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In the past 15 years, a substantial body of evidence has confirmed that a powerful
distributional learning mechanism is present in infants, children, adults and (at least
to some degree) in nonhuman animals as well. The present article briefly reviews this
literature and then examines some of the fundamental questions that must be addressed
for any distributional learning mechanism to operate effectively within the linguistic
domain. In particular, how does a naive learner determine the number of categories
that are present in a corpus of linguistic input and what distributional cues enable the
learner to assign individual lexical items to those categories? Contrary to the hypothesis
that distributional learning and category (or rule) learning are separate mechanisms, the
present article argues that these two seemingly different processes—acquiring specific
structure from linguistic input and generalizing beyond that input to novel exemplars—
actually represent a single mechanism. Evidence in support of this single-mechanism
hypothesis comes from a series of artificial grammar-learning studies that not only
demonstrate that adults can learn grammatical categories from distributional information
alone, but that the specific patterning of distributional information among attested
utterances in the learning corpus enables adults to generalize to novel utterances or
to restrict generalization when unattested utterances are consistently absent from the
learning corpus. Finally, a computational model of distributional learning that accounts
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for the presence or absence of generalization is reviewed and the implications of this
model for linguistic-category learning are summarized.

Keywords statistical learning; rule learning; generalization; grammatical categories;
infancy; child language

Introduction

A seminal event in the history of the study of child language acquisition was
the publication of Eimas, Siqueland, Jusczyk, and Vigorito (1971)—which
concluded that “the means by which the categorical perception of speech,
that is, perception in a linguistic mode, is accomplished may well be part of
the biological make up of the organism” (p. 306)—is now more nuanced than
originally conceived. But that does not detract from the impact of their findings.
Eimas et al. set the stage for literally hundreds of experiments that documented
the remarkably sophisticated language-processing skills of preverbal infants
and in turn raised questions about how those skills arise. What was initially
viewed as evidence that linguistic experience plays a relatively minor role in
language acquisition is now interpreted as evidence for a species-general set of
constraints on how complex acoustic signals are discriminated and categorized.
The role of experience comes later in infancy, beginning at 4–6 months for
vowels and then 6–10 months for consonants. But there can be little doubt,
even before any infant data on speech perception were gathered, that experience
must play a substantial role in language processing. Cross-language differences
in the surface properties of linguistic systems and imperfect acquisition of any
system later in life document the power of exposure in shaping a native-language
linguistic system.

Foundations of Statistical Learning

Further fueling the importance of early experience on language acquisition was
the finding 25 years after Eimas et al. (1971) by Saffran, Aslin, and Newport
(1996). Saffran et al. (1996) showed that infants can use the distributional
properties of a corpus composed of an uninterrupted stream of syllables to
extract information about the statistical coherence of samples drawn from
that corpus. The stream was composed of 12 consonant-vowel (CV)-syllables
arranged into four trisyllabic strings, with each syllable occurring in only a
single triplet. Thus, the transitional probabilities from syllable-1 to syllable-
2 and from syllable-2 to syllable-3 were 1.0, but the transitional probability
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after each triplet to the first syllable of the next triplet was 0.33. Importantly,
other cues to the grouping of syllables present in natural language input, such
as syllable lengthening or variations in pitch, were eliminated to determine
whether distributional cues alone were sufficient for 8-month-old infants to
parse the continuous stream into its underlying components. To be clear, this was
a critical test of the sufficiency of statistical cues and not a test of whether these
cues are the sole determinant for parsing streams of speech into their underlying
auditory word forms. As noted by Saffran et al., “Although experience with
speech in the real world is unlikely to be as concentrated as it was in these
studies, infants in more natural settings presumably benefit from other types of
cues correlated with statistical information” (p. 1928).

In fact, the design of Saffran et al. (1996) did not provide definitive evidence
of using transitional probabilities. This is because each statistically coherent
triplet occurred three times more often than each less coherent triplet that
spanned a word boundary and served as the part-word test. That is, the joint
probability of words (Syl-1, Syl-2, Syl-3) was higher than the joint probability
of Syl-3, Syl-1, Syl-2). To unconfound transitional probability from joint prob-
ability, Aslin, Saffran, and Newport (1998) varied the frequency of occurrence
of the statistically coherent triplets. By doubling the frequency of two of the four
words, and using the part-words created when these two high-frequency words
abutted each other, the frequency of occurrence of the lower frequency words
and the higher frequency part-words was exactly equated. Yet, despite identical
joint probabilities, the transitional probabilities within the tested words and
part-words remained different. Words continued to have Syl-1 to Syl-2 and
Syl-2 to Syl-3 transitional probabilities of 1.0, but part-words had transitional
probabilities of 0.5 and 1.0. Although this difference was subtle and joint proba-
bilities were equated, 8-month-old infants showed the same pattern of listening
times on the posttest as in Saffran et al. These findings confirm that infants can
use transitional probabilities even in the absence of other statistical cues that
typically cooccur in natural languages.

To be clear, we are not now claiming, nor have we ever claimed, that the
sole or even the primary distributional cue for word segmentation is syllable
transitional probabilities. Raw frequency is undoubtedly a more robust source of
distributional information and much easier to compute than any conditionalized
statistic. Our reason for emphasizing the importance of transitional probabilities
is that they are not subject to the errors of prediction that arise from lower-order
statistics. Many high frequency sequences (e.g., “How are you?”) are not single
units; the best test of their structure is the ability of the parts to appear in other
sequences as well as together (e.g., “How is John?,” “Are they running?”). This
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variation in sequencing, as contrasted with the greater stability of units that are
actually parts of a single word, is what transitional probability measures. We will
take up this important point about predictiveness with regard to grammatical
categories in a subsequent section. But for now, let’s complete this brief review
of statistical learning for parsing a stream of speech into its underlying words.

Constraints on Statistical Learning

One could ask, following on the Saffran et al. (1996) findings, whether this
ability to segment words from fluent speech is a specialization for linguistic
materials. Two lines of research provided strong evidence against this language-
specific hypothesis. First, Saffran, Johnson, Newport, and Aslin (1999) sub-
stituted 12 tones from a single musical octave for the 12 syllables used in
Saffran et al. (1996) while keeping the statistical structure identical. The results
from 8-month-olds were the same as with speech syllables: infants discrimi-
nated statistically coherent tone-triplets from slightly less coherent tone-triplets
(analogous to words and part-words). Beyond the auditory modality, Kirkham,
Slemmer, and Johnson (2002) showed that 2-, 5-, and 8-month-olds, after view-
ing a repeating sequence of eight temporally paired visual shapes, discriminated
statistically coherent shape-pairs from randomly ordered shape-pairs. In fur-
ther studies of the visual modality, where the statistical coherence between
shapes was spatial rather than temporal, 8-month-olds also extracted the statis-
tically coherent shape-pairs (Fiser & Aslin, 2002; Wu, Gopnik, Richardson, &
Kirkham, 2010).

The second line of research suggesting that statistical learning is not a
language-specific ability comes from studies of nonhuman species. Toro and
Trobalon (2005) showed that rats could parse streams of human speech based
on their statistical coherence, and many other studies of animals (e.g. Gentner,
Fenn, Margoliash, & Nusbaum, 2006) have shown sensitivity to the temporally
ordered statistics of auditory stimuli. Thus, the powerful statistical learning
“engine” used to parse temporally ordered and spatially arranged elements
across a corpus of input appears, at least to some degree, to be modality,
domain, and species general.

Of course, only humans acquire natural languages, so one can ask what
factors limit language acquisition. Are humans uniquely endowed with an ad-
ditional special mechanism that is designed to acquire language (or a more
powerful version of this statistical-learning engine than the one employed in
other domains and species), or are there other constraints that are not language
specific, but nevertheless prevent other species from acquiring (and using)
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a linguistic system? It is important to note that this one simple transitional
probability mechanism would not, in any case, be adequate to acquire the com-
plex structure of human languages (cf. Chomsky, 1957; Saffran et al., 1996).
Perhaps the more complex statistical computations called into play for acquiring
other aspects of linguistic structure are unique to human language acquisition.
There are also undoubtedly nonlinguistic factors (e.g., social pressures or skills
for communicating complex propositions) that may differentiate humans from
nonhuman species.

Whatever the domain and species status of these mechanisms turns out
to be, it is clear that statistical learning must operate with some rather severe
constraints in order to be tractable. This necessity of constraints comes from the
so-called computational explosion problem that emerges when one considers
how many statistics could be computed from any reasonably complex set of
inputs. In the simple case of Saffran et al. (1996), with only 12 CV syllables,
there are still a large number of things that could be computed: the frequencies
of each syllable, each syllable pair (bigram), and all higher-order N-grams;
the forward and backward transitional probabilities of all adjacent syllables;
the joint and transitional probabilities of all nonadjacent syllables, and so on.
With a larger and much more complicated inventory of elements, the number
of computations would quickly become intractable. What are the limitations or
constraints that might make this type of statistical mechanism focused enough
to be helpful in word segmentation (and not become an intractable search for
the “right” statistics)?

Since the publication of Saffran et al. (1996) and Aslin et al. (1998), a large
number of useful constraints on learners’ computations have been identified.
These include attentional constraints (Toro, Sinnett, & Soto-Faraco, 2005;
Turk-Browne, Junge, & Scholl, 2005), preferences for certain types of units
as the basic elements of computation (Newport & Aslin, 2004; Bonatti, Peña,
Nespor, & Mehler, 2005), Gestalt perceptual principles that favor relations
among certain types of elements (Creel, Newport, & Aslin, 2004; Endress &
Bonatti, 2007; Shukla, Nespor, & Mehler, 2007), language-specific prosodic
groupings (Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003), and gaze
or action cues that direct learners’ attention between some units or relations
over others (Baldwin, Andersson, Saffran, & Meyer, 2008; Yu, Ballard, &
Aslin, 2005). Each of these constraints directs learning toward linguistically
useful relations that occur in natural languages of the world. Though some have
been demonstrated only in adults rather than infants, they suggest a variety of
constraints on statistical learning that could, in principle, render it tractable as
a mechanism for word segmentation and domain-general parsing of temporally
ordered stimuli.
Language Learning 64:Suppl. 2, September 2014, pp. 86–105 90
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Another concern about laboratory-based studies of statistical learning is
whether they could plausibly scale-up to natural corpora to which infants are
actually exposed in the real world. We cannot provide a definitive answer to
that question at present, but some evidence from computational analyses of
parental speech directed to infants and young children and larger scale studies
of adults lend support to the plausibility of this scaling-up. Frank, Tenenbaum,
and Gibson (2013) had adults listen on their iPod over a 2-week period to ap-
proximately 1,000 nonsense words embedded in short utterances. On a posttest
one day after their last exposure, subjects were able to reliably discriminate
syllable strings of variable lengths that had been statistically more coherent
compared to those that were less coherent in terms of the underlying statistics
of the nonsense words in the corpus. Swingley (2005) analyzed a corpus of
child-directed speech and computed several statistical metrics, including tran-
sitional probabilities and mutual information, under various assumptions (e.g.,
using a minimum frequency criterion). The same general pattern of higher sta-
tistical coherence within words and lower coherence across word boundaries
was revealed, mirroring the statistical structures in the lab-based studies of
Saffran et al. (1996) and Aslin et al. (1998), though of course with considerably
more variability.

Another question one can ask about the word segmentation studies is
whether they represent an early stage of prelexical development, after which
true word learning commences. This staged view of language acquisition is
quite common in the field and was tested in a study by Graf Estes, Evans,
Alibali, and Saffran (2007). They had 17-month-olds listen to a stream of
speech syllables as in Saffran et al. (1996), and then the infants were intro-
duced to a word-referent mapping task. In the word-referent mapping task,
infants could associate either an isolated presentation of a word or an isolated
presentation of a part-word with a novel visual object. At issue was whether
a statistically coherent auditory word form that had been extracted from a
continuous stream of speech in the previous task, would be a better token for
subsequent word learning in a referential context. The answer was yes: infants
learned to associate the statistically coherent word with the referent, but they
did not associate the less statistically coherent part-word with the referent.

Although the staged model of language acquisition must be true in the
limit (e.g., there must be at least one putative auditory word form before
any mapping with a referent can occur), it does not necessarily imply that a
large inventory of segmented words must enter the lexicon before systematic
mapping to referents begins. In fact, McMurray (2007) has provided a com-
pelling model of early word learning that suggests a highly parallel process of
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simultaneous word-referent mapping in the very early stage of lexical devel-
opment. To further examine this hypothesis of parallel processes of word-
segmentation and referent mapping, Shukla, White, and Aslin (2011) con-
ducted a study of 6-month-olds that combined these two processes in the same
experimental session. Infants viewed a multiobject visual display within which
a single object (e.g., the red ball) underwent motion to attract the infant’s
gaze. As the visual display was being viewed, the auditory stimuli were being
presented, consisting of a family of short sentences composed of nonsense syl-
lables. The syllables were structured across sentences so that some syllables
were statistically coherent, and others were less coherent, just as in the words
and part-words from Saffran et al. (1996). But the sentences had the normal
prosodic patterns of natural language, with the language-universal property of
intonational phrases (falling pitch and word-final lengthening). For one group
of infants, the end of a statistically coherent target word was aligned with the
end of an intonational phrase; for a second group of infants the statistical and
prosodic information was misaligned (i.e., the word boundary was within an
intonational phrase, as in “The pretty ba, by ate her cereal”). After exposure,
infants were tested with repetitions of isolated words and part-words while
the visual display showed multiple objects, none of which were moving. The
dependent measure was how long the infants looked at the target object (i.e.,
the red ball) in the presence of word and part-word labels. Only the infants
in the exposure condition where the statistical and prosodic information was
aligned looked reliably longer at the target object. These results provide evi-
dence that (1) infants at 6 months of age can segment auditory word forms from
sentences, (2) these infants are biased to segment words based on statistical in-
formation when that information is packaged within an intonational phrase, and
(3) while segmentation is happening, infants are also treating the putative audi-
tory word form as a label for the object that was most salient during the exposure
phase.

As impressive as these multiple language-processing skills are in 6-month-
olds, they also highlight a potentially larger point about how we design exper-
iments. There is a long tradition in experimental psychology of holding the
myriad of independent variables constant and only allowing one of these vari-
ables to be manipulated at a time. That is precisely the design strategy used by
Saffran et al. (1996). But this is not the way that these many factors covary in
the natural environment. By creating such artificial designs, we may be creat-
ing experimental contexts in which infants are confused by the absence of the
normal correlation among factors, thereby reducing their performance. This
conjecture suggests that we should expand our range of experimental designs
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to avoid overly constrained contexts and thereby reveal how infants are affected
by covarying factors within a normative operating range.

Beyond Word Segmentation

A surprising amount of attention has been directed to the word-segmentation
problem since the Saffran et al. (1996) article appeared (Google Scholar indi-
cates that it has been cited over 2,500 times). But advances in understanding
language acquisition will require moving beyond the simple mechanism pro-
posed there—potentially adequate for word segmentation, but certainly not
powerful enough for learning other more complex aspects of language. One
notable effort in moving beyond the simple Saffran et al. mechanism was the
study by Marcus, Vijayan, BandiRao, and Vishton (1999). In contrast to the
continuous streams of speech used by Saffran et al., Marcus et al. presented
nonsense syllables in short strings. While every string was composed of only
three syllables and the corpus contained an entire inventory of only eight syl-
lables, the crucial focus was that the materials combined to form a pattern:
such as AAB or ABB. During the exposure phase, 7-month-olds heard mul-
tiple examples of three-syllable strings, such as leledi, weweji, and dededi,
all following an AAB pattern. Then in a posttest infants heard two types of
strings: AAB strings composed of an entirely new set of syllables, or ABA or
ABB strings composed of these same new syllables. The results showed that
infants listened longest to the novel pattern (ABA or ABB) and not as long
to the familiar pattern (AAB), even though both were composed of unfamiliar
syllables. Importantly, infants could not solve this pattern-matching problem
merely by computing joint or transitional probabilities among the syllables they
had heard, because none of the test strings had any familiar syllables (i.e., all
transitional probabilities were zero). Rather, infants must have extracted some
common and more abstract rule, such as AAB, to distinguish between the test
strings.

Marcus et al. (1999) argued that statistical learning operated only at the
level of surface statistics, whereas rule learning operated at a deeper level
involving abstract patterns. This exciting finding drew attention to the fact that
statistics alone cannot provide a complete description of language learning. It
also resurrected the foundational debate between Chomsky (1959) and Skinner
(1957), although now in a slightly more modern form regarding higher-order
statistics and how learners might solve the poverty-of-the-stimulus problem.
What allows a learner to induce a rule based on sparse evidence? This is old
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territory in the animal learning literature that was couched in the terminology
of “gradients of generalization.” Why does a pigeon who has been trained to
peck an orange key to receive a food pellet continue pecking a purple key
but not a green key? One could argue that generalization is based on sensory
similarity, but what aspect of the AAB pattern is “sensory”? Is the mechanism
of generalization from leledi to gagabu merely the result of encoding the strings
as sharing an initial repetition and not encoding the identity of the syllables
themselves?

This type of rule learning is not unique to language materials. Saffran,
Pollak, Seibel, and Shkolnik (2007) and Johnson et al. (2009) both showed
that AAB rule learning is present for visual materials, although Marcus, Fer-
nandes, and Johnson (2007) showed that such rules are more readily learned
when instantiated in speech materials than in nonspeech materials. AAB rule
learning has also been demonstrated in rats (de la Mora & Toro, 2013; Murphy,
Mondragon, & Murphy, 2008). There is thus ample evidence that the gener-
alization seen in these simple rule learning paradigms is modality, domain,
and species general, just as with simple transitional probability-type statistical
learning. Moreover, the detection of repetition-based rules is a robust mech-
anism present even in newborns (Gervain, Macagno, Cogoi, Peña, & Mehler,
2008).

Gerken (2006) provided some important insights into the nature of AAB
rule learning in language materials by conducting a follow-up experiment that
presented two groups of infants with different subsets of the three-syllable
strings used by Marcus et al. (1999). One group heard 4 of the 16 strings, but
each AAB string was entirely unique: leledi, wiwije, jijili, dedewe. The other
group heard a different subset of four strings: leledi, wiwidi, jijidi, dededi—
which also followed the AAB pattern, but all ended in the same syllable di.
Notice that in both groups, the four strings conform to the AAB rule. But the
second group has a less variable B syllable. Thus, for this second group, an
alternative “rule” is: AA + ends in di. Infants in the first group performed on
the posttest like infants in Marcus et al.—they detected the familiarity of the
AAB rule and listened longer to the ABB rule violation. But infants in the
latter group did not generalize to novel strings if they failed to end in di. That
is, infants in the latter group acted as if the rule was more narrowly defined as
“AA + ends in di” and not the broader “AAB.”

An important issue raised by the Gerken (2006) results is whether Marcus
et al. (1999) should be interpreted as engaging a rule-learning mechanism
fundamentally different from statistical learning, or rather that every learning
task involves a gradient of generalization based on the most likely abstraction
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indicated by the composition of the exposure corpus. Aslin and Newport (2012)
have argued that the evidence across many subsequent studies suggests a single
statistical learning mechanism with a gradient of generalization.

Beyond Repetition-Based Rule Learning

A crucial next step in understanding how a distributional-learning mechanism
could be utilized in natural languages begins with defining what types of rules
are needed. The essential idea behind the Marcus et al. (1999) study and all of its
follow-ups, as well as many studies of natural language learning, is that words
form grammatical categories, such as noun, verb, and adjective, and the basic
syntax of every language is framed in terms of the order and phrasal groupings
of these categories of words. The language learner is therefore confronted with
the tasks of (a) discovering how many grammatical categories there are in the
natural language spoken by the infant’s parents and (b) correctly assigning
words to the appropriate category. In the artificial language designs used by
Marcus et al. and many others, categories are defined by the repetition of
identical words. But in natural languages this is not how categories are defined;
they are defined by their functional roles in the underlying grammar. A correlate
of such roles is the patterning of adjacent and nonadjacent words. For example,
determiners such as “a” and “the” always precede nouns in English, although
there may be intervening adjectives, as in “the blue car” (but not “blue car the”).
Mintz, Newport, and Bever (2002) and Mintz (2002, 2003) have proposed
that a first step in inferring grammatical categories is keeping track of which
words come before and after each word, thereby building up an inventory of
cooccurrence statistics for the relative position of a word and seeing how these
statistics pattern with those of other words in the language. Crucially, one should
not rely solely on the absolute position of a word in an utterance (e.g., “the”
in utterance-initial position, “blue” in second position, “car” in third position),
because absolute position varies in natural languages and is irrelevant to correct
category assignment.

In a series of experiments with adults, Reeder, Newport, and Aslin (2013)
asked whether such distributional information alone—the patterning of words
that occur before and after each target word—was sufficient to enable learners
of an artificial grammar to solve the two crucial tasks of inducing the number
of categories and determining which words are assigned to each. In addition,
the experiments were designed to assess the gradient of generalization alluded
to earlier in the rules versus statistics debate. That is, are learners who simply
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listen to a corpus of speech able to acquire rudimentary information about
grammatical categories and, when tested with novel utterances, can they appro-
priately generalize the category rules to predict the correct contexts for words
they have not yet heard in that context? Crucially, how do learners adjust their
tendency to generalize when the evidence in the corpus is sparse? Do they
withhold generalization when there are consistent gaps, or do they generalize,
implicitly assuming that the gaps are due merely to small samples drawn from
the input?

The designs of the Reeder et al. (2013) experiments were all based on a
core paradigm in which adults listened to a set of utterances that conformed
to a (Q)AXB(R) grammar. Each of these letters refers to a category of words,
with optional categories indicated by parentheses. A set of nonsense words,
some consisting of single syllables (e.g., glim, zub) and others bisyllabic (e.g.,
fluggit, klidam), was assigned to each category, with two words in the Q and
R categories and three words in the A, X, and B categories. Thus, the corpus
consisted of three-, four-, and five-word utterances. The optional Q and R words
were included to prevent learners from simply relying on absolute position in the
utterance. Even in this small language, the total number of possible utterances
(given the number of words per category) was 2×3×3×3×2 + 2×3×3×3 +
3×3×3×2 + 3×3×3 = 243.

Crucially, in order to test for generalization, some of the grammatical
utterances were withheld from the exposure corpus. Because the focus was
on category X, as defined by the surrounding A and B words, a simplified
illustration of the design is shown in Table 1. In Experiment 1, one-third of
the 3×3×3 = 27 possible AXB strings were withheld so that 9 novel strings
were available for testing after exposure. During testing, adults heard three
types of strings: (a) familiar grammatical utterances that had been presented
during the exposure phase, (b) novel grammatical utterances that were withheld
from the exposure phase but conformed to the underlying grammar, and (c)
ungrammatical utterances that violated the ordering constraints of the grammar
(e.g., AXA or BXB).

The measure of grammaticality obtained during the test was based on a
5-point rating scale, with 5 = highly familiar and heard in the exposure phase
to 1 = never heard and not a part of the rules that generated the corpus. If
learners acquired the underlying grammar—which entails learning the number
of categories (despite utterances varying from three to five words in length)
and also learning which words are assigned to the appropriate category—
then they should rate familiar and novel grammatical strings highly and rate
ungrammatical strings much lower. That is precisely what Reeder et al. (2013)
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Table 1 List of AXB strings in Experiment 1 from Reeder et al. (2013). In Experiment
2, the number of exposure was reduced to 9, and the number of withheld strings was
increased to 18

Exposure Strings Withheld Strings

A1 X1 B1 A1 X1 B2
A1 X1 B3 A2 X1 B1
A2 X1 B2 A3 X1 B3
A2 X1 B3 A1 X2 B1
A3 X1 B1 A2 X2 B3
A3 X1 B2 A3 X2 B2
A1 X2 B2 A1 X3 B3
A1 X2 B3 A2 X3 B2
A2 X2 B1 A3 X3 B1
A2 X2 B2
A3 X2 B1
A3 X2 B3
A1 X3 B1
A1 X3 B2
A2 X3 B1
A2 X3 B3
A3 X3 B2
A3 X3 B3

obtained from their adult learners. Figure 1 summarizes this organization of
the words into A, X, and B categories from the patterns of strings in the
exposure corpus. Importantly, there was no significant difference in ratings of
familiar grammatical and novel grammatical strings, indicating that participants
generalized fully to the withheld utterances. In a second experiment, Reeder
et al. increased the sparsity of the input by withholding two-thirds of the possible
AXB strings.

An important feature of the design shown in Table 1 is that despite with-
holding one-third or two-thirds of the possible AXB strings from the exposure
corpus in Experiments 1 and 2, all possible AX and XB bigrams were present.
That is, the corpus was balanced in terms of coverage of the adjacent words
in the categories of interest (A, X, and B). In Experiments 3 and 4, however,
the coverage of adjacent words in the corpus was made unbalanced by creat-
ing systematic gaps in the bigrams. This allowed us to examine how learners
would generalize across these gaps and also to determine when they stopped
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Figure 1 The distribution of nonsense words in Experiment 1 from Reeder et al. (2013).
The three words that preceded and followed the three X-words provide robust evidence
for categories A, X, and B.

X1  

A1 

A3 

B1 

B2 

A1 

A2 

B1 

B3 

X2 A2 

A3 

X3 B2 

B3 

Figure 2 The distribution of nonsense words in Experiment 3 from Reeder et al. (2013).
Only two words preceded and followed the three X-words, providing systematic gaps in
the evidence for categories A, X, and B.

generalizing. As shown in Figure 2, one-third of the AX or XB bigrams never
appeared in the exposure corpus. In contrast to Experiments 1 and 2, adults
in the test phase now showed reliable evidence of rating novel grammatical
strings as less acceptable than familiar grammatical strings. This indicates that
with systematic gaps in the input, learners restrict generalization. Perhaps most
revealing, when the same input corpus with systematic gaps was repeated three
times, learners judged novel grammatical strings as even less acceptable, indi-
cating that the more reliable the gaps are in the input, the more likely learners
are to judge those strings as ungrammatical. This pattern of results shows
that learners within the same paradigm can shift from broad generalization
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Figure 3 The distribution of nonsense words in the subcategorization experiment from
Reeder et al. (2009). Separate sets of three words preceded and followed two subsets of
X-words, providing robust evidence for two A, X, B subcategories.

to more restricted and lexically specific learning, depending on the pattern of
distributional information they receive.

Two additional experiments lend further support to the robustness and flex-
ibility of the distributional learning mechanism employed by adults in these
grammatical category-learning experiments. Schuler, Reeder, Newport, and
Aslin (2014) modified the (Q)AXB(R) design by introducing variation in the
frequency of words within each category (approximating the Zipfian distri-
bution of word frequencies seen in natural languages). This word-frequency
variation presents an additional challenge to the unsupervised learner: does the
sparser evidence of certain word combinations signal a significant “gap” in
the corpus (perhaps because these combinations are ungrammatical), or does
the sparser evidence simply reflect the variation in word frequency? That is,
do learners rely on combinatorial probabilities rather than the absolute fre-
quency of word sequences? The results suggest that adults learners are able to
do this more complex computation: they rated the withheld novel grammatical
strings just as highly as the familiar grammatical strings regardless of word
frequencies, despite a 3:1 ratio of word frequencies within each category.

Perhaps the strongest test of grammatical category learning comes from
Reeder, Newport, and Aslin (2009, 2014). Their design was similar to the
foregoing experiments, except that the grammar was divided into two subsets,
analogous to subcategories in natural languages (e.g., transitive and intransitive
verbs or feminine vs. masculine nouns). As shown in Figure 3, half of the AXB
strings had one set of A, X, and B words and the other half of the AXB
strings had a different set of A, X, and B words—though all sentences had the
same basic format and could begin and end with the same Q and R words.
If learners simply treated this corpus as a slightly more complicated version
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of gaps due to sparsity—or if they confused or did not remember the precise
combinations of A, X, and B words in the corpus—they would incorrectly
generalize to novel strings that “crossed the subcategory divide” (e.g., A1X2B5).
On the other hand, if learners were overly sensitive to the precise A, X, and B
distributional information, it might affect their judgments of gaps present within
a subcategory, leading them to rate a novel grammatical string that observed
the subcategory structure as less acceptable. The results of this experiment
were quite clear: adults learned to distinguish the subcategories, and yet they
were still able to generalize appropriately within each subcategory. That is,
when presented with strings that cross a subcategory, learners rated them as
less acceptable than grammatical strings. However, when presented with novel
grammatical strings from within a subcategory, they rated them as highly as
familiar grammatical strings. These results demonstrate, in a single experiment,
that adult learners both restrict generalization and generalize appropriately
from the same corpus; that is, they extract the correct underlying grammatical
structures, given distributional information that represents these structures.

Of course, adults are not the target population for studies of language ac-
quisition. Thus it is important to extend these studies of artificial grammar
learning to children and eventually to infants. We have completed similar ex-
periments with 5- to 7-year-old children using slightly simpler AXB grammars
(Newport, Schuler, Reeder, Lukens, & Aslin, 2014). To engage the children,
the artificial grammar listening task was embedded in an “alien language” con-
text with interesting but irrelevant video displays to maintain the children’s
interest. To ensure that the children were actually listening (and not just attend-
ing to the video displays), they had to perform a one-back monitoring task in
which sentences were intermittently repeated and the children had to indicate
when the alien repeated himself. Despite these design modifications and the
challenges of testing children, their performance on the rating tasks after ex-
posure was remarkably similar to the performance of adults across the series
of experiments. They judged novel grammatical strings as just as acceptable
as familiar grammatical strings when the proportion of withheld strings was
one-third or two-thirds but the corpus was balanced. And when the balance of
the bigrams contained systematic gaps, like adults they judged novel grammat-
ical strings as less acceptable than familiar grammatical strings. Thus, young
children show the same overall pattern of distributional learning as adults—
generalizing or withholding generalization depending on the patterning of the
input.
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Models of Category Learning and Generalization

An important aspect of these studies of grammatical category-learning in adults
and children is that they illustrate how a single mechanism of distributional
learning can lead to what appears to be “surface statistical learning” under
some circumstances and “abstract rule learning” under other circumstances.
Yet all of the experiments were, to the naı̈ve learner, identical. It is implau-
sible that participants engage a fundamentally different mechanism in one
experiment than in another, and even more implausible that they use different
mechanisms for specific test items (as in the subcategorization experiment).
Thus, our hypothesis is that there is a single distributional learning mechanism
that exhibits a gradient of generalization, depending on a “rational” interpre-
tation of the patterning of the input. When the bulk of the evidence supports
generalization—because it is plausible that gaps are due to chance, given their
inconsistent distribution or low frequency—then learners judge novel strings
as grammatical. But when the evidence begins to raise doubt (implicitly, of
course) about whether the gaps in the input strings are random—that is, when
gaps are highly systematic and consistent over a large input corpus—learners
begin to restrict generalization.

How might we think about such a gradient mechanism of generalization?
Recall that a key feature of the design of the Reeder et al. (2013) and follow-
up experiments was variation in the distribution of bigrams (i.e., AX and XB
word-pairs). Perhaps such a lexical bigram model is sufficient to account for the
observed variations in how strongly adults generalize (or not). In an extensive
analysis of the lexical bigram model, Qian, Reeder, Aslin, Tenenbaum, and
Newport (2014) have shown that it works quite well even when two-thirds
of the strings are withheld during the exposure phase when the coverage of
bigrams is balanced. The lexical bigram model even does a reasonable job of
fitting the data from the subcategorization experiment because the two sets of
bigrams are nonoverlapping. But the lexical bigram model begins to fail when
the input becomes supersparse, and particularly when bigrams are not fully
shared across words. For example, if a new X-word appears in only one of the
bigram contexts that are shared by other X-words, the lexical bigram model
treats this new word as a lexical exception, not fully belonging to the X-word
category and not generalizing to the other X-word contexts in which it has
not been seen. In contrast, if there is a recurring cluster of contexts that most
X-words appear in and if a new word appears in one of these, adult learners will
generalize the whole set of contexts to the new word, as if it were fully a part
of the X-word category. Children show the same pattern. One way to account
for this finding is to create a model that has a “latent” level (i.e., an unobserved
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Figure 4 Model predictions from Qian et al. (2014) when a bias parameter is allowed to
vary from a coarse to a fine granularity in how gaps in the input are fit to the underlying
category structure.

category level), rather than generalizing solely on surface bigrams. In general,
of course, adding more parameters to a model is not a principled way to better
fit a complex set of data. The key insight of the Qian et al. model, however,
is that by adding a latent category level and allowing the model to adjust the
“grain” of how broad or narrow the categories are, a single model can account
for the gradient nature of the generalization observed across all of the Reeder
et al. experiments without custom fitting the parameters of the model to each
experiment (see Figure 4).

Of course, it remains to be seen whether the Qian et al. (2014) model
provides a realistic account of grammatical category learning in much younger
learners (i.e., infants and toddlers). Although there is ample evidence that
infants can form categories, it is not clear if they have the kind of flexibility seen
in adults and older children to utilize a single mechanism of category learning
to adjust the process of generalization in a gradient manner. But in the absence
of clear evidence for multiple mechanisms of distributional learning, we favor
our current working hypothesis that a single mechanism, with a latent category
level and parameters that take into account the patterning of the input, provides
the most parsimonious and flexible model of statistical language learning—at
least for learning word categories as well as segmenting words from the speech
stream. In ongoing work we address the ways in which this type of model must
be expanded to cover more complex aspects of language, as well as other types
of complex serial learning.
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