality (in each blur condition) to

the weights predicted by a provisional normative model that only

took into account the relative sensory uncertainty associated with

each cue. Participants’ data confirmed both of the predictions

outlined above-participants gave less weight to the visual cue as

visual blur increased, but not by as much as would be predicted by

the provisional normative model. Our results reveal two important

findings. First, humans are sensitive, on a trial-by-trial basis, to the

sensory uncertainty associated with auditory and visual cues

during phonemic categorization. Second, deviations from a

provisional normative model that only takes sensory uncertainty

into account are consistent with the hypothesis that humans have

an internal model of within-phoneme environmental variability

that they factor into their categorization.

Methods

Ethics Statement
All experimental protocols were approved by the Research

Subjects Review Board (RSRB) at the University of Rochester.

Informed written consent was obtained from all participants.

Participants
Participants were 8 monolingual native American English-

speaking students from the University of Rochester. Each

participant had no known hearing problems, had normal or

corrected to normal vision, and was naı̈ve to the goals of the

experiment. Participants were tested individually in a quiet room

over a span of four sessions-one session per day. Each session

lasted approximately one hour. Participants were given the

opportunity to take breaks as necessary and were paid $35 for

the four sessions.

Materials
Audio-only stimuli. We created a 10-step audio-only synthe-

tic continuum between the phoneme /b/ in /ba/ and the

phoneme /d/ in /da/, using the Klatt-works interface (available

from Bob McMurray: bob-mcmurray@uiowa.edu) to the 1988

Klatt synthesizer [34]. We first recorded a naturally produced

/ba/ and a naturally produced /da/ as spoken by a male native-

Figure 2. A categorical cue-combination problem. A schematic of
the categorization problem where the task is to label an audio-visual
speech signal as belonging to one of two phonemic categories-/ba/ or
/da/. Assuming that the visual and auditory cues each vary along a
single feature dimension, the x and y axes represent the strength of the
sensory feature in the auditory and visual dimensions, respectively.
Signals are represented as points in this two-dimensional feature space.
The red and blue ellipses represent the mean and covariance of the
sensory feature vectors received by an observer when a ‘ba’ or a ‘da’ is
produced by a speaker in the environment, respectively. The green line
represents the linear discriminant vector w that an optimal categorizer
projects the received signal onto (see text).
doi:10.1371/journal.pone.0019812.g002
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speaker of American English. Endpoint stimuli were synthesized

based on the parameters of these recorded syllables. All non-

contrastive parameters such as pitch and syllable length were then

normalized between the two endpoints. Finally, a continuum

between the endpoints was created by systematically varying the

onset frequency of the second formant (from 1000 to 1800 Hz)

and the length of the third formant transition (from 50 ms to

100 ms) in 8 steps, which together with the two endpoints,

provided a 10-step audio-only continuum. The duration of each

audio-only stimulus was 367 ms (11 frames at 30 fps).

Video-only stimuli. We also created a 10-step video-only

synthetic continuum between the phoneme /b/ in /ba/ and the

phoneme /d/ in /da/. This process was carried out by Dominic

Massaro and his colleagues at the University of California, Santa

Cruz. Massaro and his colleagues first parameterized the manner

in which the position of the visible facial features (such as the

position of the lips, tongue, jaw and teeth) changed during the

spoken production of the syllables /ba/ and /da/. These

parameters were used to animate a synthetic face to create the

endpoints of the video-only continuum (Fig. 3). The parameters

for the intermediate stimulus positions were obtained by linearly

interpolating, in eight steps, between the parameters for the two

end-point stimuli. These parameters were then used to animate

the synthetic face, thereby creating the complete 10-step video-

only continuum. Readers are referred to [35] for a complete

description of the process by which the videos of the synthetic

animated face were created. The duration of each video-only

stimulus was 1.334 s (40 frames at 30 fps).

Audio-visual stimuli. We created 32 audio-visual stimuli by

combining specific stimuli from the audio-only and video-only

continua. For each audio-visual stimulus, we dubbed a chosen

auditory stimulus onto a chosen video stimulus using the

commercially available movie-editing software FinalCut Pro

(documentation available online at http://documentation.apple.

com/en/finalcutpro/). The duration of each audio-visual stimulus

was 1.334 s (40 frames at 30 fps). The temporal alignment of the

auditory and visual tracks was maintained using a dummy

auditory track, included in each video file, which provided

markers for the onset and completion of the auditory track. The

dummy auditory track on each video file spanned 367 ms (11

frames at 30 fps) which is exactly the duration of the auditory

stimuli used in this study (see above). The precise stimulus values in

the auditory and visual continua that were combined to produce

the 32 audio-visual stimuli are described in the results section.

Increasing visual uncertainty. We degraded the quality of

the visual information presented to participants by adding

progressively greater amounts of blur to the visual stimuli,

thereby creating four sets of visual stimuli (from no blur to

maximum blur) (Fig. 4). Specifically, we passed each video frame

of each visual stimulus through a Gaussian kernel with a specified

radius, which resulted in the stimulus becoming blurred. To

produce progressively greater amounts of blur, we linearly

increased the radius of the Gaussian kernel, which resulted in

the visual stimuli becoming blurred to a greater extent. The

blurring process was carried out using the Gaussian blur routine

included as part of the FinalCut Pro movie-editing software (see

online documentation for a description of the Gaussian blur

routine).

Procedure
Participants were seated at a comfortable viewing distance from

a touch-sensitive display (elo TouchSystems) that consisted of a

stimulus area and two buttons-one labeled /ba/ and the other

labeled /da/-and wore headphones (Sennheiser HD590). During

each experimental trial, they were presented with either unimodal

(audio-only or video-only) or bimodal (audio-visual) stimuli and

were required to indicate whether the presented stimulus was

perceived more as the phoneme /b/ in /ba/ or the phoneme /d/

in /da/, by touching the appropriately labeled button on the

screen. During each session, experimental trials were divided into

two blocks, where each block involved presentation of either

unimodal or bimodal stimuli, with the order of stimulus block

counter-balanced across sessions and participants. Each stimulus

condition was repeated 26 times during the course of the

experiment and, within each trial block, the specific stimulus

being presented was randomly varied-within a continuum, across

the two modalities and across blur levels. Each participant

performed a total of 4628 trials (1157 per session) over the course

of the experiment. No feedback was provided at any point in the

experiment.

Figure 3. Video-only stimuli created by animating a synthetic
face. Frames at voicing onset from videos of the end-point stimuli
(corresponding to /ba/ and /da/) from the video-only continuum.
doi:10.1371/journal.pone.0019812.g003

Figure 4. Adding blur to the visual stimuli. Frames at voicing
onset from the video-only stimulus corresponding to the /da/ endpoint,
showing the effect of adding increasing amounts of blur to the visual
signal.
doi:10.1371/journal.pone.0019812.g004
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Results

We used a phonemic labeling task to quantitatively examine cue

integration in a categorical task and to explore the extent to which

human cue integration during categorical speech perception is

described by the provisional normative model outlined in the

introduction. To work out the predictions of the provisional

normative model, we first estimated the sensory variances

associated with the unimodal (audio-only and video-only) tasks,

for each participant. A 10-step synthetic continuum between the

phoneme /b/ in /ba/ and the phoneme /d/ in /da/ was created

in both the auditory and visual domains (see Methods). Figure 3

shows the end-point stimuli (corresponding to /ba/ and /da/) in

the visual domain, at the point of vocal articulation. Recall that the

provisional normative model, as described in equations 1–3,

predicts that for each participant in this task, the ideal weight

assigned to the visual modality is a function of the sensory

variability affecting visual estimates relative to the sensory

variability affecting auditory estimates. By adding blur to the

visual stimuli, we increased the uncertainty in the visual signal,

thereby increasing the sensory variability affecting visual estimates

while keeping constant the sensory variability affecting auditory

estimates (Fig. 4; see Methods). Blur trials were presented

randomly intermixed with blur-free trials. Psychometric curves

representing each participant’s unimodal labeling performance in

each of the five conditions (one audio-only condition and four

video-only conditions corresponding to the four levels of blur) on

the 10-step continua, were well-fit by cumulative Gaussian

distributions (Fig. 5; see text S1 for details of the fitting procedure).

The parameters of the best fitting cumulative Gaussian for a given

cue and blur condition provided the point of subject equality (PSE)

and variance (slope) associated with the underlying distribution of

the information provided by that cue, in that blur condition. Using

the estimates for the sensory variance affecting performance in the

unimodal task, we predicted the weights (via equations 1–2) that

an observer, whose behavior was well-described by the provisional

normative model, would assign to each modality when presented

with audio-visual information simultaneously, including cue

conflicts.

We then estimated the weights participants actually assigned to

each modality during cue-combination by testing their phonemic

labeling performance when presented with bimodal (audio-visual)

information. 32 bimodal stimuli were created by combining

stimuli from the unimodal auditory continuum with stimuli from

the unimodal visual continuum (Fig. 6). Of the 32, 10 were no-

conflict stimuli where the audio and video information corre-

sponded to the same position along the unimodal 10-step continua

(highlighted in green in Fig. 6; videos S1 and S2 show the cue-

consistent /ba/ and /da/ bimodal stimuli), and 22 were small cue-

conflict stimuli where the audio and video information was slightly

offset from one another (highlighted in black in Fig. 6). To ensure

that participants were not aware of these conflicts, we kept them to

fewer than 3 steps (+/23 steps) on the 10-step scale (see

Discussion). We again included four different bimodal conditions,

which differed in the amount of blur added to the visual stimulus

(videos S3 and S4 show the cue-consistent /ba/ and /da/ bimodal

stimuli, with visual blur added). The blur levels used here were the

same as those used in the four unimodal conditions, and the

inclusion of these bimodal conditions allowed us to compute the

weight assigned to each modality in the presence of the different

levels of added visual blur. Blur trials were again presented

randomly intermixed with blur-free trials. Psychometric functions

for each participant were fitted as in the unimodal conditions. The

weights assigned by each participant to each modality were also

simultaneously computed from the bimodal labeling data. Finally,

we compared the weights that participants actually assigned to

each modality during the bimodal task, to the weights predicted by

the provisional normative model, to test the extent to which the

provisional normative model describes human cue integration

during phonemic labeling.

To what extent does a normative model of cue
integration, based solely on sensory variability, account
for participants’ cue weights during phonemic labeling?

Across the 8 participants in our experiment, the provisional

normative model provided an excellent qualitative description of

human cue integration performance across blur levels—each cue

was weighted as a function of its sensory reliability (Fig. 7). The

data allowed us to make two major observations. First, in the

absence of any added blur in the visual signal, the provisional

normative model predicted a higher weight to the visual modality

than to the auditory modality, reflecting the fact that during

unimodal performance the sensory variability affecting auditory

estimates was higher than the sensory variability affecting visual

estimates, in our task. In line with this prediction, during cue

combination, the weights assigned by participants to the visual

modality were higher than the weights assigned to the auditory

modality. Second, as blur was added to the visual modality, the

provisional normative model predicted a decreasing weight to the

visual modality (and an increasing weight to the auditory

modality), reflecting the fact that the sensory variability affecting

visual estimates during unimodal performance increased with an

increase in added blur. In line with this prediction, during cue

combination, the weights assigned by participants to the visual

modality decreased significantly with increasing added blur. A

repeated measures analysis of variance over the observed weights

found that the weights assigned by the participants to the visual

modality were significantly different across blur level

[F(3,21) = 25.138, p,.0001]. Since the blur level varied randomly

between stimulus presentations (i.e., blur levels were not blocked),

the data suggest that participants were able to dynamically track

the reliability of each modality, on a trial-by-trial basis.

Exploring the quantitative divergence between observed
and predicted weights

Although the provisional normative model provided a good

qualitative description of audio-visual cue integration during

phonemic labeling, it is clear from the data that the model did

not provide a good quantitative description of cue integration

behavior in this task-observed and predicted weights were

significantly different from each other (Fig. 7). A 2-way repeated

measures analysis of variance with weight type (predicted vs.

observed weights) and blur level as the factors found significant

main effects of weight type [F(1,7) = 18.232, p = 0.004] and blur

level [F(3,21) = 45.507, p,.0001], as well as a significant

interaction [F(3,21) = 17.138, p,.0001].

It is important to note that our analysis of the provisional

normative model for cue integration during phonemic labeling

made a critical assumption. We computed the weight that should

be assigned to each cue during the cue-combination task by using

estimates of sensory variability derived from performance on

single-cue (or unimodal) trials. In doing so, we assumed that the

variability affecting a cue’s estimates during single-cue perfor-

mance was the same as the variability affecting that cue’s estimates

during cue-combination performance. This is an assumption that

has been made by most previous studies of cue integration

[20,24,25,27,28,30,31].

Cue Integration in Categorical Tasks
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However, the assumption that the same variability affects each

cue’s estimates during both single-cue and cue-combination

performance could be violated if the perceptual judgments being

carried out by the participant were different during the single-cue

versus the cue-combination task. For example, the unimodal

phonemic labeling task could be carried out by focusing on a

subset of the underlying features in each modality. Given that the

task required labeling stimuli as either /ba/ or /da/, it was

possible for an observer to carry out the video-only task by just

estimating the relative position of the two lips at the initial point of

articulation and then mapping ‘‘closed’’ to /ba/ and ‘‘open’’ to /

da/. Similarly, it was possible for an observer to carry out the

audio-only task by just estimating the onset frequency of the

second formant (F2) because that cue provided the acoustic basis

for carrying out the /ba/-/da/ labeling task in our experiment.

However, whether or not participants were able to perform the

phonemic task by focusing only on a sub-phonemic feature

depended on their ability to extract the relevant featural

information (lip position or F2) from the signal available in each

modality.

Prior evidence suggests that human observers, when presented

with visual speech information and asked to make categorical

judgments, are able to decompose the visual signal into its

constituent features (such as lip position) and are able to use this

underlying feature in isolation in carrying out perceptual tasks. On

the other hand, when presented with auditory speech information

and asked to make categorical judgments, human observers are

unable to decompose the auditory signal into its constituent

features (such as the onset frequency of individual formants) and

are thus unable to use the underlying feature information in

Figure 5. Cumulative Gaussian fits of unimodal performance, for participant ‘blh’, computed using a Maximum Likelihood
procedure. The x-axis represents the unimodal stimulus continuum between the phonemes /b/ in /ba/ and /d/ in /da/. The y-axis represents the
proportion of trials, for each stimulus condition, that the participant reported perceiving a /da/. The fitted functions did not need to span the entire
range between 0.0 and 1.0 because we took stimulus-independent lapses into account in computing the fits. (A–E) Psychometric curves representing
the participant’s unimodal labeling performance were well-fit by cumulative Gaussian distributions (see text S1 for details of the fitting procedure).
Panels A–D show the raw unimodal data and the corresponding fits for the four video-only conditions. Panel E shows the data and the fit for the
audio-only condition. (F) Comparing the slopes of the cumulative Gaussian fits across the unimodal conditions. The point of subjective equality has
been equalized in order to better illustrate the relative slopes of the psychometric functions. In the absence of any added blur in the visual signal, the
slope of the video-only psychometric function (solid red line) is much steeper than that of the audio-only psychometric function (dashed blue line).
However, as a greater amount of blur is added to the visual signal (green, magenta and black solid lines), the slope of the video-only psychometric
function becomes shallower till at the highest blur level, the slope of the video-only psychometric function is almost the same as the slope of audio-
only psychometric function.
doi:10.1371/journal.pone.0019812.g005
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isolation [36]. Prior evidence therefore suggests that in our

experiment, participants would not have the ability to extract F2

information from the auditory signal, but would have the ability to

extract lip position information from the visual signal. As a result,

it is possible that participants in our experiment carried out the

perceptual judgment of lip-position estimation (as opposed to

phonemic labeling) during the video-only task, whereas they could

only have carried out the perceptual judgment of phonemic

labeling during the audio-only task.

During cue-combination, since the audio-visual speech infor-

mation is presented in an integrated fashion, it is unclear whether

participants retained access to each cue’s underlying features. If

they did, then it’s possible they used the same strategy in

combining each modality as they did during the single-cue tasks-

lip position estimation based on the visual component of the audio-

visual signal and phonemic labeling based on the auditory

component of the audio-visual signal. In this case, the same

perceptual judgment would be carried out, in each modality,

during the performance of both single-cue and cue-combination

tasks and we expect the manner in which we tested the provisional

normative model to be valid. On the other hand, if during the cue-

combination task, participants were unable to use the individual

sub-phonemic features, but instead carried out the perceptual

judgment of phonemic labeling based on the entire audio-visual

signal, then it is possible that different perceptual judgments were

carried out in the visual modality during the single-cue versus the

cue-combination task-lip position estimation during unimodal

performance and phonemic labeling during bimodal performance.

In such a scenario, the variability affecting visual information

during the cue-combination task is not well estimated by the

variability affecting visual information during the video-only task,

and a key assumption made in testing the provisional normative

model is violated. Thus, the quantitative divergence between the

weights predicted by the provisional normative model and the

weights observed from the participants (Fig. 7) need not necessarily

be due to a failure of the model. Rather, it could simply be due to

the fact that we used the wrong estimate of visual cue reliability in

computing the predicted weights.

Estimating variance affecting visual estimates during the
cue-combination task

The discussion in the previous section leads us to the conclusion

that, in our task, it is possible that participants were carrying out

different perceptual judgments when presented with visual

information during the unimodal versus the bimodal task. As

such, in order to properly test the extent to which the provisional

normative model provides a description of cue integration during

phonemic labeling, we need to estimate the sensory variance

affecting the information provided by the visual cue during the

actual cue-combination task-during bimodal performance. To do

this, we exploit the fact that for a given participant, the variance

affecting bimodal judgments, s2
AV , is related to the variance

associated with the individual cues, s2
A and s2

V . This relationship

can be written as follows:

s2
AV~w2

As2
Azw2

V s2
V ð6Þ

where wA and wV represent the weights assigned by the participant

to the auditory and visual cues respectively. Equation 6 represents

the relationship between bimodal variances and unimodal

variances for any linear integration system, regardless of whether

the cue weights are optimal. It therefore provides a means for

estimating one cue’s variance given reliable estimates of the other

Figure 6. Bimodal stimuli. This figure shows the specific stimulus
values from the audio-only and video-only stimulus continua that were
combined to form the bimodal stimuli. Each filled square represents
one of the bimodal stimuli. The stimuli highlighted in green represent
the subset of bimodal stimuli that included no conflict between the two
modalities. The rest of the filled squares represent bimodal stimuli that
included small conflicts.
doi:10.1371/journal.pone.0019812.g006

Figure 7. A comparison of predicted and observed weights,
during audio-visual phonemic labeling. The y-axis represents
weight assigned to the visual modality (or 1-weight assigned to the
auditory modality). The x-axis represents the four blur levels—from no
blur (Blur_0) to maximum blur (Blur_3). The blue bar, in each blur
condition, represents the mean weight, across the 8 participants, that
should be assigned to the visual modality if participants’ behavior is
well-described by the provisional normative model. The predicted
weights were computed using estimates of the sensory variability
affecting unimodal performance. The red bar, in each blur condition,
represents the mean weight, across the 8 participants, that was actually
assigned to the visual modality during the bimodal task. The error bars
represent 95% confidence intervals for the respective means.
doi:10.1371/journal.pone.0019812.g007
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cue’s variance and the bimodal variance without making any

assumption of optimality. Using equation (6), we estimated the

variance associated with the visual cue during bimodal phoneme

categorization from the variance estimated from the cue-consistent

bimodal stimuli, the weights estimated from the cue conflict

bimodal stimuli, and the auditory cue variance estimated from the

unimodal auditory stimuli. We compared this estimate of visual

cue variance with the estimate derived from unimodal visual

conditions to test the assumption, for each participant, that the

sensory variance affecting visual information is the same during

both unimodal and bimodal performance.

It is important to note that by using the auditory cue variance

estimated from the unimodal auditory stimuli, we are assuming

that the variance of the auditory estimates is the same during both

unimodal and bimodal performance. As we have noted earlier,

prior research [36] suggests that when presented with auditory

speech information and asked to make categorical judgments,

human observers are unable to decompose the auditory signal into

its constituent features, thereby strongly suggesting that they are

likely carrying out the same perceptual judgment of phonemic

labeling during both unimodal auditory and bimodal perfor-

mance. As such, if the perceptual judgment being carried out is the

same during both unimodal auditory and bimodal performance, it

is reasonable to assume that the sensory variance affecting

auditory estimates is also the same.

Figure 8 shows the estimates of visual cue variance derived from

the unimodal and bimodal conditions, for each of the 8

participants. It is immediately apparent from this figure that for

participants 3 and 8, the variance affecting visual estimates during

the cue-combination task was markedly higher than the variance

affecting visual estimates during the single-cue task. The reason for

this dramatic difference between the two estimates of variance is

unclear. Regardless of the reason, however, it is important to note

that our analysis allows us to objectively examine individual

participants’ behavior in each component of the experiment and

to tag as outliers those who grossly failed to conform to the

parameters of the experiment. As a result of the above analyses,

and to ensure that subsequent analyses were not unduly biased by

the behavior of these outlier subjects, we excluded their data from

all subsequent analyses, reducing our sample size to 6.

For the rest of our participants, it is clear that although the

variance affecting visual estimates during the bimodal task is close

to the variance affecting visual estimates during the unimodal task,

there are nonetheless quantitative differences between the two for

most of the subjects. As such, by using the variability affecting

performance during the video-only task during the application of

the provisional normative model, we were using the wrong source

of visual variability in determining each cue’s predicted weight.

Thus, to properly test whether audio-visual cue integration during

the phonemic labeling task is well-described by the provisional

normative model, we computed predicted weights (via equations

1–2) using the variance actually affecting the information provided

by each cue during the cue-combination task, as estimated

according to the above analysis.

Comparing participants’ cue weights to the weights
predicted by the provisional normative model

Figure 9 shows a comparison between the observed weights and

the predicted weights, from the provisional normative model,

derived by eliminating the data from the two outlier participants

and by using the correct estimates of visual sensory uncertainty (i.e.

the estimates of visual sensory uncertainty affecting multi-cue

performance). Importantly, a 2-way repeated measures analysis

of variance on the difference between the predicted weights,

computed using the two prediction methods, and the observed

weights confirmed that the predictive power of the provisional

normative model was significantly improved by using the correct

estimate of visual sensory uncertainty and by eliminating the

outlier data [F(1,5) = 11.133, p = 0.021].

Across the 6 participants whose variance estimates were not

grossly different between the visual-only and bimodal conditions, we

found that the provisional normative model-using the correct

estimate of visual sensory variability-provided a surprisingly good

qualitative and quantitative prediction of participants’ cue weights

(Fig. 9). Specifically, in line with the predictions of the provisional

normative model, we found that the weights assigned by

participants to the visual modality decreased significantly with

increasing blur [F(3,15) = 20.229, p,.0001]. A 2-way repeated

measures analysis of variance using weight type (predicted vs.

observed) as one factor and blur level as another showed no main

effect between predicted and observed weights [F(1,5) = 0.324,

p = 0.594]-i.e. when averaged across blur levels, predicted weights

did not differ from observed weights. However, the analysis of

variance revealed a significant interaction between the weight type

(observed versus predicted weight) and blur-level [F(3,15) = 3.424,

p = 0.045]. In particular, the effect of blur level on observed weights

was smaller than predicted by the provisional normative model.

Overall, our results show that human observers integrate visual

and auditory cues for phoneme categorization qualitatively like a

Bayes-optimal observer would. The effective weight the observers

give to the visual cue in our task decreases as the uncertainty in

that cues increases, but that decrease is not as fast as it would be

for an optimal observer who only used the relative uncertainty in

the visual and auditory sensory cues to determine cue weights.

Rather, this particular pattern is consistent with an observer that

factors environmental variability in visual and auditory signals (as

created by variability in category production within and across

speakers) into its decision rule for categorizing phonemes.

Figure 8. Variance affecting visual information during unim-
odal versus bimodal performance, for each participant. The y-
axis represents the variance affecting visual information during task
performance. The x-axis represents the 8 participants in our study. The
blue bar, for each participant, represents the mean variance, across blur
levels, affecting visual information during unimodal performance. The
red bar, for each participant, represents the mean variance, across blur
levels, affecting visual information during bimodal performance.
doi:10.1371/journal.pone.0019812.g008
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Discussion

In this paper, we explored the computational mechanisms that

underlie human cue integration during categorical tasks through a

quantitative analysis of audio-visual integration during phonemic

labeling. Tasks in speech perception, such as phonemic labeling,

are particularly interesting because they involve decisions that

must be made over categorical perceptual dimensions. As we have

described in the introduction, performance in such tasks should be

influenced both by the sensory variability affecting each cue and

by the environmental (production) variability implicit in each task-

relevant category. Our data show that sensory uncertainty does

indeed play a significant role in determining the relative influence

of visual and auditory cues in phoneme categorization. If it were

the case that the environmental variability in the two signals was

the more significant determinant of performance (e.g., if the

environmental variability was significantly higher than the sensory

uncertainty), we would not have seen the large effect of visual blur,

on the weights assigned by participants to the visual modality, that

we observed in the data (see Fig. 9).

The weaker effect of blur on participants’ cue weights than is

predicted by the provisional normative model, which only

considers our psychophysical measures of sensory uncertainty in

computing the ideal weights, is what we would expect from an

observer who also takes environmental variability into account (see

equation 5). To illustrate the role that environmental variability

might be playing in participants’ cue integration behavior in our

task, we fit a Bayes’ optimal categorization model, that includes

free parameters for environmental variance, to our participants’

data (i.e. inserting our estimates of sensory variance into equation

5, we found the values for environmental variance that minimized

the mean squared difference between the model weights and

participants’ measured weights across the four visual blur

conditions). Assuming that the covariance matrices for the two

categories are equivalent (a necessary assumption for the

optimality of a linear categorizer-see Introduction), we find that

setting the auditory environmental variance to be 18% larger than

the auditory sensory variance and setting the visual environmental

variance to be 42% of the level of auditory environmental variance

(twice the level of the visual sensory variance in the unblurred

stimulus condition) gives the best fit between the model and

participants’ data. This result should be interpreted with caution,

as it reflects post-hoc fitting of a two-parameter model to four data

points. With the caveat that the model would not be able to fit

visual cue weights that change faster as a function of blur than is

predicted by the provisional (sensory uncertainty only) normative

model, it is not terribly surprising that we can find environmental

variance values that provide a good fit to the human data.

Nevertheless it provides at least speculative information that will

be useful to future investigations that focus on the role played by

environmental signal variance in audio-visual integration for

phoneme categorization.

Several important contributions have been made by our

findings. First, in contrast to most previous studies of human cue

integration, which have only considered tasks defined over

continuous perceptual dimensions (but see [37]), we have

computationally and experimentally probed cue integration in a

categorical task. This is an important extension of previous work

because many real-world perceptual tasks involve judgments over

categorical dimensions, and very little work to date has explored

cue integration in such tasks. In the context of audio-visual cue

integration during phonemic labeling, we specifically explored the

extent to which the weights assigned by human participants to

each cue depended on the relative sensory variability affecting that

cue. We found that when the sensory variability affecting one of

the cues was randomly varied, participants’ cue weights varied in a

manner qualitatively consistent with what would be predicted by

an optimal categorizer. We specifically found that participants’ cue

weights were very similar to the weights predicted by a provisional

normative model that computed ideal weights based only on the

relative sensory uncertainty affecting each cue; however, they

differed in an important way-they changed more slowly as a

function of sensory uncertainty than would be predicted by the

‘‘sensory uncertainty only’’ provisional normative model. Thus,

while subjects take into account relative sensory uncertainty when

integrating visual and auditory cues for phoneme categorization,

they are less influenced by changes in sensory uncertainty than

would be expected in a world with little or no environmental

variability in the signals associated with phonemic categories. This

is consistent with a model in which subjects also take into account

within-category environmental variability when combining cues.

Second, the techniques developed in this study allowed us to

empirically explore the validity of an assumption made by most

previous studies of cue integration-that the variability affecting the

information provided by a cue is the same during both single-cue

and cue-combination performance. This assumption allowed

previous studies to use the variability affecting the information

provided by each cue during a single-cue task to predict ideal cue

weights during the cue-combination task. We have argued that this

assumption need not be valid in all cue-combination tasks and

making such an assumption is particularly problematic when

considering categorical tasks, such as those in speech perception.

Figure 9. A comparison of predicted and observed weights,
during audio-visual phonemic labeling. The y-axis represents the
weight assigned to the visual modality (or 1-weight assigned to the
auditory modality). The x-axis represents the four blur levels-from no
blur (Blur_0) to maximum blur (Blur_3). The blue bar, in each blur
condition, represents the mean weight, across 6 participants (excluding
the two outliers from Fig. 8), that should be assigned to the visual
modality if participants’ behavior is well-described by the provisional
normative model. This figure differs from Fig. 7 in that it shows the
predicted weights, from the provisional normative model, derived by
eliminating the data from the two outlier participants and by using the
correct estimate of visual sensory uncertainty for each participant (see
text). The red bar, in each blur condition, represents the mean weight,
across the 6 participants, that was actually assigned to the visual
modality during the bimodal task. The error bars represent the 95%
confidence intervals for the respective means.
doi:10.1371/journal.pone.0019812.g009
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In the context of audio-visual cue integration during phonemic

labeling, we tested the validity of this assumption by independently

estimating the variability affecting information provided by the

visual cue during single-cue (video-only) versus cue-combination

(audio-visual) task performance. Our results show that for all of

our subjects the variance affecting visual information during

single-cue performance was different from the variance affecting

visual information during the cue-combination performance. This

result provides empirical evidence that the assumption of constant

variability between the single-cue and cue-combination tasks was

not valid in our task. However, since our analysis implicitly

provided an estimate of the variance affecting the information

provided by each cue during the actual cue-combination task—

during bimodal performance-we were able to properly derive the

provisional normative model which thereby allowed us to

quantitatively assess the role played by sensory uncertainty in

participants’ cue integration strategies.

Finally, we took several steps to ensure that our experimental

findings are unbiased and can be generalized to other human

observers. For instance, all of our experimental results were

obtained by testing observers who were naı̈ve to the purposes and

motivations of the experiment. This forced us to develop analyses

to empirically identify outliers and to discriminate stimulus-

dependent data from stimulus-independent noise. For example, in

pilot experiments we found that naı̈ve participants had a

significant stimulus-independent guessing or lapse rate, which

resulted in their psychometric functions not spanning the entire

range from 0.0 to 1.0. To model such stimulus-independent errors

(lapses), which are known to bias the process by which

participants’ psychometric functions are parameterized, if not

accounted for [38], we fit a modified cumulative Gaussian

psychometric function to each participant’s data in which the

probability of selecting one of the phonemes was assumed to be a

mixture of an underlying Gaussian discrimination process and a

random guessing process. We also used the results of our variance

estimates for each participant during the single-cue versus the cue-

combination tasks to evaluate the fidelity with which participants’

data conformed to the parameters of the experiment. As described

earlier, this analysis allowed us to objectively examine individual

participants’ behavior in each component of the experiment and

to tag as outliers those who grossly failed to conform to the

parameters of the experiment. Finally, our experimental design

generated more data per stimulus condition and participant (26

data points per stimulus condition and 4628 data points per

participant) than most prior studies of speech perception. As a

result, we had sufficient statistical power to make reliable

inferences about individual participant performance—we fit each

participant’s psychometric functions separately and computed

both predicted and observed weights for each participant in

isolation, thereby ensuring that each participant’s psychometric

functions and weight estimation were unbiased by other

participants’ performance. This in turn allowed us to both

quantitatively account for individual differences in task perfor-

mance and to definitively establish our conclusions based on a

relatively small sample size.

All of these foregoing steps provide a substantial advance over

previous treatments of auditory-visual integration, both in terms of

our experimental design and in terms of our modeling of these

results. Massaro and his colleagues [5,6] have previously

considered the task of phonemic categorization and have

developed a model (FLMP) to describe the manner in which

human participants carry out this task. However, while the FLMP

captures much of the spirit of our model, our approach goes

further in attempting to account for why listeners use the weights

they do. By varying the amount of sensory variability affecting the

visual modality, and then comparing participants’ cue weights to

the ideal weights predicted from sensory uncertainty alone, we

were able to show that participants’ cue integration behavior is

qualitatively similar to a Bayes-optimal observer that computes cue

weights based on both the sensory uncertainty and the environ-

mental variability. Equally important, we only presented partic-

ipants with small discrepancies between auditory and visual

information (see Fig. 6), thereby avoiding the conscious awareness

of qualitative mismatches between the speech signal and the visual

gesture (often referred to as ‘‘fusion’’ in the context of the McGurk

effect). A large body of prior work [39–41] has shown that when

there are large cue conflicts in a cue integration task, participants

would need to solve the ‘‘cue source’’ problem in addition to the

cue integration problem. That is, multiple cues should only be

integrated if they share a common source, and when cue conflicts

are consciously apparent, participants would first need to infer

whether the cues share a common source before integrating them.

Experimentally, there is strong evidence that including such large

cue conflicts creates non-linearities in participants’ judgments

about the combined stimuli, and triggers a process called ‘‘robust

integration’’ [23,42,43]. Indeed, the classic ‘‘McGurk effect’’ [7] is

a special case in that the cues are integrated even in the presence

of very large conflicts. A model that can handle both small and

large discrepancies is beyond the scope of the present report.

An important consideration in interpreting our results is that

unlike traditional studies of cue integration, we did not test

whether participants were quantitatively optimal in the manner in

which they performed audio-visual integration during phonemic

labeling. As outlined in the introduction, in order to quantitatively

test ‘‘optimality’’, we would need to be able to estimate the

distributional properties of the phonemic categories, such as the

environmental (production) variability implicit in each category

and the separation in feature space between the means of the two

categories, in addition to the sensory variability of each cue

(equations 4–5). In order to estimate the distributional properties

of the phonemic categories, we would need to either know the

precise distribution of all the instances of the category that the

individual was previously exposed to, or be able to estimate the

individual’s internal model of that distribution.

One possibility for dealing with the category separation terms

(the separation in feature space between the category means -Dma

and Dmvin eq. 5) would be to vary the auditory and visual signals

along dimensions that are normed so that the mean separations

between the auditory and visual signals are equal (thereby

dropping these terms out of eq. 5). To the extent possible, we

tried to do this in our study by synthesizing both the auditory and

visual continua through a linear interpolation between naturally

produced /ba/’s and /da/’s from native American English

speakers (see Methods), and by ensuring that the points of

subjective equality (PSEs) in the two continua were approximately

matched. The approximately equivalent PSEs ensure that one

modality was not shifted relative to the other, but we cannot be

certain that the separation is precisely the same in both modalities.

It is important to note, however, that none of our conclusions

depend on the separation between the category means being

equivalent in the two modalities. The scale along which we

measure the ‘‘/ba/-/da/ness’’ of a stimulus is arbitrary and is

uniquely determined by the stimuli we use to define the two end

points of the /ba/-/da/ continuum in each modality. Thus, the

units of any measurement we make along this continuum, such as

the variance of unimodal phonemic labeling performance, are

relative to the scale between the two ends of the continuum. This

holds true even for the estimates of the cue—weightsthe absolute
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estimates of these weights are determined by the scale of the

continuum in each modality, regardless of the values used as the

end points of the continuum-thereby allowing us to make

meaningful comparisons between the sensory variance and the

weights. What follows from this analysis then, is that even if the

separation between the means of the two categories is different

between the two modalities, as long as we use the same scale for a

given modality during both the unimodal and bimodal tasks, we

are guaranteed that the relative estimates of the weights will be

unaffected (in particular, the comparison between the predicted

weights from the provisional normative model and the weights

measured from participants’ actual performance). Thus, the

change in weights as a function of blur and the change in weights

not accounted for by blur, which are the focus of our interest, are

entirely interpretable, given the manner in which we constructed

our stimuli. Of course, as in all other experiments of this type, it is

true that the absolute weights estimated in this study are only

relevant for the scales that we used. That is, if we find that the

weight assigned to the visual modality is greater than the weight

assigned to the auditory modality, this would be true only relative

to the scale used in our task, and thereby allows us to make no

generalization about cue weights relative to other scales.

Furthermore, if we tested a new stimulus, we could only make

absolute predictions of how listeners would perform if we knew

where that stimulus fell along the scales used in the present study.

Although our results provide clear evidence that changes in

sensory uncertainty, as instantiated by blurring the visual stimuli,

strongly influence the cue-weights assigned during phonemic

categorization, our results also reveal an important role for the

prototypical phonemic categories experienced by listeners.

Estimating the environmental (production) variability implicit in

each phonemic category is a particularly difficult problem

because this term would be expected to depend on the precise

distribution of category tokens that each participant was

previously exposed to. In our task, although we did not have

access to quantitative measurements of the environmental

variability implicit in each phonemic category, our results are

consistent with the hypothesis that participants’ cue weights were

influenced by environmental variability, in addition to sensory

uncertainty. One way to generate quantitative estimates of the

role played by environmental variability on participants’ behavior

in our task, as we have described earlier, is to assume that

participants in our task are quantitatively Bayes-optimal in their cue

integration behavior and to then use the Bayesian framework as a

tool to calculate the influence of environmental variability on cue

weights. Of course, given the limits of the data presented here,

this is little more than an exercise in curve-fitting. Further work is

needed to determine the general role that environmental variance

plays during cue integration in categorical tasks. It might well be

the case that environmental variance plays an even larger role in

everyday speech recognition than is suggested in our task. For

instance, although we used a two-alternative forced-choice

labeling task, which is the predominant task used in almost all

laboratory-based studies of speech perception, this is not the task

that confronts a listener as they make judgments about words in

their linguistic environment. In everyday speech recognition

tasks, the number of alternative words is very large and the

number of alternative phonemes is greater than two. Moreover, it

is likely that production variance is much greater for some

phonemes than others and in some contexts that others. It is well

known that vowel productions differ considerably both within

and between talkers [44] and this variability may be greater than

the production variance for the consonants in the /ba/ and /da/

syllables. It is also known that changes in speaking rate and

preceding phonemic context affect the production of all speech

sounds. Interestingly, Schwartz [45,46] noted that there were

significant differences between individual participants in the

weights given to individual modalities in an audio-visual task,

even when they had similar unimodal sensitivities. These

individual differences were likely due to differences in the

distributional properties of the task-relevant categories across

individual participants.

Future work might explore the effect of the environmental

variance implicit in each category on cue integration behavior, by

training participants to recognize entirely novel artificial

categories (see Holt & Lotto [47] for a related study). Such a

training paradigm would allow the experimenter to dictate the

environmental variance implicit in each category, something that

is impossible to do with natural categories. Furthermore, this

ability to a-priori determine the environmental variance would

allow the experimenter to quantitatively test the extent to which

human cue integration behavior conforms to the predictions of a

normative model that computes ideal weights based on both

sensory and environmental noise (see Knill [43] for a related

study). An alternative approach would be to experimentally

manipulate the amount of environmental variance implicit in

each category. Although this would not change a participant’s

entire experience with production variability for that category, it

would affect their recent experience which may also be

important. Such an approach has been used in a similar

phonemic labeling task [48] and was found to affect participants’

categorization behavior, although cue integration was not

explicitly tested in that study.

In conclusion, our results show that humans take into account

changes in sensory cue uncertainty when integrating audio-

visual cues to phonemic categories. In addition, by comparing

participants’ cue weights to the weights predicted by a

provisional normative model that only considers sensory

uncertainty, we show that while sensory uncertainty is a

significant factor in determining cue weights, it is not the only

one, and that participants’ performance is consistent with an

optimal model in which environmental, phonemic category

variability also plays a role in determining cue weights.

Although, we have not considered the question of whether

humans are quantitatively optimal in the manner in which they

combine audio-visual phonemic information (since doing this

would require quantitative estimates of production variability),

our results represent a first step towards characterizing the

computational mechanisms that underlie cue integration during

categorical speech perception. Finally, we have only considered

a task in the domain of speech perception in the present study,

but our results should also be applicable to any perceptual task

that involves categorical judgments. Domains other than speech

perception are replete with categories (for example, categorical

judgments are commonly made in the visual domain, especially

at the basic level), and the computational principles outlined in

this article can be evaluated for their widespread applicability in

these domains.

Supporting Information

Video S1 Audio-visual /ba/. This video shows the audio-

visual stimulus, corresponding to the cue-consistent /ba/ condi-

tion. It was created by combining the /ba/ endpoint from the

video-only stimulus continuum with the /ba/ endpoint from the

audio-only stimulus continuum (see Methods). The unblurred

video-only stimuli—animations of a synthetic face—were created

by members of the Perceptual Science Laboratory at the
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University of California, Santa Cruz (http://mambo.ucsc.edu/

psl/international.html).

(AVI)

Video S2 Audio-visual /da/. This video shows the audio-

visual stimulus, corresponding to the cue-consistent /da/ condi-

tion. It was created by combining the /da/ endpoint from the

video-only stimulus continuum with the /da/ endpoint from the

audio-only stimulus continuum (see Methods).

(AVI)

Video S3 Audio-visual /ba/ with visual blur added. This

video shows the audio-visual stimulus, corresponding to the cue-

consistent /ba/ condition, with blur corresponding to the ‘Blur_2’

level (see Fig. 4), added to the visual component (see Methods).

(AVI)

Video S4 Audio-visual /da/ with visual blur added. This

video shows the audio-visual stimulus, corresponding to the cue-

consistent /da/ condition, with blur corresponding to the ‘Blur_2’

level (see Fig. 4), added to the visual component (see Methods).

(AVI)

Text S1 Data Analysis.
(DOC)
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