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1  | INTRODUC TION

Human observers operate in a world of sensory uncertainty, created 
by noise or processing inefficiencies within each sensory modality, 
or by variability in the environment (Knill & Pouget, 2004). Given the 
presence of such internal and external uncertainty, task performance 
is necessarily limited by the quality of the sensory information avail‐
able on each trial. However, if the observer has access to multiple 
simultaneous sources of information (or cues) about the stimulus of 

interest (within or across sensory modalities), combining the informa‐
tion across cues in a statistically optimal fashion can lead to reduced 
uncertainty and improved performance (Bernardo & Smith, 1994; 
Cox, 1946; Jacobs, 2002; Knill & Pouget, 2004; Yuille & Bulthoff, 
1996). Indeed, human adults are adept at mitigating the influence of 
sensory uncertainty by integrating multiple sources of information in 
an approximately Bayes‐optimal fashion (i.e., by weighting each cue 
by its relative reliability). Numerous studies have shown that adults 
combine multiple cues within and across sensory modalities in such 
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Abstract
Human adults are adept at mitigating the influence of sensory uncertainty on task 
performance by integrating sensory cues with learned prior information, in a Bayes‐
optimal fashion. Previous research has shown that young children and infants are 
sensitive to environmental regularities, and that the ability to learn and use such 
regularities is involved in the development of several cognitive abilities. However, it 
has also been reported that children younger than 8 do not combine simultaneously 
available sensory cues in a Bayes‐optimal fashion. Thus, it remains unclear whether, 
and by what age, children can combine sensory cues with learned regularities in an 
adult	manner.	Here,	we	examine	the	performance	of	6‐	to	7‐year‐old	children	when	
tasked with localizing a ‘hidden’ target by combining uncertain sensory information 
with prior information learned over repeated exposure to the task. We demonstrate 
that	6‐	to	7‐year‐olds	learn	task‐relevant	statistics	at	a	rate	on	par	with	adults,	and	
like adults, are capable of integrating learned regularities with sensory information in 
a statistically efficient manner. We also show that variables such as task complexity 
can influence young children's behavior to a greater extent than that of adults, lead‐
ing	their	behavior	to	look	sub‐optimal.	Our	findings	have	important	implications	for	
how we should interpret failures in young children's ability to carry out sophisticated 
computations. These ‘failures’ need not be attributed to deficits in the fundamen‐
tal computational capacity available to children early in development, but rather to 
ancillary immaturities in general cognitive abilities that mask the operation of these 
computations in specific situations.
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a	Bayes‐optimal	 fashion	 (Alais	&	Burr,	2004;	Bankieris,	Bejjanki,	&	
Aslin,	 2017;	 van	Beers,	 Sittig,	&	Gon,	1999;	Ernst	&	Banks,	2002;	
Hillis, Ernst, Banks, & Landy, 2002; Jacobs, 1999; Knill & Saunders, 
2003).	Of	course,	this	strategy	is	only	tenable	when	the	observer	has	
access to multiple simultaneous cues about the stimulus of interest. 
In situations in which the observer does not have access to multiple 
simultaneous cues, the influence of sensory uncertainty can nev‐
ertheless be mitigated by learning the underlying statistical prop‐
erties (i.e., the generative model) for the stimulus of interest, and 
efficiently combining this learned prior knowledge with the sensory 
information available on each trial. Indeed, a large body of evidence 
suggests that human adults can improve their performance by com‐
bining uncertain sensory information with learned prior information 
in an approximately Bayes‐optimal manner (i.e., by weighting each 
source	of	information	by	its	relative	reliability;	Bejjanki,	Knill,	&	Aslin,	
2016; Berniker, Voss, & Kording, 2010; Hudson, Maloney, & Landy, 
2007;	Jazayeri	&	Shadlen,	2010;	Kording	&	Wolpert,	2004;	Kwon	&	
Knill,	2013;	Stocker	&	Simoncelli,	2006;	Tassinari,	Hudson,	&	Landy,	
2006; Vilares, Howard, Fernandes, Gottfried, & Kording, 2012).

Despite the preponderance of evidence supporting human 
adults’ ability to carry out such sophisticated computations, rel‐
atively less is known about the developmental time‐course of this 
ability. Recently, some studies have reported that young children dif‐
fer substantially from adults in their ability to mitigate the influence 
of sensory uncertainty by utilizing multiple sources of information 
(Barutchu, Crewther, & Crewther, 2008; Chambers, Sokhey, Gaebler‐
Spira, & Kording, 2018; Gori, Del Viva, Sandini, & Burr, 2008; Nardini, 
Bedford, & Mareschal, 2010; Nardini, Jones, Bedford, & Braddick, 
2008; Petrini, Remark, Smith, & Nardini, 2014). For instance, several 
studies have shown that when presented with multiple simultane‐
ous cues, children younger than 8–12 years of age combine these 
cues in a sub‐optimal manner – their behavior is often dominated by 
one of the cues irrespective of its relative reliability. The source of 
this dramatic discrepancy between the behavior of young children 
and adults remains unclear. What is the maturational trigger, or the 
threshold of accumulated environmental input, that enables 8‐ to 
12‐year‐olds (but not younger children) to demonstrate adult‐like 
behavior? Some have argued that the basis for this sub‐optimality is 
that sensory systems are rapidly changing in children younger than 
8, which results in children prioritizing the use of one cue (or a subset 
of cues) to calibrate others (i.e., cue recalibration), thus precluding 
optimal	cue	combination	(Gori	et	al.,	2008).	Others	have	suggested	
that the underlying computational process may be different during 
early development, which would manifest in optimal weights that 
are not solely dependent on cue reliability. For instance, examining 
the integration of stereo and disparity cues to surface slant, Nardini 
et al. (2010) found that children younger than 8 seem to be able to 
keep the two cues separate (as opposed to adults who experienced 
mandatory fusion of the two cues), thereby allowing them to priori‐
tize the fastest available cue, and to better detect conflicts between 
rapidly changing sensory modalities.

Notably, most of these prior studies have used tasks in which 
young children are presented with multiple simultaneously available 

cues (within or across sensory modalities). Little previous work 
has been devoted to the related question of whether young chil‐
dren's behavior is similarly sub‐optimal when tasked with integrat‐
ing uncertain sensory information with prior information (but see 
Chambers et al. (2018)). This is an important gap in the literature for 
several reasons. First, as described above, adults have been shown 
to use similar mechanisms both when integrating simultaneously 
available cues, and when integrating prior information with uncer‐
tain sensory information. In both cases, adults’ behavior is consistent 
with the predictions of a Bayes‐optimal observer who weights each 
available cue by its relative reliability. Thus, it is important to know 
whether children, like adults, utilize similar computational mecha‐
nisms (i.e., weight each available cue by its relative reliability) both 
when integrating simultaneously available cues, and when integrat‐
ing learned prior information with uncertain sensory information. 
Second, there is substantial evidence that young children, and even 
infants, are sensitive to the statistical properties of stimuli in their 
environment	(Fiser	&	Aslin,	2002;	Gopnik,	Sobel,	Schulz,	&	Glymour,	
2001;	Jusczyk	&	Aslin,	1995;	Kirkham,	Slemmer,	&	Johnson,	2002;	
Kuhl & Meltzoff, 1982; Neil, Chee‐Ruiter, Scheier, Lewkowicz, & 
Shimojo,	2006;	Saffran,	Aslin,	&	Newport,	1996;	Smith	&	Yu,	2008;	
Xu & Garcia, 2008), and the ability to appropriately learn and use 
such environmental regularities has been shown to be involved in 
the development of several cognitive abilities (e.g., object recog‐
nition, language acquisition, causal inference etc.). Furthermore, a 
large body of evidence has supported the notion that young children 
and infants are able to utilize sophisticated computational abilities 
to deal with uncertainty in their environments (Bonawitz, Denison, 
Griffiths,	&	Gopnik,	2014;	Saxe,	Tenenbaum,	&	Carey,	2005;	Schulz,	
Goodman, Tenenbaum, & Jenkins, 2008; Xu & Garcia, 2008). Thus, a 
failure to combine information efficiently cannot be the result of an 
insensitivity to that information per se. Third, mechanisms implicated 
in the sub‐optimal behavior observed when integrating multiple si‐
multaneously available cues (e.g., cue recalibration or prioritizing the 
earliest available cue) are less likely to be impediments to efficiently 

Research Highlights

• Young children are sensitive to, and can learn, environ‐
mental regularities. Can they also utilize such learned 
regularities in a statistically efficient manner?

•	 We	 demonstrate	 that	 6‐	 to	 7‐year‐olds	 are	 capable	 of	
learning and utilizing regularities in a statistically efficient 
fashion, and in a manner indistinguishable from adult 
behavior.

• However, variables such as task complexity can influence 
young children's behavior to a greater extent than that of 
adults, leading their behavior to look sub‐optimal.

• These findings have important implications for how we 
should interpret failures in young children's ability to 
carry out sophisticated computations.
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integrating sensory and prior information because there are no ob‐
vious cue conflicts. Indeed, the presence of cue conflicts would lead 
to further difficulties because they require the observer to infer the 
extent to which both cues pertain to the same underlying stimulus 
(or source) – only cues pertaining to the same source should be in‐
tegrated.	 This	 ‘causal	 inference’	 problem	 (Kayser	 &	 Shams,	 2015;	
Körding	et	al.,	2007;	Rohe	&	Noppeney,	2015;	Shams	&	Beierholm,	
2010) is much less relevant in situations involving the integration of 
prior and likelihood information.

Here, we examine the computational mechanisms used by 6‐ to 
7‐year‐old	children	when	tasked	with	localizing	a	‘hidden’	target	by	
combining uncertain sensory information with prior information that 
could be learned over repeated exposure to the task. We provide 
evidence that in such situations, children younger than 8 years of 
age are capable of demonstrating behavior that is consistent with 
the predictions of a Bayes‐optimal observer, and indistinguishable 
from adult behavior. Importantly, we also show that variables such as 
the complexity of task‐relevant statistical distributions can influence 
young children's behavior to a greater extent than that of adults, po‐
tentially leading their behavior to look sub‐optimal as they revert to 
simpler implicit strategies for guiding their performance in the face 
of	uncertainty.	Our	findings	build	upon	prior	research	showing	that	
young children and infants are sensitive to environmental regular‐
ities, and can utilize sophisticated computational abilities to deal 
with	uncertainty,	to	show	that	6‐to	7‐year‐olds	are	also	capable	of	
utilizing learned regularities in a statistically efficient manner. This 
renders them capable of the ‘variance reduction’ that is a signature 
outcome of Bayesian inference, when combining prior and likelihood 
information,	 albeit	 in	 situations	 involving	 reduced	complexity.	Our	
findings have important implications for how we should interpret 
failures in young children's ability to carry out sophisticated com‐
putations. These ‘failures’ need not be attributed to deficits in the 
fundamental computational capacity available to children early in 
development, but rather to ancillary immaturities in general cogni‐
tive abilities that mask the operation of these computations in spe‐
cific situations.

2  | E XPERIMENT 1

2.1 | Method

2.1.1 | Participants

Eight	6‐	to	7‐year‐old	children	(3	male;	5	female)	participated	in	this	
experiment.	Participants’	ages	ranged	from	7	years	and	32	days	to	
7	years	and	292	days	 (M	 =	7.25	years).	One	additional	participant	
was eliminated from the study due to an inability to follow instruc‐
tions. Participants provided informed assent, and their caregivers 
provided informed written consent. Participants were given small 
prizes in the form of stickers, small toys etc., during their partici‐
pation, while caregivers were compensated $10 per hour, for their 
time. The University of Rochester's institutional review board ap‐
proved all experimental procedures.

2.1.2 | Task description

Participants completed a spatial localization task that was iden‐
tical to that used previously by Bejjanki et al. (2016) with adults 
(Experiment	2	 in	 that	 study).	On	each	 trial,	 participants	estimated	
the location of a ‘hidden’ target by touching the appropriate loca‐
tion on a touch‐sensitive display (see Figure 1). The horizontal and 
vertical coordinates of the target location on each trial were inde‐
pendently sampled from a location‐contingent mixture distribution 
over two underlying isotropic 2‐D Gaussian distributions. These 
underlying Gaussian distributions differed in their mean locations 
(one was centered in the left half of the display while the other was 
centered in the right half), and relative variances (one had an SD of 
40 pixels while the other had an SD	of	20	pixels).	Across	participants,	
the distributions were always centered at the same locations on the 
left and right of the display, but the variance assigned to each was 
counterbalanced (with the higher variance distribution centered in 
the	left	half	of	the	display	for	50%	of	the	participants,	and	in	the	right	
half	for	the	other	50%).

On	each	 trial,	participants	were	presented	with	uncertain	sen‐
sory information about the target location in the form of a cloud 
of eight small white or green dots (depending on the underlying 
distribution that the target was drawn from). This cloud was inde‐
pendently generated on each trial by drawing samples from a sep‐
arate 2D isotropic Gaussian distribution centered at the true target 
location for that trial (i.e., the location of the target drawn from the 
underlying mixture model). The variance of this cloud of dots was 
manipulated to generate three levels of sensory uncertainty: the 
dots were drawn from a distribution that either had low variance (SD 
of 10 pixels), medium variance (SD of 60 pixels) or high variance (SD 
of 100 pixels; see inset of Figure 1a). Thus, on each trial, participants 
had access to sensory information about the location of the hidden 
target (i.e., the cloud of 8 dots) as well as prior information about the 
likely locations of the hidden target, learned from feedback received 
in previous trials. Importantly, because the hidden target location 
was drawn from a Gaussian distribution (with SD of 20 or 40 pixels), 
the centroid of the cluster of dots was almost always discrepant from 
the average location of the hidden target. This spatial discrepancy 
allows us to estimate the weights attributed to the likelihood and 
prior information as a function of the reliability of each source of 
information.

Participants were also presented with a randomly interleaved 
‘prior‐only’ condition, in which no sensory information was pre‐
sented (except for a briefly flashed white or green box indicating 
from which of the two underlying distributions the target on that 
trial was drawn – see Figure S1). In this condition, observers thus had 
to estimate the target location based solely on their learned knowl‐
edge (up to that point in the experiment) about where the target was 
likely	 to	occur	 (i.e.,	 based	on	 their	prior	 knowledge).	After	partici‐
pants provided their response, feedback was provided via two new 
dots, one at the touched location and the other at the true target 
location. Participants also received feedback in the form of numeri‐
cal points, with the point magnitude varying based on their accuracy.
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2.1.3 | Procedure

Before the start of the experiment, participants were provided with 
the following information:

You will be playing a game on an iPad. Imagine you are at a fair 
and you are playing a game in which there is an invisible bucket that 
you are trying to locate on the iPad screen. Sometimes the bucket is 
located on the left side of the screen and at other times it is located 
on the right side of the screen. Because the bucket is invisible, you 
can't	see	where	it	is.	However,	each	time	you	press	“GO”,	you'll	see	
some dots on the screen. You can think of these dots as guesses for 
where the bucket is. Now, you don't know which (if any) of these 
dots	actually	show	the	location	of	the	bucket.	All	of	the	dots	could	
be just random guesses, which means they don't actually tell you 
where the bucket is.

Sometimes you might be the first person to play the game, so 
you	won't	see	any	dots	on	the	screen	when	you	press	“GO”.	Instead,	
you will briefly see a box on the screen, which will indicate the side 
of the screen that the invisible bucket is located at – the bucket will 
be somewhere within that box.

Your job each time is to try to guess where the bucket actually is, 
by touching the screen right where you think it is. When you touch 
the	screen,	you'll	see	two	more	dots.	One	dot	will	be	small	and	blue;	
this	is	where	you	guessed.	One	dot	will	be	big	and	red;	this	is	where	
the bucket actually was hiding. So, when you see the big red dot, that 
is where the invisible bucket actually was.

Then	you'll	restart	the	game	by	pressing	“GO”	again,	and	try	to	
find the new location of the bucket. The bucket will not always be in 
the same place, so pay attention to figure out where it might be. The 
closer you are to the bucket, the more points you get. If the blue dot 
and the big, red dot are right on top of each other, you get 20 points! 
If	the	blue	and	red	dots	are	close	to	each	other,	you	get	5	points	–	
you just need to try a bit harder! If your guess, the blue dot, is very 
far away from the red dot, you get 0 points. Try to get as many points 
as you can, because you can go up in levels as you get more points, 
and win prizes. The closer your guesses are to the invisible bucket, 
the more points and prizes you get! Remember the bucket moves 
around; it is not always in the same place so you should try to figure 
out where it might be each time. Try your hardest to touch the right 
spot, so you get more points and prizes!

To ensure comprehension, this information was presented as a 
dialogue (rather than as a fixed script). During this dialogue, the ex‐
perimenter frequently checked to ensure that the participant was 
following along, and participants were provided with ample oppor‐
tunities	 to	 ask	 questions.	 Once	 participants	 confirmed	 that	 they	
understood the task, they were seated at a comfortable viewing dis‐
tance	from	an	Apple	iPad	(iPad	2;	Apple	Inc.,	Cupertino,	CA),	with	a	
resolution	of	768	 (vertical)	×	1,024	 (horizontal)	pixels.	Participants	
provided responses using their finger, having been instructed to 
pick a favorite finger and to consistently use that finger through‐
out	the	experiment.	At	the	start	of	each	trial,	they	were	presented	
with	a	‘GO’	button	centered	at	the	bottom	of	the	display.	Once	they	

F I G U R E  1  Learning	and	inference	in	a	spatial	localization	task.	(a)	An	illustration	of	a	typical	trial.	Participants	estimated	the	location	of	a	
‘hidden’	target,	randomly	sampled	on	each	trial	from	a	mixture	of	two	underlying	Gaussian	distributions.	Upon	touching	a	‘GO’	button,	they	
were presented with uncertain sensory information in the form of a dot cluster, centered on the target location, and subject to one of three 
levels	of	variability	(low	variability	shown	here;	see	inset	for	an	illustration	of	the	three	levels).	Feedback	was	provided	post‐touch.	(b)	An	
illustration of Bayes‐optimal behavior. Considering the example of a ‘hidden’ target drawn from the more variable underlying distribution, 
the ideal observer would estimate the target location by learning the mean and variance of the prior (the task‐relevant underlying 
distribution) and integrating this knowledge with the likelihood (the sensory information)
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touched this button, the trial started with the presentation of either 
a cluster of white or green dots, or a briefly flashed white or green 
box (on prior‐only trials). Participants were told to estimate the lo‐
cation of the hidden target as rapidly and accurately as possible. 
Feedback was provided post‐touch.

We	implemented	several	measures	to	ensure	that	6‐	to	7‐year‐
old children found this task engaging and fun. For instance, partici‐
pants were able to earn points on each trial, with the magnitude of 
the points varying based on their accuracy. The game also included 
the opportunity to ‘level up’: when a participant accumulated 600 
points on each level, they were shown a congratulatory screen and 
provided with small prizes (e.g. stickers). Progress towards the next 
level was always shown at the top of the screen, via a progress bar. 
This ability to ‘level up’ was used solely to motivate participants 
and did not represent any change in the experimental procedure. 
In addition, the experiment was designed to be self‐paced such that 
each	trial	only	began	when	the	participant	touched	the	‘GO’	button.	
Participants were encouraged throughout the study to take breaks 
as needed, and every time a participant leveled up, they were pro‐
vided with the opportunity to take an extended break. During these 
breaks, participants were given the opportunity to briefly leave the 
room or engage in alternative tasks (such as coloring or playing with 
toys or stickers). Each participant completed 1,600 trials across two 
1‐hr sessions – each session involved 800 trials and was run on a 
different day.

2.1.4 | Data analysis

To	quantify	the	computational	mechanisms	used	by	6‐	to	7‐year‐old	
children in this task, we estimated the extent to which their behav‐
ior depended on the sensory information available on each trial. 
Furthermore, we sought to characterize learning‐induced changes in 
participants’ behavior, as a function of exposure to the task, by split‐
ting the total number of trials into four temporal bins, each of which 
included 400 trials (with the eight conditions randomly interleaved 
in each bin).

For the trials in which sensory information was available, we 
used linear regression to compute the weight (wl) assigned to the 
centroid of the cluster of dots (the likelihood), with the weight as‐
signed to the mean of the underlying target distribution for that trial 
(the	prior)	being	defined	as	(1−wl). Thus, on each trial, given the cen‐
troid of the sensory information (μl), the mean of the underlying tar‐
get distribution (μp) and participants’ estimate for the target location 
(

t̂
)

, the weight assigned by participants to the centroid of the sen‐

sory information (wl) was estimated using:

For the trials in which no sensory information was available 
(i.e., the ‘prior‐only’ conditions), we computed participants’ mean 
responses across all trials in each temporal bin and for each prior 
condition. We focused on participants’ performance in the vertical 
dimension, to eliminate the potential influence of variability that may 

have been introduced by an interaction between participants’ hand‐
edness and the horizontal separation of prior locations. Moreover, 
participants’ performance in the horizontal dimension was similar 
to their performance in the vertical dimension – we found no in‐
teraction between the horizontal/vertical dimension and exposure, 
across prior and likelihood conditions (all ps	>	.05).

3  | RESULTS

3.1 | Learning and inference in a spatial localization 
task

On	each	trial	of	this	task,	participants	had	to	estimate	the	location	
of a ‘hidden’ target based on two available sources of information: 
the sensory cue (the cluster of eight dots), and the history of feed‐
back obtained from responses on all previous trials (the prior; see 
methods). The spatial distribution of each dot cluster (low, medium, 
or high variance) provided a more or less reliable estimate (reliability 
being inversely proportional to the cluster variance) of the true tar‐
get location (Figure 1a). Furthermore, dots in the cluster were either 
white or green, depending on the underlying distribution that the 
target was drawn from (narrow or broad), thereby providing a sec‐
ond cue (in addition to the location of the dot cluster) as to which of 
the two underlying distributions the target on that trial was drawn 
from. In order to independently estimate the extent to which partici‐
pants learned the statistical properties of the underlying Gaussian 
distributions, we also randomly interspersed a ‘prior‐only’ condi‐
tion in which they localized the target in the absence of any sensory 
information (with the exception of a briefly flashed white or green 
box indicating which of the two underlying distributions the target 
on that trial was drawn from – see Figure S1). Participants thus had 
to estimate the location of the target based solely on their learned 
knowledge (up to that point in the experiment) about where the tar‐
get was likely to occur, thereby allowing us to estimate their evolving 
knowledge of the location‐contingent generative model, as a func‐
tion of exposure to the task.

There are several computational models that participants could 
potentially use to carry out this task. The simplest strategy would be 
for participants to base their performance solely on the sensory in‐
formation available on each trial, by choosing the centroid of the dot 
cluster as their estimate for the target location. This model (‘Model 
1’) predicts a weight of 1 to the sensory information irrespective 
of the reliability of the sensory information or the reliability of the 
underlying target distribution for that trial. Furthermore, it predicts 
no change in participants’ weights as a function of exposure to the 
task, since the sensory information is independently drawn on each 
trial. This model is sub‐optimal: as sensory uncertainty increases, the 
probability of the cluster centroid corresponding exactly to the true 
target location decreases; and by ignoring the underlying distribu‐
tions, participants cannot exploit the fact that not all spatial loca‐
tions are equally likely.

A	slightly	more	sophisticated	strategy	involves	participants	tak‐
ing the underlying distributions into account, but only learning and 

t̂=wl𝜇l+
(

1−wl

)

𝜇p+noise.
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utilizing their mean locations while ignoring their relative variances 
(i.e., relative reliability) – learning the means is statistically easier and 
requires exposure to far fewer samples. By learning the mean tar‐
get location for each underlying distribution, participants can use 
this knowledge to bias their estimates, particularly as sensory un‐
certainty increases. This model (‘Model 2’) predicts a smaller weight 
to the sensory information with increasing sensory uncertainty, and 
increased sensitivity to the underlying distributions as a function of 
exposure to the task. However, this model also predicts that for each 
level of sensory uncertainty, we should see identical weights being 
assigned to the sensory information for targets drawn from the two 
underlying distributions – the relative reliability of the underlying 
distributions is ignored by this model. This model is therefore still 
sub‐optimal: the less variable (‘narrow’) underlying distribution is a 
more reliable indicator of the likely target location across trials, and 
an optimal observer should take this into account.

Finally, a statistically efficient strategy would involve partic‐
ipants learning both the means and the relative variances of the 
underlying Gaussian distributions, and integrating this learned 
knowledge with the sensory information available on each trial in a 
Bayes‐optimal manner (see Figure 1b for an illustration). This model 
(‘Model	3’)	predicts	a	drop	in	the	weight	to	the	sensory	information	
with increasing sensory uncertainty, and a greater drop for trials 
in which the target is drawn from the narrow prior than when the 
target is drawn from the more variable (‘broad’) prior distribution. 
Furthermore, as participants gain greater exposure to the underly‐
ing distributions, they should show a greater sensitivity to the sta‐
tistical properties (means and relative variances) of the underlying 
distributions. Formally, if the mean and the variance of the sensory 
information on a given trial are given by �l and �2

l
, and the mean 

and the variance of the underlying trial‐specific target distribution 
are given by �p and �2

p
, then the target location t̂ predicted by this 

model would be

where wl, the weight assigned by the observer to the sensory informa‐
tion, should be

Previous research (Bejjanki et al., 2016) has shown that when 
adult participants are presented with this task, they behave in a man‐
ner that is consistent with the predictions of Bayes‐optimal behavior 
(i.e.,	Model	3).	Specifically,	adults	assigned	a	smaller	weight	to	the	
sensory information as its reliability went down, and this drop was 
greater for trials in which the target is drawn from the narrow versus 
the broad prior distribution (Figure S2). Furthermore, although par‐
ticipants learned the mean locations of the underlying distributions 
very rapidly, their weights continued to change throughout the ex‐
periment, suggesting that they learned the relative variances of the 
underlying distributions much more slowly.

3.2 | Young children demonstrate sub‐optimal 
behavior in this task

We	examined	the	behavior	of	6‐	to	7‐year‐old	children	as	they	car‐
ried out 1,600 trials of this task. We found that children in this age 
group behaved in a manner that was dramatically different from 
that observed previously with adults. Specifically, in both prior 
conditions (narrow and broad) and across all four temporal bins, 
children's behavior was consistent with a strategy in which they 
based their estimates solely on the means of the sensory informa‐
tion available on each trial. They consistently assigned a weight 
near 1.0 to the centroid of the sensory information, and we found 
no reliable differences in the weights assigned to the sensory in‐
formation irrespective of sensory uncertainty or prior reliability 
(Figure	2a).	In	a	4	(temporal	bin)	×	3	(sensory	uncertainty)	repeated	
measures	ANOVA	of	participants’	weights	 for	 trials	 in	which	the	
target was drawn from the broad prior distribution, there was 
no significant effect of temporal bin or sensory uncertainty, and 
no significant interaction (all ps	>	 .05).	Similarly,	 in	a	4	 (temporal	
bin)	×	3	(sensory	uncertainty)	repeated	measures	ANOVA	of	par‐
ticipants’ weights for trials in which the target was drawn from 
the narrow prior distribution, there was no significant effect of 
temporal bin or sensory uncertainty, and no significant interac‐
tion (all ps	>	.1).	Finally,	in	a	4	(temporal	bin)	×	2	(prior	reliability)	
repeated	measures	ANOVA	of	weights	in	the	high	sensory	uncer‐
tainty condition, we again found no significant effect of temporal 
bin or prior reliability, and no significant interaction (all ps > .8), 
further underscoring that children were not taking the reliability 
of the trial‐specific prior distribution into account. This overall 
pattern of behavior is consistent with the predictions of Model 1 
described above, and inconsistent with the predictions of Models 
2	and	3	–	6‐	to	7‐year‐old	children	behave	in	a	sub‐optimal	manner	
that ignores the uncertainty inherent in the two available sources 
of information (i.e., the likelihoods and the priors).

We next examined the dynamics of learning in this task. 
Specifically, we considered the possibility that children might be 
learning the statistical properties of the underlying Gaussian dis‐
tributions, despite being unable to appropriately use this infor‐
mation when computing weights (much as they were unable to 
appropriately take the sensory uncertainty available on each trial 
into account). We examined children's behavior in the prior‐only 
condition, in which they had to estimate the target location in the 
absence of any sensory information. We found that children were 
able to learn the means of the underlying distributions (Figure 2b). 
In the first temporal bin (i.e., within the first 400 trials) children's 
estimates of the target location were on average marginally dif‐
ferent from the true prior mean locations (plus or minus noise es‐
timated from the low likelihood variance conditions; broad prior: 
t7 = 1.94, p = .09; narrow prior: t7 = 2.26, p = .06), suggesting that 
they were yet to perfectly learn the mean locations. However, in 
all subsequent bins, their estimates of the target location were 
on average indistinguishable from the true prior mean locations 
(broad prior: all ps > .11; narrow prior: all ps > .12). This finding 
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demonstrates that children in this age group are sensitive to, and 
capable of learning, at least one statistical property of the under‐
lying distributions. It is intriguing that they nevertheless do not 
show any influence of this learned knowledge when weighting the 
two sources of information (for instance, in line with the predic‐
tions	of	Models	2	and	3).

4  | E XPERIMENT 2

In	 Experiment	 1,	 we	 found	 that	 6‐	 to	 7‐year‐old	 children,	 unlike	
adults, do not take sensory uncertainty into account despite it being 
available on each trial. Similarly, they do not take the variances of 
the underlying prior distributions into account despite learning at 
least one aspect (i.e., the mean) of these distributions. This pattern 
of behavior potentially provides further evidence for sub‐optimality 
in integrating multiple sources of information at this age. However, 
there is an alternative to the hypothesis that young children are in‐
capable of efficiently combining two or more sources of information: 
namely, the complexity involved in this task may have prevented 
them from utilizing an otherwise intact computational system for 
integrating uncertain sensory information with learned prior infor‐
mation. Specifically, in order to effectively track, learn, and use the 
underlying distributions in this task, participants needed to be able 
to deploy sophisticated mechanisms of cognitive control and execu‐
tive function (e.g., working memory, inhibitory control and cognitive 

flexibility). Prior research suggests that these mechanisms are still 
developing	in	children	of	this	age	group	(Davidson,	Amso,	Anderson,	
&	Diamond,	2006;	Luciana	&	Nelson,	1998;	Zelazo	et	al.,	2013)	(see	
Best	and	Miller	 (2010)	and	Carlson,	Zelazo,	and	Faja	 (2013)	for	re‐
views), leading to the possibility that a deficit in these mechanisms 
may represent a key factor limiting young children's behavior in this 
task.

To explore this possibility, we ran a follow‐up experiment with 
a	new	group	of	6‐to	7‐year‐old	children.	We	again	used	the	spatial	
localization task – the goal was to estimate the location of a ‘hidden’ 
target based on uncertain sensory information presented in the form 
of a variable cluster of dots. However, a crucial difference was that 
we reduced task complexity by drawing targets from only one un‐
derlying Gaussian distribution – the narrow prior distribution used 
in Experiment 1 – located either in the left or the right half of the 
screen	 (counterbalanced	 across	 participants).	 All	 other	 aspects	 of	
the experiment, including the total number of trials, were identical 
to those in Experiment 1 (participants were thus exposed to twice 
as many samples from the single underlying distribution). Prior re‐
search (Bejjanki et al., 2016) has shown that when adult participants 
are presented with this simplified task, they continue to behave in 
a manner that is consistent with the predictions of Bayes‐optimal 
behavior	(Figure	S3).	Adults	not	only	assigned	a	lower	weight	to	the	
sensory information as sensory uncertainty increased, but this drop 
was greater when targets were drawn from the more reliable un‐
derlying distribution. Furthermore, participants rapidly learned the 

F I G U R E  2   Learning and inference in Experiment 1. (a) Weights assigned to the centroid of sensory information. Six‐ to seven‐year‐olds 
behaved in a manner dramatically different from that observed previously with adults (see Figure S2), and inconsistent with the predictions 
of	Bayes‐optimal	behavior.	Each	temporal	bin	includes	300	trials	split	between	the	two	prior	conditions	and	the	four	bins	are	depicted	in	
temporal order. (b) Mean response locations in the absence of sensory information. Participants rapidly learned the true prior means for 
both the broad (left) and narrow (right) priors. For illustrative purposes, the y‐axis represents deviation from the true mean, for each prior 
condition. Each temporal bin includes 100 trials split between the two prior conditions and the four bins are depicted in temporal order. 
Columns represent means and error bars represent SEM across participants
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means of the underlying distributions, but learned the variances 
more slowly.

5  | METHOD

5.1 | Participants

Eight	 6‐	 to	 7‐year‐old	 children	 (2	 male;	 6	 female)	 participated	 in	
this experiment (none of whom participated in Experiment 1). 
Participants’	 ages	 ranged	 from	6	 years	 and	6	days	 to	7	 years	 and	
180 days (M = 6.92 years). Two additional participants were elimi‐
nated from the study due to an unwillingness to complete the task. 
Participants provided informed assent, and their caregivers provided 
informed written consent. Participants were given small prizes in the 
form of stickers, small toys etc., during their participation, while car‐
egivers were compensated $20 per hour, for their time. Hamilton 
College's institutional review board approved all experimental 
procedures.

5.2 | Task Description

The task procedure was identical to that used in Experiment 1, with 
the exception that the horizontal and vertical coordinates of the ‘hid‐
den’ target location on each trial were independently sampled from a 
unimodal 2D isotropic Gaussian distribution (rather than the bimodal 
distribution used in Experiment 1). The single underlying Gaussian 
distribution was centered in the left half of the display for half the 
participants, and in the right half for the other participants (with the 
locations being identical to the locations of the two distributions in 
Experiment 1). The variance of the distribution was identical to the 
variance of the less variable (‘narrow’) underlying distribution used 
in Experiment 1 (i.e., it had an SD of 20 pixels).

5.3 | Task procedure

Before the start of the experiment, participants were provided task 
instructions that were nearly identical to those in Experiment 1. The 
one exception was that participants were no longer told that the 
bucket could be located on either the left or the right side of the dis‐
play,	but	rather	that	it	would	be	located	on	one	side	or	the	other.	On	
each trial, the procedure was identical to that in Experiment 1. Each 
participant again completed 1,600 trials across two 1‐hr sessions – 
each session involved 800 trials and was run on a different day.

5.4 | Data analysis

As	in	Experiment	1,	for	the	trials	in	which	sensory	information	was	
available, we used linear regression to compute the weight (wl) as‐
signed to the centroid of the dot cluster (the likelihood), with the 
weight assigned to the mean of the underlying distribution (the 
prior)	being	defined	as	(1−wl). For the trials in which no sensory in‐
formation was available, we computed participants’ mean responses 
across	all	trials	 in	each	temporal	bin.	As	in	Experiment	1,	we	again	

focused on performance in the vertical dimension. Since all 1,600 
trials in this experiment involved targets being drawn from a single 
underlying distribution, participants were exposed to twice as many 
samples from the underlying distribution, compared to Experiment 
1.	Accordingly,	the	total	number	of	trials	were	split	into	eight	tempo‐
ral bins (so as to include the same number of trials in each temporal 
bin as in Experiment 1).

6  | RESULTS

6.1 | Young children are capable of Bayes‐optimal 
behavior when task complexity is reduced

If	 6‐	 to	 7‐year‐old	 children	 are	 generally	 incapable	 of	 combining	
uncertain sensory information with learned prior information in a 
Bayes‐optimal fashion, then we should continue to see sub‐opti‐
mal behavior (as in Experiment 1) in this simplified task. Instead, we 
found that children demonstrated a pattern of behavior consistent 
with the predictions of Bayes‐optimal behavior. Specifically, there 
was a reliable interaction between exposure to the task and sen‐
sory uncertainty: as participants gained more exposure to the task, 
they assigned a smaller weight to the sensory information, and this 
drop in weight was greater as the sensory information increased in 
uncertainty	 (Figure	3a).	 In	 an	8	 (temporal	bin)	×	3	 (sensory	uncer‐
tainty)	 repeated	measures	 ANOVA	 of	 participants’	 weights,	 there	
was a main effect of temporal bin, F(7,49)	 =	 2.19,	p	 =	 .05,	 a	main	
effect of likelihood, F(2,14) = 60.86, p < .0001, and an interaction 
between the two factors, F(14,98)	=	1.93,	p	=	.03.	Indeed,	by	the	end	
of exposure to the task in Experiment 2 (i.e., in the final temporal 
bin), children assigned a reliably smaller weight to the sensory infor‐
mation as the uncertainty of sensory information increased across 
the	three	levels	(1	×	3	repeated	measures	ANOVA:	F(2,14)	=	34.97,	
p < .0001; Figure 4). Notably, the difference in behavior observed in 
Experiment 2, in comparison to Experiment 1, cannot be explained 
merely by the fact that participants were exposed to twice as many 
samples from the underlying distribution in Experiment 2. Even when 
they were exposed to an identical number of samples from the un‐
derlying distribution as in Experiment 1 (i.e., in the fourth temporal 
bin), children assigned a reliably smaller weight to the sensory infor‐
mation as the uncertainty of sensory information increased across 
the	three	levels	(1	×	3	repeated	measures	ANOVA:	F(2,14)	=	17.42,	
p < .001). Furthermore, children's behavior was statistically indistin‐
guishable from adult behavior in this task – comparing their behavior 
with adult behavior (using data from Bejjanki et al. (2016)), via a 2 
(group:	6‐	to	7‐year‐old	children,	adults)	×	8	(temporal	bin)	×	3	(sen‐
sory	uncertainty)	mixed	ANOVA	of	participants’	weights	revealed	no	
significant effect of participant group, nor any interaction between 
group and any other factor (all ps	>	.34).

Similarly, in the prior‐only condition, we found that children 
learned	the	true	prior	mean	very	rapidly	(Figure	3b)	–	within	the	first	
temporal bin, children's estimate of the target location was on av‐
erage indistinguishable from the true prior mean location (plus or 
minus noise estimated from the low likelihood variance condition; 
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t7 = 0.99, p	=	.35).	Furthermore,	in	all	subsequent	bins	except	the	sec‐
ond bin, children's estimate of the target location continued to be in‐
distinguishable on average from the true prior mean location (Bin 2: 
t7	=	3.55,	p	<	.01;	Bins	3–8:	all	ps > .12). In addition, comparing their 
behavior with adult behavior (using data from Bejjanki et al. (2016)) 
via	a	2	 (group:	6‐	 to	7‐year‐old	children,	adults)	×	8	 (temporal	bin)	
mixed	ANOVA	 revealed	no	 significant	 effect	 of	 participant	 group,	
nor an interaction between group and temporal bin (all ps > .64), 
suggesting that children learned the true prior mean at a rate that 
was on par with adults. Taken together, these findings suggest that 
children in this age group, like adults, have the ability to behave ef‐
ficiently by taking the reliability of the likelihood (i.e., the variance 
of the sensory information) into account, and most importantly, by 
learning and integrating prior information with uncertain sensory in‐
formation in a Bayes‐optimal fashion.

7  | DISCUSSION

Across	two	experiments,	we	used	a	spatial	localization	task	to	exam‐
ine	the	extent	to	which	6‐	to	7‐year‐old	children	are	capable	of	ef‐
ficiently combining uncertain sensory information available on each 
trial with prior information that could be learned over repeated ex‐
posure to the task. We demonstrate that children in this age group, 

like adults, are capable of carrying out statistically efficient compu‐
tations. Specifically, we show that they are sensitive to the statis‐
tical properties of the task (i.e., the reliability of sensory and prior 
information), and they are able to track and learn these statistics at 
a rate on par with that of adults. Importantly, we also show that chil‐
dren in this age group are able to integrate learned prior information 
with uncertain sensory information on a trial‐by‐trial basis, and in a 
manner consistent with the predictions of Bayes‐optimal behavior. 
Prior research has shown that young children and infants are sensi‐
tive to the statistical properties of stimuli in their environment (Ernst 
&	Banks,	2002;	Gopnik	et	al.,	2001;	Jusczyk	&	Aslin,	1995;	Kirkham	
et al., 2002; Kuhl & Meltzoff, 1982; Neil et al., 2006; Saffran et al., 
1996; Smith & Yu, 2008; Xu & Garcia, 2008), and the ability to ap‐
propriately learn and use such environmental regularities is involved 
in the development of a number of cognitive abilities (e.g., object 
recognition,	language	acquisition,	causal	inference	etc.).	Our	findings	
extend this prior research by further showing that young children 
are capable of utilizing such learned regularities in a statistically op‐
timal fashion.

However, we also show that in a more complex version of the 
same task, children at this age behave sub‐optimally, and in a manner 
dramatically different from adult behavior. Specifically, when faced 
with uncertain sensory information regarding stimuli drawn from 
a mixture of two underlying prior distributions, children, but not 

F I G U R E  3   Learning and inference in Experiment 2. (a) Weights assigned to the centroid of the sensory information. Like adults (see 
Figure	S3)	and	consistent	with	the	predictions	of	Bayes‐optimal	behavior,	6‐	to	7‐year‐olds	relied	less	on	the	sensory	information	(i.e.,	
assigned a smaller weight to the centroid of the sensory information) as sensory uncertainty increased. Furthermore, this drop was greater 
as	participants	gained	more	exposure	to	the	task.	Each	temporal	bin	includes	150	trials	and	the	eight	bins	are	depicted	in	temporal	order.	(b)	
Mean response locations in the absence of sensory information. Participants rapidly learned the true prior mean. For illustrative purposes, 
the	y‐axis	represents	deviation	from	the	true	mean.	Each	temporal	bin	includes	50	trials	and	the	eight	bins	are	depicted	in	temporal	order.	
Columns represent means and error bars represent SEM across participants
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adults, consistently chose the centroid of the sensory information 
as their estimate for the target location, irrespective of sensory un‐
certainty or prior reliability. Notably, children exhibited this behavior 
despite learning the mean locations of the underlying distributions, 
and having access to the reliability of the sensory information on 
each trial. This pattern of behavior is consistent with an inability to 
appropriately take each available source of information into account, 
which could be due to deficits in the computation of task‐relevant 
variables (including likelihoods, priors, objective functions and de‐
cision rules), or limitations in the neural implementation or approxi‐
mation of Bayesian inference (Drugowitsch, Wyart, Devauchelle, & 
Koechlin, 2016; Rahnev & Denison, 2018). Note that one can only 
combine information across multiple cues if one can keep track of 
which aspects of that information should be combined and under 
what conditions. For example, in Experiment 1, participants were 
required to simultaneously encode three levels of sensory uncer‐
tainty, the presence of two priors, and that each prior was reliable to 
a different extent. In contrast, in Experiment 2, while the same three 
levels of sensory uncertainty were present, there was only one prior 
with one level of uncertainty. Thus, the results from our two exper‐
iments suggest that while young children are capable of carrying 
out Bayes‐optimal computations in simplified situations, this ability 
is severely influenced by task complexity, and when overwhelmed 
by that complexity, children revert to a simpler implicit strategy for 
guiding their performance (i.e., selecting the centroid of the sensory 
information irrespective of sensory or prior uncertainty).

Our	findings	have	important	implications	for	how	we	should	in‐
terpret failures in young children's ability to carry out sophisticated 
computations. For instance, in a recent study, Chambers et al. (2018) 

used a similar spatial localization task to examine the extent to 
which 6‐ to 11‐year‐olds and adults combined uncertain sensory in‐
formation with prior information. Notably, targets were drawn from 
one of two underlying Gaussian distributions in a blocked fashion 
(via four alternating blocks of 120 trials), and they did not examine 
learning (a cue to the block‐relevant prior was always visible on the 
screen). They found that 6‐ to 8‐year‐old children, like adults, ap‐
propriately assigned a smaller weight to the sensory information as 
sensory uncertainty increased, but unlike adults, they sub‐optimally 
did not take the relative reliability of the block‐specific underlying 
distribution into account. The authors concluded that Bayes‐optimal 
behavior may not be inherent but must at least partly be learned 
during	development.	Our	 findings	 suggest	 an	 alternative	 interpre‐
tation: rather than being incapable of Bayes‐optimal computations, 
young children might have responded to the complexity of their task 
by reverting to a computationally simpler but sub‐optimal strategy, 
with task complexity affecting young children's behavior to a greater 
extent than that of adults. Indeed, the Chambers et al. (2018) study 
involved a task with an intermediate level of complexity (compared 
to the two experiments in our study), so it is interesting to note that 
6‐ to 8‐year‐olds demonstrated a pattern of behavior that was in‐
termediate in sophistication (consistent with predictions of Model 
2 described above), compared to that observed in the two experi‐
ments in our study.

How might task complexity differentially influence young chil‐
dren's	 ability	 to	 carry	out	Bayes‐optimal	 computation?	One	possi‐
bility is that performance in tasks involving greater complexity (such 
as that seen in Experiment 1) necessitates the deployment of so‐
phisticated mechanisms of cognitive control and executive function. 
Specifically, in order to effectively track, learn, and use the under‐
lying distributions, participants needed to be able to hold in mem‐
ory, mentally manipulate, and act on the basis of both their evolving 
knowledge of the prior and the sensory information available on each 
trial. In addition, on each trial, the hidden target was drawn from one 
of two underlying distributions, characterized by different means 
and variances, requiring participants to learn and maintain multiple 
‘rules’ in their mind, and to quickly and flexibly adapt their behavior 
to the changing situation (e.g., via inhibition and cognitive flexibility). 
There is substantial evidence that such top‐down mechanisms show 
a protracted developmental progression, with performance in some 
tasks not reaching adult‐like levels even by the teen years (Best & 
Miller,	2010;	Carlson	et	al.,	2013;	Davidson	et	al.,	2006;	Luciana	&	
Nelson,	1998;	Zelazo	et	al.,	2013).	The	inability	to	utilize	these	mech‐
anisms early in development therefore represents an important lim‐
itation that young children, but not adults, may be subject to.

A	 large	body	of	 previous	 research	has	 established	 that	 human	
behavior in a range of tasks might look sub‐optimal (or ‘irrational’) 
if the cognitive and computational limitations that observers are 
subject to are not appropriately accounted for (Lieder & Griffiths, 
2019;	Simon,	1956;	Tversky	&	Kahneman,	1974).	In	the	current	con‐
text, several studies have shown that young children's behavior in 
tasks drawing upon top‐down mechanisms, such as cognitive control 
and executive function, is critically moderated by task complexity. 

F I G U R E  4   Data from the final temporal bin, for a representative 
participant in Experiment 2. Consistent with the predictions 
of Bayes‐optimal behavior, as sensory uncertainty increased, 
participants shifted from selecting the centroid of the sensory 
information (the diagonal), towards selecting the mean of the 
underlying prior distribution (zero on the y‐axis) as their estimate 
for the target location. For illustrative purposes, the mean of 
the underlying prior distribution was subtracted from both the 
response locations and the centroid locations. Each dot represents 
a trial and solid lines represent the best‐fit regression lines in each 
condition
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For	 instance,	 Luciana	and	Nelson	 (1998)	 found	 that	while	5‐	 to	7‐
year‐olds were indistinguishable from adults when carrying out 
simple versions of a spatial working memory task, as task demands 
became more rigorous, such as when they had to simultaneously 
recruit mnemonic traces, sequence motor responses and organize 
behavior using a strategy or hierarchical series of goals, performance 
in	 5‐	 to	 7‐year‐olds,	 but	 not	 adults,	 deteriorated	 rapidly.	 Similarly,	
Davidson et al. (2006) found that while even 4‐year‐olds could simul‐
taneously hold information in mind and inhibit a dominant response 
when rules remained constant, the ability to flexibly switch between 
rules	was	not	adult‐like	even	 in	13‐year‐olds.	The	 sub‐optimal	be‐
havior observed in Experiment 1 may thus be less about an inabil‐
ity to carry out Bayes‐optimal computations (i.e., weighting each 
available cue by its relative reliability), and more about a deficiency 
in the top‐down skills needed to effectively deploy this ability. In 
this scenario, the ‘failures’ in statistically efficient computations ob‐
served in young children need not necessarily be attributed to defi‐
cits in the fundamental computational capacity available to children 
early in development, but rather to ancillary immaturities in general 
cognitive abilities that mask the operation of these sophisticated 
computations.

Future work might explore the extent to which our findings 
are applicable to other tasks involving the integration of sensory 
information with learned prior information. For instance, an open 
question is whether behavior in all tasks that involve flexibly utiliz‐
ing multiple learned prior distributions involves the deployment of 
top‐down	 control	mechanisms.	 A	 large	 body	 of	 previous	 research	
has established a distinction between controlled and automatic 
processing	(Shiffrin	&	Schneider,	1977),	with	controlled	processing	
involving prefrontally mediated top‐down control (Miller & Cohen, 
2001).	As	such,	one	possibility	is	that	flexibly	utilizing	multiple	prior	
distributions that are well‐learned (in contrast to the novel distri‐
butions involved in the current task) might represent an instance of 
automatic processing that precludes the deployment of top‐down 
control mechanisms, and would therefore not be subject to the in‐
fluence of complexity as demonstrated here.

Finally, it is important to note that the current study speaks most 
directly to the specific problem of efficiently integrating learned 
prior information with uncertain sensory information. Most previ‐
ous studies reporting that young children differ substantially from 
adults in their ability to utilize multiple sources of information have 
instead considered tasks involving simultaneously available cues 
(e.g.,	 from	 touch	 and	 vision).	 Our	 findings	 cannot	 speak	 to	 why	
young children fail to exhibit Bayes‐optimal behavior in such tasks 
when combining two simultaneously available sensory cues. For 
instance, previous research has suggested that different neural re‐
gions, and patterns of interaction among them, may be involved in 
the integration of information in these two scenarios – frontal areas 
of	the	brain,	such	as	the	PFC	and	the	lateral	OFC,	when	combining	
prior	 information	with	sensory	 information	 (Nogueira	et	al.,	2017;	
Vilares et al., 2012), versus low‐level sensory areas when combining 
simultaneously available cues (Ban, Preston, Meeson, & Welchman, 
2012;	Gu,	Angelaki,	&	DeAngelis,	2008).	Furthermore,	given	that	all	

the relevant information is available on each trial, experiments in‐
volving the combination of simultaneously available cues have mini‐
mal	executive	function	and	memory/learning	demands.	As	such,	the	
question of task complexity seems much less relevant than it is in 
our experiments. Conversely, mechanisms (e.g., cue recalibration or 
prioritizing the earliest available cue) implicated in the sub‐optimal 
behavior observed when integrating multiple simultaneously avail‐
able cue are less likely to be impediments to efficiently integrating 
sensory and prior information in a single modality and in the same 
frame of reference, as in our experiments. Similarly, when faced with 
multiple simultaneous cues, a key problem is inferring the extent to 
which both cues pertain to the same underlying stimulus (or source) 
– only cues pertaining to the same source should be integrated. This 
causal inference problem is much less relevant in situations involv‐
ing the integration of prior and sensory information, since it is clear 
that the two cues pertain to the same underlying stimulus variable 
(in our case, the location on the touch screen). Teasing apart the 
similarities and differences between tasks involving two simultane‐
ous sources of information and tasks involving sensory and prior 
information remains an important goal for understanding the un‐
derlying computational mechanisms, and their constraints, during 
development.

ACKNOWLEDG EMENTS

This	work	was	supported	by	a	research	grant	from	NIH	(HD‐037082;	
Richard	Aslin,	PI).	We	are	grateful	to	Holly	Palmeri	and	Emily	Williams	
for their help with recruiting and running participants.

CONFLIC T OF INTERE S TS

The authors declare no competing interests.

AUTHOR CONTRIBUTIONS

V.R.B.	and	R.N.A.	conceived	the	study;	V.R.B.	and	E.R.R.	conducted	
the	experiments	and	analyzed	the	data;	V.R.B.	and	R.N.A.	wrote	the	
paper with assistance from E.R.R.

DATA AVAIL ABILIT Y S TATEMENT

The data that support the findings of this study are available from 
the corresponding author (Vikranth Bejjanki; bejjanki@hamilton.
edu) upon reasonable request.

R E FE R E N C E S

Alais,	D.,	&	Burr,	D.	 (2004).	The	ventriloquist	effect	 results	 from	near‐
optimal bimodal integration. Current Biology, 14(3),	257–262.	https	://
doi.org/10.1016/j.cub.2004.01.029

Ban,	H.,	Preston,	T.	J.,	Meeson,	A.,	&	Welchman,	A.	E.	(2012).	The	inte‐
gration of motion and disparity cues to depth in dorsal visual cortex. 
Nature Neuroscience, 15(4),	636.	https	://doi.org/10.1038/nn.3046

mailto:bejjanki@hamilton.edu
mailto:bejjanki@hamilton.edu
https://doi.org/10.1016/j.cub.2004.01.029
https://doi.org/10.1016/j.cub.2004.01.029
https://doi.org/10.1038/nn.3046


12 of 13  |     BEJJANKI Et Al.

Bankieris,	K.	R.,	Bejjanki,	V.	R.,	&	Aslin,	R.	N.	(2017).	Sensory	cue‐combi‐
nation in the context of newly learned categories. Scientific Reports, 
7(1),	10890.	https	://doi.org/10.1038/s41598‐017‐11341‐7

Barutchu,	A.,	Crewther,	D.	P.,	&	Crewther,	 S.	G.	 (2008).	 The	 race	 that	
precedes coactivation: Development of multisensory facilitation 
in children. Developmental Science, 12(3),	 464–473.	 https	://doi.
org/10.1111/j.1467‐7687.2008.00782.x

Bejjanki,	V.	R.,	Knill,	D.	C.,	&	Aslin,	R.	N.	(2016).	Learning	and	inference	
using complex generative models in a spatial localization task. Journal 
of Vision, 16(5),	9.	https	://doi.org/10.1167/16.5.9

Bernardo,	J.	M.,	&	Smith,	A.	F.	M.	(1994).	Bayesian theory. New York: John 
Wiley & Sons.

Berniker, M., Voss, M., & Kording, K. (2010). Learning priors for Bayesian 
computations in the nervous system. PLoS ONE, 5(9), e12686. https 
://doi.org/10.1371/journ	al.pone.0012686

Best,	 J.	R.,	&	Miller,	 P.	H.	 (2010).	A	developmental	 perspective	on	ex‐
ecutive function. Child Development, 81(6), 1641–1660. https ://doi.
org/10.1111/j.1467‐8624.2010.01499.x

Bonawitz,	E.,	Denison,	S.,	Griffiths,	T.	L.,	&	Gopnik,	A.	(2014).	Probabilistic	
models, learning algorithms, and response variability: Sampling in 
cognitive development. Trends in Cognitive Sciences, 18(10),	497–500.	
https ://doi.org/10.1016/j.tics.2014.06.006

Carlson,	S.	M.,	Zelazo,	P.	D.,	&	Faja,	S.	(2013).	Executive	function.	In	P.	D.	
Zelazo (Ed.), The Oxford handbook of developmental psychology: Vol. 
1. Body and mind	 (pp.	 706–742).	New	York,	NY:	Oxford	University	
Press.

Chambers, C., Sokhey, T., Gaebler‐Spira, D., & Kording, K. P. (2018). The 
development of Bayesian integration in sensorimotor estimation. 
Journal of Vision, 18(12),	1–16.	https	://doi.org/10.1167/18.12.8

Cox, R. T. (1946). Probability, frequency and reasonable expec‐
tation. American Journal of Physics, 14(1),	 1–13.	 https	://doi.
org/10.1119/1.1990764

Davidson,	 M.	 C.,	 Amso,	 D.,	 Anderson,	 L.	 C.,	 &	 Diamond,	 A.	 (2006).	
Development of cognitive control and executive functions from 4 
to	13	years:	Evidence	from	manipulations	of	memory,	inhibition,	and	
task switching. Neuropsychologia, 44(11),	 2037–2078.	 https	://doi.
org/10.1016/j.neuro psych ologia.2006.02.006

Drugowitsch,	 J.,	Wyart,	 V.,	 Devauchelle,	 A.‐D.,	 &	 Koechlin,	 E.	 (2016).	
Computational precision of mental inference as critical source of 
human choice suboptimality. Neuron, 92(6),	1398–1411.	https	://doi.
org/10.1016/j.neuron.2016.11.005

Ernst,	M.	O.,	&	Banks,	M.	S.	 (2002).	Humans	 integrate	visual	and	hap‐
tic information in a statistically optimal fashion. Nature, 415(6870),	
429–433.	https	://doi.org/10.1038/415429a

Fiser,	J.,	&	Aslin,	R.	N.	(2002).	Statistical	 learning	of	new	visual	feature	
combinations by infants. Proceedings of the National Academy of 
Sciences of the USA, 99(24),	15822–15826.

Gopnik,	 A.,	 Sobel,	 D.	 M.,	 Schulz,	 L.	 E.,	 &	 Glymour,	 C.	 (2001).	 Causal	
learning mechanisms in very young children: Two‐, three‐, and 
four‐year‐olds infer causal relations from patterns of variation and 
covariation. Developmental Psychology, 37(5),	 620–629.	 https	://doi.
org/10.1037/0012‐1649.37.5.620

Gori, M., Del Viva, M., Sandini, G., & Burr, D. C. (2008). Young children 
do not integrate visual and haptic form information. Current Biology, 
18(9),	694–698.	https	://doi.org/10.1016/j.cub.2008.04.036

Gu,	Y.,	Angelaki,	D.	E.,	&	DeAngelis,	G.	C.	 (2008).	Neural	correlates	of	
multisensory cue integration in macaque MSTd. Nature Neuroscience, 
11(10),	1201.	https	://doi.org/10.1038/nn.2191

Hillis,	J.	M.,	Ernst,	M.	O.,	Banks,	M.	S.,	&	Landy,	M.	S.	(2002).	Combining	
sensory information: Mandatory fusion within, but not between, 
Senses. Science, 298(5598),	 1627–1630.	 https	://doi.org/10.1126/
scien	ce.1075396

Hudson,	 T.	 E.,	Maloney,	 L.	 T.,	&	 Landy,	M.	 S.	 (2007).	Movement	 plan‐
ning with probabilistic target information. Journal of Neurophysiology, 
98(5),	3034–3046.	https	://doi.org/10.1152/jn.00858.2007

Jacobs,	R.	A.	(1999).	Optimal	integration	of	texture	and	motion	cues	to	
depth. Vision Research, 39(21),	3621–3629.	https	://doi.org/10.1016/
S0042‐6989(99)00088‐7

Jacobs,	 R.	 A.	 (2002).	 What	 determines	 visual	 cue	 reliability?	 Trends 
in Cognitive Sciences, 6(8),	 345–350.	 https	://doi.org/10.1016/
S1364‐6613(02)01948‐4

Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates in‐
terval timing. Nature Neuroscience, 13(8), 1020–1026. https ://doi.
org/10.1038/nn.2590

Jusczyk,	P.	W.,	&	Aslin,	R.	N.	(1995).	Infants′	detection	of	the	sound	pat‐
terns of words in fluent speech. Cognitive Psychology, 29(1),	 1–23.	
https	://doi.org/10.1006/cogp.1995.1010

Kayser,	 C.,	 &	 Shams,	 L.	 (2015).	 Multisensory	 causal	 inference	 in	 the	
brain. PLoS Biology, 13(2),	e1002075.	https	://doi.org/10.1371/journ	
al.pbio.1002075

Kirkham,	N.	Z.,	 Slemmer,	 J.	A.,	&	 Johnson,	S.	P.	 (2002).	Visual	 statisti‐
cal learning in infancy: Evidence for a domain general learning 
mechanism. Cognition, 83(2),	 B35–B42.	 https	://doi.org/10.1016/
S0010‐0277(02)00004‐5

Knill,	D.	C.,	&	Pouget,	A.	(2004).	The	Bayesian	brain:	The	role	of	uncer‐
tainty in neural coding and computation. Trends in Neurosciences, 
27(12),	712–719.	https	://doi.org/10.1016/j.tins.2004.10.007

Knill,	 D.	 C.,	 &	 Saunders,	 J.	 A.	 (2003).	 Do	 humans	 optimally	 integrate	
stereo and texture information for judgments of surface slant? 
Vision Research, 43(24),	 2539–2558.	 https	://doi.org/10.1016/
S0042‐6989(03)00458‐9

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & 
Shams,	L.	(2007).	Causal	inference	in	multisensory	Perception.	PLoS 
ONE, 2(9),	https	://doi.org/10.1371/journ	al.pone.0000943

Kording, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorim‐
otor learning. Nature, 427(6971),	244–247.	https	://doi.org/10.1038/
natur e02169

Kuhl,	P.	K.,	&	Meltzoff,	A.	N.	(1982).	The	bimodal	perception	of	speech	in	
infancy. Science, 218(4577),	1138–1141.

Kwon,	 O.‐S.,	 &	 Knill,	 D.	 C.	 (2013).	 The	 brain	 uses	 adaptive	 internal	
models of scene statistics for sensorimotor estimation and plan‐
ning. Proceedings of the National Academy of Sciences, 110(11), 
E1064–E1073.	https	://doi.org/10.1073/pnas.12148	69110	

Lieder, F., & Griffiths, T. L. (2019). Resource‐rational analysis: 
Understanding human cognition as the optimal use of limited com‐
putational resources. The Behavioral and Brain Sciences,	1–85,	https	://
doi.org/10.1017/S0140	525X1	900061X

Luciana,	M.,	&	Nelson,	C.	A.	 (1998).	The	 functional	emergence	of	pre‐
frontally‐guided working memory systems in four‐to eight‐year‐old 
children. Neuropsychologia, 36(3),	273–293.	https	://doi.org/10.1016/
S0028‐3932(97)00109‐7

Miller,	E.	K.,	&	Cohen,	J.	D.	 (2001).	An	 integrative	theory	of	prefrontal	
cortex function. Annual Review of Neuroscience, 24(1),	167–202.	https	
://doi.org/10.1146/annur	ev.neuro.24.1.167

Nardini, M., Bedford, R., & Mareschal, D. (2010). Fusion of visual cues 
is not mandatory in children. Proceedings of the National Academy 
of Sciences, 107(39),	 17041–17046.	 https	://doi.org/10.1073/
pnas.10016	99107	

Nardini,	M.,	Jones,	P.,	Bedford,	R.,	&	Braddick,	O.	(2008).	Development	of	
cue integration in human navigation. Current Biology, 18(9),	689–693.	
https ://doi.org/10.1016/j.cub.2008.04.021

Neil,	P.	A.,	Chee‐Ruiter,	C.,	Scheier,	C.,	Lewkowicz,	D.	J.,	&	Shimojo,	S.	
(2006). Development of multisensory spatial integration and percep‐
tion in humans. Developmental Science, 9(5),	 454–464.	 https	://doi.
org/10.1111/j.1467‐7687.2006.00512.x

Nogueira,	 R.,	 Abolafia,	 J.	 M.,	 Drugowitsch,	 J.,	 Balaguer‐Ballester,	 E.,	
Sanchez‐Vives,	M.	V.,	&	Moreno‐Bote,	R.	(2017).	Lateral	orbitofron‐
tal cortex anticipates choices and integrates prior with current infor‐
mation. Nature Communications, 8,	14823.	https	://doi.org/10.1038/
ncomm	s14823

https://doi.org/10.1038/s41598-017-11341-7
https://doi.org/10.1111/j.1467-7687.2008.00782.x
https://doi.org/10.1111/j.1467-7687.2008.00782.x
https://doi.org/10.1167/16.5.9
https://doi.org/10.1371/journal.pone.0012686
https://doi.org/10.1371/journal.pone.0012686
https://doi.org/10.1111/j.1467-8624.2010.01499.x
https://doi.org/10.1111/j.1467-8624.2010.01499.x
https://doi.org/10.1016/j.tics.2014.06.006
https://doi.org/10.1167/18.12.8
https://doi.org/10.1119/1.1990764
https://doi.org/10.1119/1.1990764
https://doi.org/10.1016/j.neuropsychologia.2006.02.006
https://doi.org/10.1016/j.neuropsychologia.2006.02.006
https://doi.org/10.1016/j.neuron.2016.11.005
https://doi.org/10.1016/j.neuron.2016.11.005
https://doi.org/10.1038/415429a
https://doi.org/10.1037/0012-1649.37.5.620
https://doi.org/10.1037/0012-1649.37.5.620
https://doi.org/10.1016/j.cub.2008.04.036
https://doi.org/10.1038/nn.2191
https://doi.org/10.1126/science.1075396
https://doi.org/10.1126/science.1075396
https://doi.org/10.1152/jn.00858.2007
https://doi.org/10.1016/S0042-6989(99)00088-7
https://doi.org/10.1016/S0042-6989(99)00088-7
https://doi.org/10.1016/S1364-6613(02)01948-4
https://doi.org/10.1016/S1364-6613(02)01948-4
https://doi.org/10.1038/nn.2590
https://doi.org/10.1038/nn.2590
https://doi.org/10.1006/cogp.1995.1010
https://doi.org/10.1371/journal.pbio.1002075
https://doi.org/10.1371/journal.pbio.1002075
https://doi.org/10.1016/S0010-0277(02)00004-5
https://doi.org/10.1016/S0010-0277(02)00004-5
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/S0042-6989(03)00458-9
https://doi.org/10.1016/S0042-6989(03)00458-9
https://doi.org/10.1371/journal.pone.0000943
https://doi.org/10.1038/nature02169
https://doi.org/10.1038/nature02169
https://doi.org/10.1073/pnas.1214869110
https://doi.org/10.1017/S0140525X1900061X
https://doi.org/10.1017/S0140525X1900061X
https://doi.org/10.1016/S0028-3932(97)00109-7
https://doi.org/10.1016/S0028-3932(97)00109-7
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1073/pnas.1001699107
https://doi.org/10.1073/pnas.1001699107
https://doi.org/10.1016/j.cub.2008.04.021
https://doi.org/10.1111/j.1467-7687.2006.00512.x
https://doi.org/10.1111/j.1467-7687.2006.00512.x
https://doi.org/10.1038/ncomms14823
https://doi.org/10.1038/ncomms14823


     |  13 of 13BEJJANKI Et Al.

Petrini,	K.,	Remark,	A.,	Smith,	L.,	&	Nardini,	M.	(2014).	When	vision	is	not	
an option: Children's integration of auditory and haptic information 
is suboptimal. Developmental Science, 17(3),	 376–387.	 https	://doi.
org/10.1111/desc.12127	

Rahnev, D., & Denison, R. N. (2018). Suboptimality in perceptual deci‐
sion making. Behavioral and Brain Sciences, 41,	 1‐107.	 https	://doi.
org/10.1017/S0140	525X1	8000936

Rohe,	T.,	&	Noppeney,	U.	(2015).	Cortical	hierarchies	perform	Bayesian	
causal inference in multisensory perception. PLoS Biology, 13(2), 
e1002073.	https	://doi.org/10.1371/journ	al.pbio.1002073

Saffran,	 J.	R.,	Aslin,	R.	N.,	&	Newport,	 E.	 L.	 (1996).	 Statistical	 learning	
by 8‐month‐old infants. Science, 274(5294),	1926–1928.	https	://doi.
org/10.1126/scien	ce.274.5294.1926

Saxe,	R.,	Tenenbaum,	J.	B.,	&	Carey,	S.	(2005).	Secret	agents:	Inferences	about	
hidden causes by 10‐and 12‐month‐old infants. Psychological Science, 
16(12),	995–1001.	https	://doi.org/10.1111/j.1467‐9280.2005.01649.x

Schulz,	L.	E.,	Goodman,	N.	D.,	Tenenbaum,	J.	B.,	&	Jenkins,	A.	C.	(2008).	
Going	 beyond	 the	 evidence:	 Abstract	 laws	 and	 preschoolers’	 re‐
sponses to anomalous data. Cognition, 109(2),	211–223.	https	://doi.
org/10.1016/j.cogni	tion.2008.07.017

Shams, L., & Beierholm, U. R. (2010). Causal inference in perception. 
Trends in Cognitive Sciences, 14(9),	425–432.	https	://doi.org/10.1016/j.
tics.2010.07.001

Shiffrin,	R.	M.,	&	Schneider,	W.	(1977).	Controlled	and	automatic	human	
information processing: II. Perceptual learning, automatic attending 
and a general theory. Psychological Review, 84(2),	127.

Simon,	H.	A.	 (1956).	Rational	 choice	and	 the	 structure	of	 the	environ‐
ment. Psychological Review, 63(2),	129–138.	https	://doi.org/10.1037/
h0042769

Smith, L., & Yu, C. (2008). Infants rapidly learn word‐referent mappings 
via cross‐situational statistics. Cognition, 106(3),	1558–1568.	https	://
doi.org/10.1016/j.cogni	tion.2007.06.010

Stocker,	A.	A.,	&	Simoncelli,	E.	P.	(2006).	Noise	characteristics	and	prior	
expectations in human visual speed perception. Nature Neuroscience, 
9(4),	578–585.	https	://doi.org/10.1038/nn1669

Tassinari, H., Hudson, T. E., & Landy, M. S. (2006). Combining pri‐
ors and noisy visual cues in a rapid pointing task. The Journal of 
Neuroscience, 26(40),	10154–10163.	https	://doi.org/10.1523/JNEUR	
OSCI.2779‐06.2006

Tversky,	 A.,	 &	 Kahneman,	 D.	 (1974).	 Judgment	 under	 uncertainty:	
Heuristics and biases. Science, 185(4157),	 1124–1131.	 https	://doi.
org/10.1126/scien	ce.185.4157.1124

van	Beers,	R.	J.,	Sittig,	A.	C.,	Gon,	J.	J.	(1999).	Integration	of	propriocep‐
tive	 and	 visual	 position‐information:	 An	 experimentally	 supported	
model. Journal of Neurophysiology, 81(3),	 1355–1364.	 https	://doi.
org/10.1152/jn.1999.81.3.1355

Vilares,	I.,	Howard,	J.	D.,	Fernandes,	H.	L.,	Gottfried,	J.	A.,	&	Kording,	K.	
P. (2012). Differential representations of prior and likelihood uncer‐
tainty in the human Brain. Current Biology, 22(18), 1641–1648. https 
://doi.org/10.1016/j.cub.2012.07.010

Xu, F., & Garcia, V. (2008). Intuitive statistics by 8‐month‐old infants. 
Proceedings of the National Academy of Sciences, 105(13),	5012–5015.	
https	://doi.org/10.1073/pnas.07044	50105	

Yuille,	A.	L.,	&	Bulthoff,	H.	H.	(1996).	Bayesian	decision	theory	and	psy‐
chophysics. In D. C. Knill & W. Richards (Eds.), Perception as Bayesian 
Inference	(123–161).	Cambridge:	Cambridge	University	Press.

Zelazo,	 P.	D.,	 Anderson,	 J.	 E.,	 Richler,	 J.,	Wallner‐Allen,	 K.,	 Beaumont,	
J.	 L.,	&	Weintraub,	 S.	 (2013).	NIH	Toolbox	Cognition	Battery	 (CB):	
Measuring executive function and attention. Monographs of the 
Society for Research in Child Development, 78(4),	16–33.

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting Information section. 

How to cite this article:	Bejjanki	VR,	Randrup	ER,	Aslin	RN.	
Young children combine sensory cues with learned 
information in a statistically efficient manner: But task 
complexity matters. Dev Sci. 2019;00:e12912. https ://doi.
org/10.1111/desc.12912 

https://doi.org/10.1111/desc.12127
https://doi.org/10.1111/desc.12127
https://doi.org/10.1017/S0140525X18000936
https://doi.org/10.1017/S0140525X18000936
https://doi.org/10.1371/journal.pbio.1002073
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1111/j.1467-9280.2005.01649.x
https://doi.org/10.1016/j.cognition.2008.07.017
https://doi.org/10.1016/j.cognition.2008.07.017
https://doi.org/10.1016/j.tics.2010.07.001
https://doi.org/10.1016/j.tics.2010.07.001
https://doi.org/10.1037/h0042769
https://doi.org/10.1037/h0042769
https://doi.org/10.1016/j.cognition.2007.06.010
https://doi.org/10.1016/j.cognition.2007.06.010
https://doi.org/10.1038/nn1669
https://doi.org/10.1523/JNEUROSCI.2779-06.2006
https://doi.org/10.1523/JNEUROSCI.2779-06.2006
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1152/jn.1999.81.3.1355
https://doi.org/10.1152/jn.1999.81.3.1355
https://doi.org/10.1016/j.cub.2012.07.010
https://doi.org/10.1016/j.cub.2012.07.010
https://doi.org/10.1073/pnas.0704450105
https://doi.org/10.1111/desc.12912
https://doi.org/10.1111/desc.12912

