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A B S T R A C T   

Tools from computational neuroscience have facilitated the investigation of the neural correlates of mental 
representations. However, access to the representational content of neural activations early in life has remained 
limited. We asked whether patterns of neural activity elicited by complex visual stimuli (animals, human body) 
could be decoded from EEG data gathered from 12− 15-month-old infants and adult controls. We assessed 
pairwise classification accuracy at each time-point after stimulus onset, for individual infants and adults. Clas-
sification accuracies rose above chance in both groups, within 500 ms. In contrast to adults, neural represen-
tations in infants were not linearly separable across visual domains. Representations were similar within, but not 
across, age groups. These findings suggest a developmental reorganization of visual representations between the 
second year of life and adulthood and provide a promising proof-of-concept for the feasibility of decoding EEG 
data within-subject to assess how the infant brain dynamically represents visual objects.   

1. Introduction 

A key question in developmental cognitive science concerns the 
content and properties of neural representations in preverbal infants: 
How do these representations change with brain maturation and expe-
rience? Because infants cannot explicitly report on their own represen-
tations, developmental scientists implicitly probe representations by 
measuring looking times and other behaviors (Aslin, 2007). These 
behavioral paradigms are limited to testing a few stimulus contrasts, 
given the short duration of cooperativity in infants (Aslin and Fiser, 
2005). Neural measures such as functional near-infrared spectroscopy 
(fNIRS) and electroencephalography (EEG) additionally reveal spatial 
(Lloyd-Fox et al., 2010) and temporal (Csibra et al., 2008) differences in 
brain activation in response to experimental conditions, demonstrating 

already intricate functional specialization in the infant human brain 
(Dehaene-Lambertz and Spelke, 2015). Like most behavioral measures, 
these neural activations typically consist of group averages in response 
to two or three stimulus conditions. Another limitation of these studies is 
that they focus on differences in the amplitude or timing of a neural 
signature (e.g., an average evoked component) rather than how reliably 
each signature maps onto a specific stimulus. Thus, the field of devel-
opmental cognitive neuroscience has remained largely based on studies 
of average activations, leaving open the question of the information that 
is represented in these neural signals, i.e. neural representations. 
Multivariate pattern analysis (MVPA) addresses this gap by asking 
whether one may extract information about relevant aspects of the 
stimuli presented from patterns of neural activations with higher than 
chance accuracy (that is, classification), which is then taken to suggest 
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that neural representations support the discrimination of these stimuli 
(Haxby et al., 2014, 2001; Hung et al., 2005; Isik et al., 2014; King et al., 
2018; Meyers et al., 2008; Norman et al., 2006). Here we ask whether 
patterns of neural activation support the discrimination of stimuli that 
have been presented to a given infant across trials. 

Very few studies have used information-focused methods, such as 
MVPA, to address this question in infants. Two recent studies have used 
group-level MVPA-related methods to uncover representations of a 
small number of stimulus classes in awake infants using near infra-red 
spectroscopy (fNIRS; Emberson et al., 2017) and fMRI: Deen et al., 
2017). These studies provided an early demonstration that 
information-based analysis methods can map the geometry of neural 
representations in infant visual cortices at the group level. Here, we 
extend that work by using time-resolved, within-subject MVPA (Groen 
et al., 2012; Grootswagers et al., 2017; Kaneshiro et al., 2015; Kietz-
mann et al., 2017; Kong et al., 2020) of EEG data to reveal the temporal 
dynamics of neural representations at the level of individual infants. 

We focus on two classes of visual stimuli that are highly familiar to 
infants and easily discriminable based on behavioral studies – animals 
and parts of the body. Adults identify visual objects quickly and effi-
ciently: the organization of neural representations of visual objects ac-
cording to specific domains (e.g., animal versus human body) is evident 
as early as 100− 200 ms post-onset in adults, reflecting robust specificity 
of neural responses along the ventral stream (Cichy et al., 2014; Isik 
et al., 2014). Infants already exhibit some functional specificity in their 
neural responses to visual objects, such as strikingly domain-specific 
cortical activations to faces by 2–3 months (de Haan et al., 2002; de 
Heering and Rossion, 2015; Deen et al., 2017; Farzin et al., 2012; Halit 
et al., 2004; Tzourio-Mazoyer et al., 2002), and perhaps to animate 
versus inanimate objects by 7− 8-months (Jeschonek et al., 2010; Pey-
karjou et al., 2017). By the end of the first year of life, infants also 
demonstrate sensitivity to some visual categories within the animate 
domain, including perceptual narrowing to human vs. non-human faces 
(de Haan et al., 2002; Peykarjou et al., 2014), and categorization of 
human vs. animal body images in behavioral and oddball ERP tasks 
(Marinović et al., 2014; Oakes et al., 1996; Pauen, 2000; Quinn and 
Eimas, 1998). However, whether the specificity of visual activations is 
sufficient to support robust, automatic, and fast representations of visual 
objects and their categorical domains (e.g. human body parts or ani-
mals) in infancy remains unknown. We sought to establish the feasibility 
of time-resolved MVPA of EEG data in 12- to 15-month-old infants, and 
in so doing, to probe for the first time the dynamics of neural repre-
sentations of two types of animate visual objects using machine-learning 
based classification techniques. 

2. Materials and methods 

2.1. Participants 

Within-subject multivariate pattern classification analyses require 
that each included participant contribute sufficient data to train classi-
fiers, which is challenging to achieve with infants (Emberson et al., 
2017). Thus, we restricted analyses to individual participants who 
contributed at least 50 % valid trials compared to the maximum possible 
number of trials (infants: at least 80 valid trials total out of a maximum 
of 160, or an average of 10 valid trials per condition; adults: at least 128 
valid trials out of a maximum of 256, or an average of 16 valid trials per 
condition; range: infants 9–19, adults 15–32). The final sample was 
comprised of 10 12-to 15-month-olds (6 girls, mean age 435.00 ± 20.40 
days), and 8 young adults. An additional 12 12- to 15-month-old infants 
(5 girls, mean age 426.92 ± 21.16), and 4 young adults completed the 
study but were excluded due to contributing too few valid trials (11 
infants, 1 adult), having more than 20 % of channels identified as noisy 
by PrepPipeline (Bigdely-Shamlo et al., 2015) during preprocessing of 
the raw continuous EEG (3 adults), or refusal to wear the EEG net (1 
infant). Ages of included versus excluded infants did not significantly 

differ (two-sample t-test, p > 0.37). A subset of participating families 
also completed the English MacArthur Communicative Development 
Inventories: Words and Gestures (CDI, Infant form) questionnaire 
(Fenson, 2002); raw CDI scores from this subsample are reported in 
Supplementary Table 1, along with group average scores on word items 
corresponding to the visual stimuli used in the current study (e.g., “cat”). 
Briefly, all infants were reported by their caregiver to understand at least 
one of the CDI words that could describe the visual stimuli used in this 
study (e.g., most commonly, “dog”, “nose”, “mouth”, “foot”, and/or 
“cat”); a majority of infants were reported to produce at least one of 
these words (most commonly, “dog”; see Supplementary Table 1). Thus, 
infants were generally familiar with the depicted objects, as reported by 
their caregivers. Adult participants, and infant participants’ caregivers, 
provided written informed consent before the study, which was 
approved by the Institutional Review Board of the University of 
Rochester and Boston Children’s Hospital, respectively. 

2.2. Stimuli 

Stimuli were color images of 4 animals (cat, dog, bunny, teddy bear) 
and 4 parts of the body (hand, foot, mouth, or nose). Pictures were 
cropped, placed on a uniform gray background, and displayed with a 
visual angle of roughly 19◦ by 19◦ for infants or 8◦ by 8◦ for adults. See 
Supplementary Fig. 1 and Bergelson and Swingley (2012) for details on 
these stimuli. 

2.3. Paradigm 

Stimuli were presented in random order for 500 ms with a jittered ITI 
of 1–1.5 s. For infants, stimuli were presented using EPRIME (Schneider 
et al., 2002) for up to 20 repeated blocks corresponding to a maximum of 
160 trials. To avoid presenting a stimulus when the infant was not 
attending to the screen, presentation of each stimulus was triggered 
manually by the experimenter watching a live video feedback from an 
adjacent room. For adults, stimuli were presented using MATLAB and 
Psychtoolbox (Brainard, 1997) for up to 32 repeated blocks corre-
sponding to a maximum of 256 trials. Adults also saw additional trials 
corresponding to inanimate stimuli (food and clothing items) which 
were not seen by infants and thus were not included in the current 
analyses. 

2.4. EEG recordings 

Infants’ EEG data were recorded at 1000 Hz from 128-channels EGI 
High-Density Geodesic Sensor Nets, referenced online to Cz. A video of 
children’s behavior while looking at the screen was recorded simulta-
neously and coded offline. Adults’ EEG data were recorded at 1000 Hz 
from 32-channels BrainVision actiChamp caps, referenced online to the 
left ear. 

2.5. EEG preprocessing 

Raw continuous EEG signals were processed through the PrepPipe-
line toolbox (Bigdely-Shamlo et al., 2015) for noisy channel detection 
and interpolation, robust average-reference, and line-noise removal. 
Resulting continuous signals were filtered to 0.2− 200 Hz using a But-
terworth design as implemented in ERPLab’s “pop_basicfilter” function 
(Lopez-Calderon and Luck, 2014), and further processed using EEGLAB 
and custom functions (Delorme and Makeig, 2004) as described below. 
Filtered continuous signals were smoothed using a 20-ms running 
average, epoched from -50 to 500 ms relative to stimulus onset, and 
baseline corrected based on the period from -50 to 0 ms relative to 
stimulus onset. A relatively short epoch duration was chosen in order to 
maximize the number of valid, artifact-free trials available for multi-
variate pattern analyses. For infants, outer rim channels were excluded 
from further analysis to reduce the number of classification features (see 
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Fig. 3 for maps of included channels). Because multivariate pattern 
analyses rely on patterns of activity across channels, trials were excluded 
if signals in any scalp channel exceeded ± 150 μV for infants or ± 80 μV 
for adults. For infants, videos were additionally coded offline to exclude 
trials when the child stopped looking at the screen during stimulus 
presentation for any reason (e.g., due to eye movement, head move-
ment, or blink). For adults, individual epochs were additionally 
excluded if signals in Fp1/2 exceeded ± 60 μV (suspected blink artefact) 
or signals in horizontal EOGs exceeded ± 40 μV (suspected eye move-
ment artefact). Horizontal EOGs were excluded from further analysis. 

2.6. Univariate ERP analyses 

We report average event-related potentials (ERPs) in each condition 
and group, using the following regions and time-windows of interest as 
described in the literature for comparable paradigms: for infants (De 
Haan, 2013), ERP analyses focused on the N290 (15 occipital electrodes 
around Oz, O1 and O2; 190− 300 ms), P400 (18 occipitotemporal 
electrodes around T5/P7 and T6/P8; 300− 500 ms), and NC (16 central 
electrodes comprising Cz, C3 and C4; 300− 500 ms); for adults, ERP 
analyses focused on the N170 (T5/P7 and T6/P8; 150–190 ms; e.g. Balas 
and Koldewyn, 2013). ERP analyses were performed in MATLAB. 

2.7. Multivariate EEG analyses 

Time-resolved, within-subject multivariate pattern analysis was 
performed. An advantage of within-subject classification methods is that 
classification can leverage individual idiosyncrasies in neural patterns in 
each individual participant because classifiers do not need to generalize 
across different participants. Multivariate pairwise classification ana-
lyses were conducted using linear SVMs as implemented in libsvm 3.11 
(Chang and Lin, 2011) for MATLAB, with 4-fold cross-validation and 
pseudo-averaging of individual trials within each fold (Grootswagers 
et al., 2017). That is, to train a given classifier for a given participant, for 
a given pair of stimuli, and at a given time-point, trials from each of the 
two stimulus conditions of the pair (e.g., cat vs dog) were randomly 
re-ordered (permuted) and separated into 4 folds (i.e., quartiles of trials 
for that stimulus pair). Then, for each of these two conditions, trials from 
each of the 4 folds were separately averaged to yield 4 pseudo-trials for 
each of the two conditions, i.e., one pseudo-trial per fold and condition 
(Grootswagers et al., 2017; Isik et al., 2014). The first 3 of these 4 
pseudo-trials were used for training the classifier, while the remaining 
pseudo-trial was used for testing (i.e., 4-folds cross-validation). As there 
could be variations in the exact number of valid trials per condition and 
participant, the exact number of trials that were averaged to form each 
pseudo-trial could vary. The procedure of re-ordering trials, separating 
into folds, and training and testing classifiers at every time point was 
repeated 200 times; classification accuracies are averaged over these 
instances to yield more stable estimates. Multivariate patterns of chan-
nel baseline-normalized amplitude z-scores at each trial were used as 
features, i.e., for each trial and each channel, voltage amplitudes were 
z-scored based on the average and standard deviation of voltage am-
plitudes during the baseline period for that channel and trial. Trials were 
classified according to stimulus conditions, considering each time-point 
post-onset and each possible pair of stimulus conditions (e.g., cat vs dog) 
independently, resulting in a time-series of pairwise stimulus classifi-
cation accuracy. Thus, the theoretical chance level was 50 %. For 
visualization purposes, classifier weights were transformed back into 
multivariate activation patterns using the formula proposed in Equation 
6 of Haufe et al. (2014). Temporal generalization analyses (King and 
Dehaene, 2014) were additionally conducted, by which classifiers are 
trained on a given time-point post stimulus onset on the training set (e.g. 
+ 20 ms post-onset) and trained on another time point on the test set (e. 
g. + 40 ms post onset). Thus, the temporal generalization classifier must 
generalize not only to unseen data from the same participant, but to a 
different processing stage post-stimulus; the method thus allows for 

examining whether neural representations of stimuli are sustained or 
reactivated over processing time (King and Dehaene, 2014). Statistical 
significance of classification accuracies against chance (right-tail test 
against the chance level of 50 %) and of the paired differences in ac-
curacy between within- and across-domain classifications (two-tail test 
against an average accuracy difference of 0%) were established using 
sign permutation tests with cluster-based correction for multiple com-
parisons over time-points (cluster-defining threshold p-value = 0.05, 
alpha = 0.05; similar to the procedure of e.g. Cichy, Pantazis, & Oliva 
(2014). 

2.8. Group representational dissimilarity analyses (RDMs) 

We examined group RDMs (Cichy et al., 2014; Groen et al., 2012; 
Guggenmos et al., 2018; Kaneshiro et al., 2015; Kietzmann et al., 2017; 
Kong et al., 2020), comprised of average pairwise classification accuracy 
for each possible pair of visual images. For each group-average RDM, a 
split-half noise ceiling was also estimated, indicating the highest ex-
pected correlation given the level of noise in the data (e.g., Nili et al., 
2014). Pearson’s correlations between group average RDMs were 
computed from random half-splits of the group data (i.e., half of the 
participants in each split), correcting these split-half correlations using 
the square root of the Spearman-Brown formula (Lage-Castellanos et al., 
2019) and averaging these estimates over 100 random half-splits of the 
group data. Following the procedure described in Lage-Castellanos et al. 
(2019), the noise ceiling was defined to be zero (i.e., at chance) for 
negative split-half correlations. The statistical significance of the 
resulting noise ceiling estimate against chance was evaluated using 
one-sided empirical p-values derived from null distributions obtained 
from 10,000 null split-half noise ceiling estimates. Each of these 10,000 
null split-half noise ceiling estimates was computed using the procedure 
described above, with one of the two group-average RDMs scrambled in 
each of 100 random half-splits of the group data. Similarities between 
group RDMs were computed using Pearson’s correlations. Significance 
was evaluated based on two-sided parametric p-values associated with 
these correlation coefficients. All p-values corresponding to correlations 
between different group RDMs (Fig. 5, lower triangle values) and to 
noise-ceiling estimates for each RDM (Fig. 5, diagonal values) were 
corrected for multiple comparisons at the FDR level over this entire set 
of 21 correlations and noise-ceiling p-values. 

2.9. Comparison of group RDMs with extant computational models of 
vision 

Based on the available rankings of Brain-Score (Schrimpf et al., 
2018), we selected CORnet-S (Kubilius et al., 2018) and the pool3 layer 
of VGG-16 (Simonyan and Zisserman, 2015) as potential computational 
models of adult high-level (inferotemporal) and mid-level (V4) vision, 
respectively. At the time of selection, CORnet-S was the highest overall 
ranking model and one of the highest ranking models for matching 
high-level visual regions (inferotemporal cortex); the pool3 layer of 
VGG-16 was listed as the highest ranking model for matching the 
mid-level visual region of V4. For VGG-16, we used the Matlab imple-
mentation pretrained on ImageNet. For CORnet-S, we used the pre-
trained implementation openly available at https://github.com/dicarlol 
ab/CORnet. For each model, we obtained model activations in response 
to each of the 8 visual images used in the human experiment, then used 
pairwise Pearson’s correlations to compute Representational Similarity 
Matrices (RSMs) based on these activations. We also constructed a 
control RSM of low-level similarity using the Matlab implementation of 
SSIM (Wang et al., 2004), an index of low-level similarity between two 
images that ranges from -1 to +1, taking a value of +1 when the two 
images are identical. Three model RDMs (CORnet-S, VGG-16, and con-
trol SSIM) were derived from these three RSMs by taking RDM = 1 – 
RSM (Cichy et al., 2014). Because a linear relationship between model 
and human representational distances could not be assumed, model 
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RDMs were compared to experimental human RDMs using Spearman 
rank-correlations (Fig. 6). 

2.10. Data and code availability 

Datasets and code generated during this study are available at https 
://doi.org/10.6084/m9.figshare.12790121. 

3. Results 

3.1. Event-related potentials (ERPs) 

To form a basis of comparison with prior ERP work in infants, we first 
examined the observed average ERPs in each condition (animals, human 
body parts) and group (infants, adults) using commonly used regions 
and time-windows of interest (Fig. 1). We used one-way mixed-effects 
ANOVAs to estimate the effect of domain (animal, body) on the average 
amplitude of the N290 (occipital ROI, 190− 300 ms), P400 (occipito-
temporal ROI, 300− 500 ms), and NC (central ROI, 300− 500 ms) in 
infants. The effect of domain was not significant for any of these com-
ponents (all ps > 0.15). A one-way mixed-effects ANOVA further 
examined the effect of categorical domain (animal, body) on the average 
amplitude of the adults’ N170 component (T5/P7 and T6/P8; 150–190 
ms; e.g. Balas and Koldewyn, 2013). There was a significant effect of 
domain on the adults’ N170 (F[1,14] = 12.64, p = 0.003, 95 %CI 
[− 5.63; − 1.39], d = − 0.87), with more negative N170 amplitudes in 
response to human body than to animal images. Cluster-corrected 
comparisons of average waveforms at each ROI, unrestricted to 
time-windows of interest, yielded similar results (Fig. 1), with 

statistically significant effects of domain (body vs. animal) in ROIs in 
adults, and no or statistically marginal effects in infants. 

3.2. Multivariate classification timeseries 

We next conducted time-resolved multivariate classification of the 
EEG data (Cichy et al., 2014; Groen et al., 2012; Grootswagers et al., 
2017; Isik et al., 2014; Kaneshiro et al., 2015; Kietzmann et al., 2017), 
representing the time-course of information available in the measured 
neural signals that identifies which of the 8 visual stimuli has been 
presented on a given trial. Specifically, a linear support vector machine 
(SVM) algorithm was used to classify trials as containing each member 
of all possible pairs of visual stimuli (e.g., cat versus dog) and at each 
millisecond time-point after stimulus onset. Neural representations 
could accurately discriminate between the presented visual stimuli in 
both infants and adults, averaging over all pairwise classifications 
(Fig. 2, left column; right-tail comparison against a chance level of 50 %, 
cluster-corrected sign permutation tests, cluster-defining threshold p <
0.05, corrected significance level p < 0.05). Results in adults replicated 
previous work (e.g. Cichy et al., 2014; Isik et al., 2014) showing sus-
tained, above-chance average pairwise classification of visual images 
emerging by 100 ms and peaking at 72.86 % classification accuracy at 
177 ms (significant cluster from 82− 499 ms). In infants, classification of 
visual images also rose to above-chance levels by 100 ms but peaked at 
57.13 % classification accuracy and about 150 ms later than in adults at 
320 ms post-onset (significant clusters from 83− 198 ms and from 
212− 361 ms; additional marginally significant cluster from 419− 499 
ms). Using multi-class classification instead of average pairwise classi-
fication yielded comparable results (Supplementary Fig. S2). 

Fig. 1. Average ERP waveforms in response to the visual stimuli in infants (12-15-month-olds) and young adults. Average ERP waveforms ± s.e.m, computed 
from the same data epochs that were used to perform within-subjects classification. In contrast to within-subjects classification, amplitudes were not z-scored, and 
were averaged over electrodes of interest. Thick (resp. thin) black horizontal lines indicate significant (resp. marginally significant) clusters for the difference in 
average amplitude in response to animals vs. body items (two-tailed). 
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Fig. 2. Average accuracy for the pairwise classification of visual stimuli in infants (12-15-month-olds) and adults. Left: Average ± s.e.m. accuracy timeseries 
for pairwise, within-subject classification within (e.g. cat vs. dog) or across domains (e.g. cat vs. hand). Thick (resp. thin) horizontal lines indicate statistically 
significant (resp. marginally significant) clusters of the difference between accuracy and the chance level of 50 % (one-tailed). Red horizontal lines indicate sig-
nificant clusters for the difference in accuracy between classifications across vs. within domains (one-tailed). Middle: Average, within-subject time generalization 
accuracy for all pairwise classifications. Solid (resp. dotted) white lines indicate the border of statistically (resp. marginally) significant 2-D clusters of the difference 
between accuracy and the chance level of 50 %. Right: Average difference of within-subject time generalization accuracy for pairwise classifications across (e.g. cat 
vs. hand) vs. within (e.g. cat vs. dog) domains (e.g. cat vs. dog). White lines indicate the border of statistically significant clusters of this difference. See also 
Supplementary Fig. 2. 

Fig. 3. Multivariate channel patterns supporting pairwise classification of visual stimuli in infants (12-15-month-olds) and young adults. Average absolute 
activation patterns (Haufe et al., 2014) for pairwise, within-subject classification of visual stimuli (e.g. cat vs. dog, cat vs. hand, etc.). This method uses classifier 
weights and channel covariance to highlight channels were activation differences are contrastive between the stimulus classes. 
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Multivariate neural patterns differentiating between all 8 visual images 
(Haufe et al., 2014) are shown in Fig. 3, exhibiting the expected occipital 
topography in infants, and occipitotemporal topography in adults. 

To test whether neural representations discriminated pairs of visual 
images more strongly when those depicted objects came from a different 
categorical domain (e.g., dog versus hand) than when those depicted 
objects came from the same domain (e.g., dog versus cat), we next 
compared classification accuracies across and within domains (Fig. 2, 
left column; two-tails comparison against the null hypothesis of 0% 
difference in accuracy, cluster-corrected sign permutation tests, cluster- 
defining threshold p < 0.05, corrected significance level p < 0.05). Re-
sults in adults replicated previous findings (Cichy et al., 2014), showing 
higher classification accuracy across than within domains by 200 ms 
post-onset (peak accuracy difference of +16.95 % at 201 ms; significant 
cluster for the difference in accuracy from 156− 383 ms). In infants, 
average pairwise accuracies for the across-domain and within-domain 
classifications did not differ significantly (cluster ps> 0.1). 

Because infants had lower trial counts, their datasets could have 
failed to reveal a domain effect because of the overall lower number of 
trials per stimulus item. Thus, we asked if the domain effect that was 
evident in the adult dataset would remain if trial counts in the adult 
dataset were yoked to those of the infant dataset. When trial counts in 
the adult dataset were matched to those of the infant dataset, a domain 
effect remained significant (cluster p < 0.05) in the same direction and 
at the same overall timing as in the full adult dataset (Supplementary 
Fig. S3). Overall, it appears unlikely that lower trial counts alone could 
account for the lack of a domain effect in the neural representations of 
infants. However, other differences between the adult and infant data-
sets (e.g., channel counts, attention, electrode type, cortical folding, 
skull thickness, etc.) could have played a role. 

3.3. Temporal generalization 

Robust neural representations can remain active for several tens of 
milliseconds, for example if the task requires the maintenance of that 
representation in working memory (Quentin et al., 2019). Temporal 
generalization analyses (King and Dehaene, 2014) were run to assess the 
maintenance of neural representations of visual images over time (Fig. 2, 
central column; right-tail comparison against the chance level of 50 %, 
cluster-corrected sign permutation tests, 2-D cluster-defining threshold p 
< 0.05, corrected significance level p < 0.05). Temporal generalization 
analyses quantify how well a classifier trained on neural data at a given 
time point (e.g., 100 ms post-onset) can decode neural data from the 
same participant at another time points (e.g. 150 ms post-onset), 
repeatedly for all time points available for training and testing, 
providing a metric of the consistency of neural representations across 
distinct time points (King and Dehaene, 2014). In adults, these analyses 
showed the maintenance (generalization) of neural representations 
supporting pairwise classification of stimuli along the temporal diagonal 
(i.e. for test time-points closely bordering the times at which the clas-
sifier was trained), as previously observed (e.g. Isik et al., 2014; King 
and Dehaene, 2014). Similar results were found in infants, but classifi-
cation accuracy for generalizing across time-points was only marginally 
significant (2-D cluster p < 0.10). Thus, neural representations that 
support the classification of visual images may be maintained over time 
to some degree by 12− 15-months of age, but not robustly enough to 
reach statistical significance. Because there were no task demands (i.e., 
passive viewing), it is possible that adults spontaneously held neural 
representations in working memory whereas infants did not, although 
perhaps they could if the task demanded it (e.g., delayed 
match-to-sample). 

To test whether neural representations that support the differentia-
tion of categorical domains were maintained over time, we next exam-
ined the difference in temporal generalization accuracy for classifying 
across-domain versus within-domain pairs of stimuli (Fig. 2, right col-
umn; two-tails comparison against the null hypothesis of 0% difference, 

cluster-corrected sign permutation tests, 2-D cluster-defining threshold p 
< 0.05, corrected significance level p < 0.05). In adults, the average 
pairwise temporal generalization accuracy was significantly higher for 
across- than for within- domain classifications from roughly 150 ms 
post-onset (2-D cluster p < 0.05). Thus, in adults, the previously 
described domain organization of neural representations is dynamically 
maintained over processing time. In infants, we again found no signifi-
cant difference in average decoding accuracy for across- versus within- 
domain classifications, mirroring the timeseries results (2-D cluster ps 
> 0.10). 

3.4. Representational dissimilarity matrices 

The foregoing results confirmed that neural representations in in-
fants and adults supported the reliable decoding of visual stimuli, 
averaging over pairs of visual stimuli, and that there was some indica-
tion that these neural representations were maintained overtime. We 
next asked whether the underlying neural representations of each of 
these visual stimuli were consistent (a) across individuals of the same 
age group, (b) across time post-stimulus (i.e., between different tem-
poral windows), (c) across age groups, and (d) with the way in which 
stimulus similarities are defined by computer vision algorithms. A 
standard way of visualizing the dynamic geometry of visual represen-
tations is to compute a Representational Dissimilarity Matrix (RDM), 
which consists of the average pairwise classification accuracy for each 
possible pair of visual stimuli in each age group, over four broad time- 
windows (Fig. 4) defined a priori from visual ERP studies in infants 
and adults. As expected from existing work in adults (e.g. Cichy et al., 
2014), RDMs in adults exhibited a clear organization by domain, with 
higher average pairwise accuracy across than within domains in the 
150− 190 ms and 250− 400 ms, but not 80− 120 ms time-windows 
(two-tail paired t-test, FDR-corrected; 80− 120 ms: t[7] = − 0.54, p =
0.608; 150− 190 ms: t[7] = 4.03, p = 0.008; 250− 400 ms: t[7] = 7.50, p 
= 0.004). No such pattern was evident in the infants’ RDMs (all ps >
0.5). 

3.4.1. Group representational similarity analyses 
Although the organization of infants’ neural representations may not 

exhibit a categorical boundary between animals and human body parts 
like adults do, infants may nevertheless have a reliable neural repre-
sentation, but one that is organized differently from that of adults. That 
is, neural representations for distinguishing between animal and body 
images may not exhibit a linear domain boundary between animal and 
body items in infants but nevertheless exhibit a reliable organization 
that is similar amongst individuals of the same age. To investigate this 
possibility, we estimated the reliability of representational spaces 
measured at the group level. Specifically, we estimated the split-half 
noise-ceiling of each group-average using the upper half of the RDM 
(Fig. 5, left panel, diagonal values) and compared it to an empirical 
chance level (see Materials & Methods). Pearson’s correlations between 
different group-average upper RDMs were additionally computed to 
assess representational similarity between different age groups, and 
between different time-windows within each age group (Fig. 5, left 
panel, lower triangle and inset). 

After FDR-correction for multiple comparisons, (Fig. 5, right panel, 
diagonal values), RDM noise ceilings exceeded the empirical chance 
level in each time window in adults (80− 120 ms: ρSHnc = 0.74, FDR- 
corrected p < 0.001; 150− 190 ms: ρSHnc = 0.89, FDR-corrected p <
0.001; 250− 400 ms: ρSHnc = 0.80, FDR-corrected p < 0.001) and one of 
the three time-windows in infants (100− 190 ms: ρSHnc = 0.63, FDR- 
corrected p < 0.001). Thus, average dissimilarities of neural represen-
tations between pairs of visual images could reliably be estimated at the 
group level in these time-windows and were similar amongst distinct 
groups of individuals of the same age. Noise ceilings did not exceed the 
empirical chance level in the remaining two time-windows in infants 
(FDR-corrected ps > 0.9), suggesting that these group representational 
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dissimilarity spaces could not be reliably estimated in this time-windows 
– likely due to limitations in sample size or increased heterogeneity 
among participants. 

We next asked whether group RDMs were similar across different age 
groups, or across different time-windows within each age-group. After 
FDR-correction for multiple comparisons, no significant positive 

correlation between RDMs from different age groups were found (FDR- 
corrected ps > 0.2; Fig. 5, right panel, lower triangle values). In adults, 
the group average RDMs from the 150− 190 ms and 250− 400 ms time- 
windows were significantly correlated (ρ = 0.63, FDR-corrected p =
0.001; Fig. 5, right panel, lower triangle values), as could be expected 
from the documented maintenance of neural representations for 

Fig. 4. Representational dissimilarity of visual stimuli in infants (12-15-month-olds) and young adults. Group average accuracy for all pairwise, within- 
subject classifications, and 2D multidimensional scaling visualization (metric stress criterion). 

Fig. 5. Group representational similarity. Lower triangle: Pearson’s correlations between group-average Representational Dissimilarity Matrices, as a function of 
time-window and age group. Inset: Dendrogram representation of correlations between group RDMs. Diagonal: Split-half noise ceiling estimates. 
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discriminating visual images over this time-frame in adults (Fig. 2, 
bottom row). Similarly, in infants, the group average RDMs from the 
200− 300 ms and 300− 500 ms time-windows were also significantly 
correlated (ρ = 0.49, FDR-corrected p = 0.026; Fig. 5, right panel, lower 
triangle values). Overall, within each age group, group RDMs corre-
sponding to the two later time-windows (200− 300 and 300− 500 ms in 
infants 150− 190 and 250− 400 ms in adults) were positively correlated 
with one another but not with the group RDM corresponding to the 
earlier time-window (100− 190 ms in infants or 80− 120 ms in adults); 
group RDMs did not correlate above chance levels between age groups. 

3.4.2. Comparison with models of vision 
Because at least some of the group-level RDMs could be reliably 

estimated, we next used Spearman’s rank-correlations to ask whether 
any group-level RDMs shared similarities with the representational ge-
ometries predicted by two of the current best models of object vision 
(Schrimpf et al., 2018), CORnet-S (Kubilius et al., 2018) and VGG-16 
(Simonyan and Zisserman, 2015), or by a control measure of low-level 
image similarity (SSIM, Wang et al., 2004). Two exploratory correla-
tions passed the uncorrected threshold of statistical significance: a 
positive correlation between the CORnet-S RDM and the adult 80− 120 
ms RDM (Spearman r = 0.49, p = 0.010), and a negative correlation 
between the adult 250− 400 ms RDM and the control SSIM RDM 
(Spearman r = − 0.47, p = 0.012; Fig. 6). None survived FDR-correction 
for multiple comparisons over the entire set of 18 Spearman’s 
rank-correlations tested, and no other significant correlations were 
found (Fig. 6). 

4. Discussion 

In the present study we provide a proof of concept for employing 
time-resolved multivariate pattern analysis methods with EEG data to 
characterize the dynamics of neural representations of visual stimuli in 
infants, and to characterize group-level representational spaces across 
infants and adults. Neural representations of visual stimuli in infants 
support the reliable classification of 8 different visual images but appear 
to be only modestly sustained over the post-stimulus time period and do 
not exhibit the robust differentiation between the domains of animals 
versus human body parts that is evident in adults. Group-average 
representational spaces, as indexed by Representational Dissimilarity 
Matrices based on pairwise classification accuracy, were found to meet a 
basic standard of reliability in some but not all cases. Overall, group 
average representational spaces appear similar across some time- 
windows within each age group, but not across age groups. 

To our knowledge, the current study is the first to investigate the 
dynamics of neural representations of preverbal infants using a decoding 
framework. Neural representations supported the classification of visual 
images in 12− 15-month-olds. The feasibility of estimating encoding 
models that directly quantify the association between multiple stimulus 
features and changes in infant EEG data has been demonstrated in the 
case of low-level sensory features (such as luminance or amount of 
motion) in audiovisual cartoon movies, suggesting that the approach 

may allow for building encoding models corresponding to more complex 
stimulus dimensions (Jessen et al., 2019). We extend these results by 
demonstrating the feasibility of pairwise decoding of visual stimuli in 
12− 15-month-olds. Together with infant fNIRS decoding (Emberson 
et al., 2017), infant fMRI representation similarity analysis (Deen et al., 
2017), and infant EEG encoding models (Jessen et al., 2019), the current 
findings contribute to the utilization of information-based, multivariate, 
computational methods as a powerful toolkit for analyzing infant neural 
data. 

Evidence for the maintenance of neural representations of visual 
images over time within the first 500 ms of processing was weak in 
12− 15-month-olds. It is possible that stronger evidence would have 
been found for the maintenance of representations beyond the first 500 
ms of processing. For example, non-linear increases in response to su-
praliminal visual stimuli, potential neural markers of conscious access to 
these stimuli, emerge from roughly 750 ms post-onset in 12− 15-month- 
olds versus from roughly 300 ms in adults (Kouider et al., 2013). 
Because the maintenance and reactivation of sensory representations 
over-time is thought to be characteristic of conscious access, it is 
conceivable that the maintenance of visual representations over-time 
could be evident later than 500 ms in 12− 15-month-olds. Future 
research may address this question by utilizing paradigms that allow for 
the analysis of later responses (after 500 ms) in this age range while 
preserving a high enough number of artefact-free trials for decoding. 

We examined whether decoding accuracies would be higher, overall, 
when classifying trials according to pairs of stimuli that belong to a 
different domain (animal versus parts of the human body) compared to 
those that came from the same domain, as had previously been reported 
in adults (e.g., Cichy et al., 2014). This pattern of results was evident in 
adults but absent in infants. This negative finding suggests that the vi-
sual cortex of infants may not represent visual images of animal and 
human bodies in a manner that linearly, robustly differentiates their 
categorical domain (i.e., through differences in neural activations that 
are consistent in pattern and timing across multiple trials). Reducing 
trial numbers in the adult dataset to those of the infant dataset did not 
eliminate the domain effect in adult classification accuracies, suggesting 
that factors beyond trial numbers were responsible for these null find-
ings in infants. Converging results were found when estimating the ef-
fect of domain on univariate ERP components, with a clear effect present 
in adults but less so in infants. Taken together, the current EEG findings 
are aligned with the previous fMRI findings of Deen et al. (2017), ac-
cording to which some functional domain specificity of the visual cortex 
is already present by the end of the first year of life but is less (or 
differently) marked than in adults. Alternatively, neural representations 
that support differentiating animals from parts of the human body may 
be apparent in patterns of neural activity that were not considered in the 
current analysis – such as activity beyond 500 ms post-onset, or 
non-linear aspects of neural responses including evoked and induced 
oscillations. An effect of category on multivariate classification accuracy 
may have been obtained in infants for domain categories of visual im-
ages for which univariate differences have been consistently found, such 
as faces vs. objects or human vs. non-human faces (de Haan et al., 2002; 

Fig. 6. Group representational similarity 
with models of vision. Similarities between 
group Representational Dissimilarity Matrices 
and Representational Dissimilarity Matrices 
derived from three models: the final layer of 
CORnet-S (computational model of high-level 
vision), the pool3 layer of VGG-16 (computa-
tional model of mid-level vision), and a low- 
level control index (SSIM). Similarities that 
passed an uncorrected significance threshold 
(uncorrected p < 0.05) are indicated on the 
right-side panel; none remained significant after 
FDR-correction.   
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Farzin et al., 2012; Guy et al., 2016; Peykarjou et al., 2014, 2017), or in a 
paradigm designed to induce or reveal categorization via a novelty 
detection response (e.g., oddball; Marinović et al., 2014). Factors 
beyond trial counts (such as signal quality, EEG equipment brand, 
stimulus duration, skull thickness, cortical folding, etc.) may also have 
contributed to the lack of a domain effect in the infant data. The absence 
of a category domain effect in the current infant data likely reflects both 
the current methodological approach (which was limited to examining 
time-locked, linear patterns of EEG voltage amplitude across trials in a 
small sample of infants) and meaningful functional differences in the 
way that infants represent visual objects compared to adults. That is, it is 
possible that a different paradigm or measure may have elicited a linear 
category boundary for human body vs. animal images in 
12− 15-month-olds. Even then, however, the absence of such a linear 
boundary in the current data, if reproducible in larger samples and not 
attributable to trivial measurement differences (e.g., skull thickness), 
would be consistent with the notion that visual cortex undergoes a 
developmental change in the manner by which animal vs. human body 
images become “untangled” (DiCarlo and Cox, 2007) during visual 
processing between infancy and adulthood. Future research may un-
cover the mechanisms by which the neural representations of visual 
objects become organized along categorical domains by adulthood and 
clarify the association between the increasingly specific parcellation of 
functional domains within the visual cortex and the representation of 
domains these networks support. 

We explored the group-level Representational Dissimilarity Matrices 
(RDMs) implied by average pairwise classification accuracies for each 
possible pair of visual stimuli presented. No similarity was found be-
tween RDMs across age groups, although some similarities were found 
between RDMs in different time-windows within age groups. The results 
aligned with those of Deen et al. (2017), who reported that fMRI-derived 
RDMs were similar within the infant group and within the adult group, 
but dissimilar between these two age groups. The noise ceiling of the 
current results was generally low for infant RDMs, as several group-level 
RDMs could not be reliably estimated based on the current datasets. 
Thus, the current findings likely underestimate the extent to which 
group-level infant representational spaces may linearly discriminate 
visual domains, resemble other group-level representational spaces 
within or across age groups, or resemble representational spaces derived 
from model algorithms. 

The current study provides a first proof-of-concept for the use of 
decoding analyses from infant EEG signals. The high attrition rate and 
subsequently small sample sizes in the infant group limits the extent to 
which the current results may generalize, and likely limited the reli-
ability with which group-level RDMs could be estimated. Future 
research utilizing similar methods should attempt to decrease attrition 
by increasing the total number of valid trials collected from each infant 
(e.g., through changes in paradigm or signal processing), or by adapting 
analysis methods to accommodate small numbers of trials per individual 
participant and stimulus condition. The relatively low number of indi-
vidual stimuli (8) used limited the statistical power of analyses 
comparing different group-level RDMs or comparing these RDMs with 
models of vision. The stimulus set used did not attempt to overly correct 
for low-level visual differences between stimuli, nor did it attempt to 
elicit object-specific responses invariantly to changes in size, lightning, 
viewpoint, etc. Thus, pairwise classification accuracies were tracking 
the dynamics of neural representations that support differentiating be-
tween different visual images (a specific picture of a cat versus a specific 
picture of a dog), as opposed to differentiating between different objects 
per se (multiple exemplars of cats and dogs). Future research may 
examine whether neural representations of visual objects generalize 
across changes in size, view, or other dimensions infants as they do in 
adults (e.g. Isik et al., 2014). 

5. Conclusions 

In conclusion, we demonstrate the feasibility of time-resolved 
multivariate pattern analysis methods with infant EEG data at the 
beginning of the second postnatal year, and a first characterization of 
the dynamics of multivariate neural representations supporting the 
differentiation of animate visual stimuli in the infant brain. Univariate 
(activation-based) and multivariate (information-based) analyses 
converged to suggest that the categorical domain differentiation of 
neural responses to and representations of visual stimuli depicting ani-
mals versus parts of the body during passive viewing, robustly observed 
in adults and thought to reflect functional organization in the visual 
cortex, is not fully in place by 12- to 15-months of age. Future research 
will determine if this conclusion extends to other domains of visual 
stimuli and illuminate developmental mechanisms that lead to such 
differentiations by adulthood. 
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