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analysis of the temporal
evolution of speech articulator
trajectories
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Abstract: In this chapter we will survey methods for comparison and description of
sampled movement data, with focus on techniques able to capture the characteristics
of the temporal evolution of the signals under study. Functional data analysis, the
cross wavelet transform and cross recurrence analysis will be introduced and applied
to the analysis of speech movement data.

1 Introduction

Speech activity can be observed through a variety of transduced sig-
nals: these can be acoustic signals, aerodynamic signals, recordings of
the movements of the speech articulators, etc. Such signals evolve over
time in a generally continuous fashion, describing trajectories that are
characteristic of both the linguistic content of the utterances produced
and of non linguistic aspects such as the emotional or health state of
the speaker, the communicative context, and so forth. In speech pro-
duction research, it is common practice to focus on particular events
present in these signals such as peaks, valleys or discontinuities. As a
consequence, speech is often quantified through measures anchored to
particular time points or averaged over portions of the signals where
no discontinuity is observed. In such an approach, the critical points of
analysis must be defined before the analysis takes place, with many ev-
ident drawbacks: information concerning the trajectories themselves is
lost; the results are strongly dependent on the theoretical assumptions
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that lead to the choice and the location of the events on the signal; and a
large amount of time-consuming manual labeling is generally required.
In recent years, new methods have been proposed for characterizing the
evolution over time of multivariate time series and which offer viable
alternatives for studying the signals recorded in speech production ex-
periments. The purpose of this chapter is to contribute to the diffusion
of these methods with a tutorial introduction focused on the analysis of
the motion of oral articulators.

1.1 The Labial Coronal Effect

The application of these techniques will be illustrated using the move-
ments of three articulators observed by electromagnetic articulometry
(EMA): the jaw (as characterized by the movement of the lower incisors),
the tip of the tongue (henceforth TTip) and the lower lip (henceforth
LLip). The data were collected using a speeded repetition paradigm to
replicate the so-called labial coronal effect observed by Rochet-Capellan
and Schwartz (2007). In several languages of the world, disyllabic CVCV
sequences in which the two consonants are a labial and a coronal are
found more often in labial-coronal order than in coronal-labial order. A
hypothesis defended by Rochet-Capellan and Schwartz is that this pref-
erence is observed because the labial-coronal order (henceforth La-Co
order) is inherently more stable than the reverse order (Co-La). To test
their hypothesis, Rochet-Capellan and Schwartz had French speakers
repeat Co-La or La-Co disyllabic nonsense words (eg. /pata/, /tapa/).
Nonsense words were uninterruptedly repeated during trials of 10 sec-
onds. In the first half of each trial, speakers had to gradually increase
their speech rate and in the second half the speech rate was gradually
decreased. Regardless of the order of the consonants in the intended ut-
terance, at fast speech rates speakers tended to produce the sequences
with an underlying La-Co order.

An important observation made by Rochet-Capellan and Schwartz con-
cerns the evolution of the jaw’s behavior during a sequence of utter-
ances. At slow speech rate, two upward movements of the jaw are ob-
served per disyllable. This is expected, because in the presence of an oral
constriction, the jaw is generally raised (Lindblom, 1983; Keating et al.,
1994) However, at fast speech rates, the upward movements tend to be



reduced to one per utterance. In a replication of the Rochet-Capellan &
Schwartz study applied to German, Fuchs et al. (2009) emphasize the
presence of several instances in which at high speech rates the jaw tends
to be frozen, and its vertical displacement is minimal. This behavior
was also observed by Rochet-Capellan and Schwartz, who explicitly dis-
carded from the analysis the utterances produced in this way. On the
basis of this behavior Fuchs and colleagues were led to emphasize the
role of the jaw in the production of the Labial Coronal effect.

Subsequently Lancia and Fuchs (2011) formulated a revised hypothesis
in which this effect is promoted by the interaction of the two following
constraints operating on different levels: 1) As speech rate increases, it
becomes increasingly difficult to produce two jaw oscillations per ut-
terance, due to both biomechanical and cognitive factors. Because the
jaw is the most massive articulator, preserving its oscillatory frequency
as the double of the oscillatory frequency of the other, less massive ar-
ticulators during several sequences in which dozens of repetitions are
produced becomes untenable. In addition, when the jaw produces two
oscillations per utterance, the ratio between the oscillatory frequency of
this articulator and the oscillatory frequency of the other two articula-
tors is 2:1. It is known that this kind of coordination pattern is generally
harder to maintain than the 1:1 frequency ratio which characterizes the
coordination of the articulators when one jaw cycle per syllable is pro-
duced (Pouplier, 2007; Goldstein et al., 2007). 2) To produce an audible
coronal gesture, the jaw must achieve a high position; at the same time,
the constraints on the height of the jaw during the labial constriction
seem to be weaker (Lindblom, 1983; Keating et al., 1994; Hertrich and
Ackermann, 2000; Koenig et al., 2003; Mooshammer et al., 2007). Ac-
cording to Lancia and Fuchs (2011), the joint effect of these constraints
produces a weakening of the jaw cycle which is synchronous with the
movement of the LLip. The reduction of this cycle of jaw movement
produces a reduction of the vowel following the labial consonant and a
reduction of the interval between this consonant and the following coro-
nal. For this reason the two consonants tend to be perceived as grouped
as if they were produced with a LC order. However, in order to test this
revised hypothesis, three tasks must be performed. First, the evolution
from two jaw cycles per utterance to one jaw cycle per utterance has to
be quantified. Second, relative coordination among the articulators has



to be determined, together with how this changes as speech rate is in-
creased. Finally, the variability of fast speech rate utterances produced
with an underlying La-Co must be compared to those produced with an
underlying Co-La order.

1.2 Plan of the chapter

The goal here is not to test the hypotheses described in the preceding sec-
tion, but rather to explain and illustrate the analysis methods adopted
to accomplish the three tasks described above. In the following sections,
we will first introduce some basic terms. We will then illustrate how
functional data analysis can be used to characterize the evolution of the
jaw’s behavior as speech rate is increased. In order to relate the behavior
of the jaw to the other articulators, we will use the cross-wavelet trans-
form to derive their relative phase relationships and show the evolution
of these variables as speech rate increases. We will also introduce recur-
rence quantification analysis as a method for assessing the variability of
motion patterns corresponding to different consonant orders (Co-La or
La-Co). In the last section of this chapter we will briefly discuss choices
confronting the researcher for the correct application of these methods.
In the appendix, the reader is directed to essential literature describing
these techniques and to the internet resources providing software and
examples.

1.3 Basic terminology

The data studied here have been obtained using electromagnetic artic-
ulometry (EMA), in which signals transduced in sensors within an os-
cillating electromagnetic field are used to track their positions and ori-
entation in three dimensions. By gluing sensors to accessible parts of
a speaker’s vocal tract anatomy (anterior tongue, jaw, lips) and correct-
ing for head movement using additional reference sensors, the simul-
taneous and overlapping movements of the speech articulators relative
to the hard structure of the palate can be observed using this technique.
At time t the position of each of these sensors can be characterized by
three spatial coordinates corresponding to its 3D offset from a common
origin (typically the speaker’s upper incisors). The set of values that



constitute the spatial configuration of the ensemble of the articulators is
a coordinate vector. When dealing with position data, the values corre-
spond to spatial coordinates, but when dealing with other kinds of data
(eg. pressure, flow, etc.) each vector describes the state of the observed
signals at a given moment in time and it can therefore be called a state
vector. A multivariate time series is a sequence of state vectors describ-
ing the simultaneous evolution of several processes, each one projected
onto a different dimension of the state vectors. In the case of speech
movements, a given dimension of the state vectors (and, by extension,
of the whole time series) corresponds to the evolution over time of the
position of one particular articulator over one of the three spatial di-
mensions. It is often the case that one or more spatial dimensions are
dropped from analysis, on the assumption that movement along those
dimensions is not relevant for the phenomenon under study. The se-
quences of values on the different dimensions, when plotted separately,
constitute curves on a plane which have time on the abscissa and the
displacement mapped to the ordinate. Particular shapes determined by
the evolution over time of one curve or by the joint evolution of several
curves are defined spatio-temporal patterns. It is often the case that we
consider a one dimensional signal as the combination of simpler curves
which are called components. This approach can of course be extended
to multidimensional signals. When analyzing a roughly periodic sig-
nal (a signal which is repeated in a more or less cyclical fashion over
time), it is common to decompose it as the sum of basic oscillations or
building-blocks occurring at different frequencies. In Fourier analysis,
the components are sinusoidal functions of time multiplied by appropri-
ate constants. Other analysis methods adopt different building-blocks,
as shown in the two following sections.

2 Part I: Functional data analysis (FDA)

2.1 Introduction

Rochet-Cappellan and Schwartz observed that when speakers repeat
CVCV disyllables at a moderate speech rate their jaw produces two os-
cillations. The vertical position of the jaw reaches its maximum at con-



sonant closure, and its minimum corresponds to vowel production. At
high speech rates however the jaw often makes only one oscillation per
utterance. In the first part of this chapter we will analyze the trajec-
tories of the jaw from 20 /pata/ utterances produced in the same trial
sequence.

In order to compare the trajectories and to understand how they depend
on speech rate, we follow Ramsay and Silverman (1997) and consider
each trajectory X as the instance of a smooth function of time.

X =~ F(t) (1)

Such a function can be approximated by a linear combination of primi-
tive functions of time. The behavior of the primitive (or basis) functions
is well known and can be adapted to approximate the behavior of the
raw data. This is done by tuning the multiplicative coefficients of the
basis functions.

X = iciﬁ-(t) @)

with t = {1,...,m}. In other words, the time series X, of length m, can
be described as the sum of n functions f multiplied by n coefficients c;.
The term basis function is used to refer to one of the functions f, while
the term mother function refers to the basic shape of the basis functions.
n basis functions and n coefficient values constitute a functional obser-
vation, i.e., the functional model of an observed trajectory. In a way, a
functional observation is a smoothed version of the original data, and in-
deed smoothness of trajectories is a prerequisite for that computational
method. The first step in FDA is thus the transformation of our original
observations into functional observations.

The second step is related to the alignment of the trajectories. Since the
lengths of any two utterances are rarely equal, if we want to compare
them we need to know which features of the first utterance corresponds
to which features of the second. This mapping is called registration.
Once the second step has been completed, we have a set of functional
observations that can be compared to determine the amount of varia-
tion in different portions of the trajectories, or that can be submitted to
more sophisticated analyses. In this chapter we will use functional prin-
cipal component analysis, an extension of classical PCA. PCA is com-
monly used to characterize the extent of variation in multi-dimensional



data. Asit will be shown in section 2.2.3, with the functional extension of
this technique, we can distinguish temporal patterns which maximally
change over the curves. In the example that follows we will use this
strategy to observe that when the speech rate increases, the jaw move-
ment changes from a repeated pattern consisting of two jaw cycles per
utterance toward a pattern with only one jaw cycle.

2.2 Method

2.2.1 First step: Basis expansion

This operation is performed in two steps: 1) the definition of the building-
block or basis function and 2) the computation of the coefficients to fit
the basis function to the observed sequences.

In cyclic speech, where vertical displacement of the articulators has most-
ly a sinusoidal shape, it is appropriate to model the observed trajectories
with combinations of sine and cosine functions at different oscillation
frequencies, adopting a Fourier basis set. With that choice, the param-
eters needed to define the set of basis functions are their number (i.e.
the number of sine components plus the number of cosine components
plus 1 for a constant component) and the period of the slowest sinusoid
in the set (by default equal to the duration of the signal). We used a
Fourier basis of the 11th order with one constant coefficient and 10 sinu-
soidal coefficients:

F(t) = C1 + Cysin(wt) + C3 cos(wt) + Casin(2wt) +
Cscos(2wt) + ...+ Cyosin(10wt) 4 Cy1q cos(10wt) (3)

where w is the lowest period of oscillation, equal to the duration of the
utterance. When the signal is not periodic, a basis of B-splines is the
usual choice. With B-splines, the signal is divided into a finite number of
subsequences and each subsequence is approximated by a polynomial.
Often cubic B-splines are used; the basis is built combining polynomials
of the fourth order. (In the notation conventions adopted by Ramsey
and Silverman the order of the polynomials includes the term of degree
0, so that it is equal to the degree of the polynomial plus one.). Thus the
basic polynomial has the form:

P(t) = Cy + Gt + C3t2 + C4t3 (4)



The entire trajectory is built summing several polynomials of the same
degree but with different values for the coefficients. In B-splines each
polynomial is different from O only over a limited and uninterrupted
(i.e. compact) portion of time. The trajectory is thus split into segments
modeled by different polynomials. With B-splines the parameters that
we have to define are the number of basis functions used and the order
of the polynomials. The total number of basis functions used is equal to
the number of internal segment boundaries or “break-points” plus the
order of the spline (cubic splines being polynomials of order 4). Thus if
we want to divide our trajectories into 15 sections, we will need 19 basis
functions. The number of internal break points determines the sensi-
tivity of the B-splines to local features of the trajectory and the 4th order
polynomials assure that the modeled curve is smooth (its second deriva-
tive is a continuous function). The coefficients are obtained through
an optimization algorithm which, constrained by a roughness penalty,
proceeds by minimizing the second derivative of the smoothed curves
(Ramsay and Silverman, 1997).
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Figure 1: This picture shows the oscillations of the vertical position of the jaw corre-
sponding to three /pata/ utterances (in different shades of gray). On the leftmost panel,
the original data are shown; on the middle and rightmost panels we can observe their
functional representations obtained with Fourier basis and cubic Bspline basis.

While in the middle panel of Figure 1 we see that a Fourier basis of order
11 constitutes a satisfactory choice for the raw data in the left panel, it
is unfortunately easy to obtain results less consistent with the original
data. The B-spline basis has its weakness in the fit at the edges of the
trajectories, because in these regions a smaller number of data points are
available. This problem does not affect the Fourier basis because, since
the trajectories are assumed to be periodic, the missing data points at
one edge can be extracted from the opposite edge. However the Fourier



basis is less flexible than the B-spline approach because it is bounded
to cyclic behavior; moreover it is less sensible to the local transient be-
havior of the trajectories, which thus tend to disappear in the smoothed
curves. It follows that, in order to apply FDA to a set of trajectories,
it is necessary to check for the fit of each functional observation to the
corresponding original trajectory; this can be quantified by thresholding
excessive standard deviation between original and fitted data.

2.2.2 Second step: Registration

Once the functional observations have been created, their time scales can
easily be normalized and the trajectories can thus vary over the same in-
terval. In this way, the initial and terminal events correspond. However
this necessary preliminary step does not assure that the portions which
are equivalent across the trajectories are aligned; they are aligned only if
the differences in time scale among the trajectories are uniform. In order
to align the events (peaks and valleys) present in all the trajectories, the
following procedure (following Lucero et al., 1997) is adopted. The tra-
jectories are computed over the same time interval (that by convention
we set from 0 to 1) and a first mean function is obtained by averaging
the corresponding data points across the trajectories!.

Next, for each functional observation, a warping function is defined as a
cubic B-spline. A warping function is a transformation of the time scale.
Given a functional observation, the warping function defines, for each
of its points, the horizontal shift needed to align that point to the corre-
sponding point of the mean trajectory.

The warping function coefficients are then optimized to minimize the
distance between the functional observations and the mean trajectory.
Applying the warping functions to their corresponding functional ob-
servations, the trajectories are aligned. This procedure may be repeated
to refine the results (cf. Lucero et al., 1997; Lucero and Koenig, 2000;

1 In order to favor a correct alignment, the original curves can be centered, subtract-
ing the mean from each curve, and scaled through division by the standard deviation
(or, more appropriately when comparing time series of different length, through divi-
sion by their maximum value, cf. Wang and Gasser, 1997; Lucero and Koenig, 2000).
Once the aligned curves have been obtained, the initial scale and origin of the axis
can be recovered by adding to each curve its initial mean and multiplying by the scale
factor used to normalize the curve.
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Lucero, 2005, for applications to speech movements). A new mean tra-
jectory is obtained by averaging the aligned values of the functional ob-
servations and the warping functions are then recalculated to improve
the match to the new mean trajectory.

Once the curves are aligned to the average curve (cf. Figure 2) it is easy
to determine the similarity between two curves by applying a Euclidean
distance metric. In the same fashion an averaged measure of variability
is given by the sum of the standard deviations at different relative times
divided by the number of time points, equivalent to the index of spatio-
temporal variability (STI) introduced by Smith et al. (1995). However, as
a consequence of the nonlinear time-warping, variation in the aligned
data is primarily due to amplitude differences between trials, while the
individual warping functions show variation in phase. In other words,
this method, unlike Smith’s linear STI, crucially allows for the separate
quantification of amplitude and phase differences.
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Figure 2: Aligned versions of the three curves plotted in Figure 1. The curves represent
the movement of the jaw during the production of the utterance /pata/ (smoothed
using a Fourier basis of the 11th order). In each panel, one aligned curve (continuous
line) is plotted together with the curve obtained averaging all the 18 aligned curves
belonging to the set considered (dotted line).

2.2.3 Third step: Functional principal component analysis

Given a multivariate set of data, classical PCA finds the orientation in
that space over which the data vary most. We may think of the func-
tional principal components as those basic curves whose linear combi-
nations give the best approximation of the original set of functional ob-
servations. Therefore each curve of the set can be approximated by a
linear combination of the principal components. This is a concise way to
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express that each observed curve can be obtained by summing the prin-
cipal components, each one multiplied by a different factor. We can thus
think of a given principal component as a basic shape which is present
with different intensities in the curves analyzed (cf. Gubian et al., 2010;
Aston et al., 2010).

The first principal component is that basic trajectory whose variation
can explain the highest percentage of the variability observed across the
curves. This ranking is extended to the other components which are
ordered by the percentage of total variance explained. The effect of a
principal component in one particular curve is indicated by the mul-
tiplicative factor (or loading) used to approximate that curve. In this
section we will focus on the interpretation of principal components but
we won't address the issues raised in their extraction and by the com-
putation of their loadings.

Before illustrating an application to real data, it is instructive to under-
stand the meaning of principal components on a set of synthetic curves
for which we know the characteristics. As an example we can consider
the four curves in the right panel of Figure 3. These come from a set of
100 curves obtained from the curves S1(¢) and S2(t) represented respec-
tively by the continuous and the dashed lines in the left panel. These
were multiplied by different constant factors (B; and C; respectively) and
added to a sequence of random values extracted from a uniform distri-
bution between 0 and 0.1.
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Figure 3: Left panel: basic shapes used to generate the curves in the right panel. Right
panel: curves generated by combining the basic shapes in the left panel with uniform
noise (see text).

The multiplicative factors B; and C; vary from one curve to the other
and determine the amplitude of the prototypical shapes in each of the
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resulting curves. The values for the factors are generated at random,
but the factors C; are multiplied by 0.8. Therefore the average effect of
S2(t) on the resulting curves is weaker than the average effect of S1(¢).
In order to apply FPCA, we need to determine the number of principal
components to extract. In our case, we can start with an arbitrarily high
number of components, but only two of them account for non negligible
proportions of the total variance observed across the curves (as shown
in panel a of Figure 4). This is consistent with the fact that all of the 100
curves are obtained by combinations of precisely two basic shapes.
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Figure 4: Panel a: Variability accounted by the first two principal components. Panels
b and c: effects of the first and second principal components on the mean curve (see
text).

Panels b and c from Figure 4 show the effect of the two principal com-
ponents on the average curve (this is represented in both the panels by
a continuous line). The two lines composed by plus signs represent the
changes in the mean trajectory which are obtained when the compo-
nents are multiplied by a positive factor and added to the average tra-
jectory. The lines composed by the minus signs are obtained when the
components are multiplied by a negative factor. We can see that each
of the two principal components introduces two peaks (or two valleys,
if combined with a negative factor); however, when adding to the aver-
age curve one of the two shapes in the left panel of Figure 3, only one
peak (or one valley) is expected. We can deduce that each component ac-
counts for variability coming from both the basic shapes. This happens
because there is an infinite number of pairs of curves, different from
the ones in the left panel of Figure 3, whose linear combinations can
approximate the observed curves equally well. In other words, given
some number of principal components, their uniqueness is not guaran-
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teed. However, no better approximation can be obtained by linear com-
binations of the same number of curves. Using the Varimax algorithm
Kaiser (1958) it is possible to select among the possible sets of principal
components for the basic shapes which maximize covariation with the
observed curves. In this way the probability of separating the effects of
different sources of variability is maximized. The results of this step on
the principal components in Figure 4 are presented in Figure 5.
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Figure 5: Panel a: Variability accounted by the first two rotated principal components.

Panels b and c: effects of the first and of the second rotated principal components on
the mean curve (see text).

Here each component introduces only one peak, as expected by adding
one of the two curves from the left panel of Figure 3 to the average curve.
Let’s note that the mean curve is an approximately straight horizontal
line centered over the value of 0.05, which is expected because the curves
where generated starting from a uniform random distribution between
Oand 0.1.

Turning to real data, we applied functional PCA to the curves aligned
in section 2.2.1 and 2.2.2. In order to isolate the components of variabil-
ity in the shape of the trajectories, we subtracted from each curve its
mean and divided the resulting curve for its range. Panel a from Figure
6 shows the amount of variance explained by each of the first three prin-
cipal components. From panel b of the same figure we can observe that
the effect of the first principal component, when multiplied by a positive
coefficient and then added to the average curve, is that of reducing the
overall amplitude of the jaw movement. However the amplitude of the
oscillation which is synchronous with the lower lip movement (the one
in the middle of each panel) is reduced only slightly while the ampli-
tude of the oscillation synchronous with the lower lip (the one which is
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represented at the edges of each panel) is reduced to one third of its am-
plitude in the average curve. The second principal component (panel c),
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Figure 6: Effect of the Varimax rotated first three components on the mean trajectory
of the jaw in the /pata/ utterances from Figure. 2

when multiplied by a positive coefficient, increases the amplitude of the
jaw oscillation synchronous with the TTip movement. Finally, the third
principal component (panel c), when multiplied by a positive coefficient,
has a slightly more complex effect on the oscillation synchronous with
the LLip movement. First, the peak height of this oscillation increases;
second, the minimum which precedes the oscillation synchronous with
the TTip is pushed down; third the minimum following the oscillation
synchronous with the TTip is pulled up.
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Figure 7: Evolution of the first principal component is plotted against the position of
the utterance in a sequence. The continuous line indicates the values of loadings of
the first principal component; the dashed line indicates the durations of the utterances
measured in time steps. We can observe that as the duration of the utterances gradu-
ally decreases (up to the 13th repetition), the loading of the first principal component
gradually increases. Between the 13th and the 14th repetitions there is an abrupt re-
turn to the initial values for both utterance duration and loading of the first principal
component.

In Figure (7), we can see that the coefficient of first principal compo-
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nent, interpreted as tracking the reduction from two to one jaw cycles
per sequence, decreases in the middle portion of this sequence of /pata/
utterances (where the speech rate is higher). This is consistent with the
reduction from two jaw cycles per utterance to one jaw cycle observed
by Rochet-Capellan and Schwartz (2007) at fast speech rates. Moreover,
at least in the analyzed sequence, the reduced jaw cycle is the one which
is synchronous with the oscillation of the LLip.

3 Part II: Spectral methods

3.1 Introduction

The example outlined in the preceding section concerns the trajectory of
the vertical position of the jaw observed in isolation, i.e. without con-
sidering its interactions with the other articulators. We are often inter-
ested in the relation between two or more variables, as when we study
the coordination between the movements of two different articulators.
However, if we are interested in their coordination, it is simpler and
more appropriate to adopt spectral methods and study their instanta-
neous relative phase (Torrence and Compo, 1998).

At a given instant, the phase of a signal with cyclic (i.e. periodic) behav-
ior is given by its position in its cycle. The phase is an angular variable
and varies from 0, at the beginning of the cycle, to 27 at the end of the
cycle. The relative phase between two cyclic signals is the difference
between the positions of two oscillators in their relative cycles. If for
example, the two oscillators start and end their own cycles at the same
time, they are said to be in an in-phase relation (relative phase = 0); if the
first oscillator is in the beginning of its cycle at the same time when the
second one is in the middle portion of its own cycle the two oscillators
are said to be in an antiphase relation (relative phase = 7). If the phase
angle lies between 0 and 7, the first oscillator precedes the second one.
When the phase angle lies between 7t and 27, the first oscillator lags the
second one.

In order to compute the instantaneous phase of a signal or the relative
instantaneous phase between two signals, the original time-series must
be represented in the time frequency domain. In other words, a spec-
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tral representation must be adopted. When we adopt a spectral rep-
resentation of a signal, we assume that the signal under study can be
decomposed into different cyclic trajectories each one characterized by
a different frequency of oscillation. The signal is thus approximated by
a linear combination of analytic functions which oscillate with different
frequencies. Since the characteristic evolution of the analytic functions
is known, their instantaneous phase can be extracted. When looking for
the temporal relation between two signals, we identify the time scale
at which the two signals share more energy (their components at that
frequency have higher amplitudes) and then the relative phase of the
corresponding components can be computed.

3.2 Wavelet transform

The decomposition of a signal into several oscillators characterized by
different frequencies is commonly achieved through the Fourier trans-
form, which decomposes the signal into a linear combination of sine and
cosine curves. To obtain the coefficients of the sinusoidal components in
the Fourier transform, a section of the signal, whose length is fixed by
the choice of an analysis window, is extracted. That section is compared
with different combinations of sine and cosine functions which oscillate
at different frequencies but have all the same length (i.e. the length of
the section). The magnitude of the coefficients depends on the similar-
ity between the sinusoids and the analyzed section of the signal. Once
the coefficients of the sinusoidal components have been computed for
a given section, the analysis window is shifted by a small amount (the
time step of the analysis) and the computation of the coefficients is con-
ducted for the next section. This approach has an important limitation
in the fact that a single window is used to resolve all frequencies, imply-
ing that the temporal resolution of the analysis is the same in each point
of the time-frequency plane. The consequence is that low frequencies
produce too few oscillations into one window, affecting the localization
of their frequency. At the same time, high frequencies present too many
oscillations into a single window affecting the temporal localization of
the signal’s features.

The wavelet transform approach does not share this limitation because
the analytic function (called the mother wavelet, cf. Figure 8) is scaled
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(stretched or compressed in time) before being compared with the signal
(however cf. section 5.2).

Amplitude

o
)

-0.4

-4 2 0 2 4
Time

Figure 8: Shape of the complex Morlet wavelet (used as a mother wavelet for the anal-
ysis described in this chapter). Note that it is equivalent to a complex sinusoid mod-
ulated by a bell shaped curve to have positive energy on a continuous but limited
interval of time.

Longer wavelets will be used in conjunction with low frequencies of os-
cillation, while shorter scales are used in conjunction with high frequen-
cies of oscillation. In this way the wavelet transform can be sensitive to
fast local changes in the signal, while maintaining a good separation of
the energy at different frequencies.

As for the Fourier power spectrum, a spectral representation is obtained
by squaring the absolute values of the coefficients (cf. Figure 9). The in-
stantaneous phase values corresponding to the different frequency com-
ponents are obtained from the complex argument of the correspond-
ing coefficients. The wavelet equivalent of the Fourier power spectrum
is called a scalogram. Time is represented on the x axis, while the y
axis represents the scale factor used to stretch or compress the mother
wavelet. However it is possible to characterize a compressed wavelet
with the frequency of oscillation of the equivalent complex sinusoid
(cf. Figure 8). A frequency (or period) scale on the y axis is thus of-
ten used to obtain more interpretable results. Figure 9a represents the
power spectrum of the oscillation produced by the vertical position of
the TTip sensor during a sequence of /pata/ utterances. Dark shades of
gray are associated with strong energy. The concentration of the energy
on the y axis indicates the oscillatory frequencies of the main compo-
nents. The cone-shaped dashed line delimits the region in the time-scale
plane where the wavelet transform gives reliable results (i.e. unbiased
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by edge effects); this region is called the cone-of-influence (COI; Tor-
rence and Compo, 1998).
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Figure 9: (a) Power spectrum of the oscillations produced by the vertical motion of the
TTip during a sequence of repeated /pata/ utterances. (b) Power spectrum of the oscil-
lations produced by the vertical motion of the jaw. The shades of gray represent spec-
tral energy and correspond to the squared coefficients of the scaled Morlet wavelets.
Time is represented on the abscissa. The frequencies of the sinusoids corresponding to
the different wavelet scales are reported on the ordinate. Time and frequency resolu-
tion of the analysis vary over the ordinate. At high frequencies, high temporal resolu-
tion and low frequency resolution are observed. The inverse relation between time and
frequency resolution holds at low frequencies. Dashed lines show COI; results exterior
to this are influenced by edge effects.

Only energy values located within the COI are used in subsequent steps.
The bold black line with white outline tracks the evolution over time of
the strongest oscillatory component. At the beginning and at the end
of the sequence (where the speech rate is low) we can observe a second
strong oscillatory component, whose oscillations are twice as fast as the
main component’s oscillations. This is due to the coupling of the tongue
tip with the jaw, whose spectrum is shown in Figure 9b. The duration
of a cycle of the secondary component in the TTip spectrum is indeed
equal to the duration of a jaw cycle.

The effects of the mutual influence between the jaw and the TTip are
observed even in the spectrum for the jaw. Even here, in the regions cor-
responding to moderate speech rate, two components are distinguish-
able. Another important aspect of the jaw’s spectrum is the weakening
of the energy between 5.5 and 6.5 seconds. This event is signaled in the
figure by an interruption of the line which tracks the energy of the main
component. In the corresponding portion of the sequence, the spectrum
energy is not significantly stronger than the spectral energy obtained by
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a random process. This is consistent with the “freezing” of the jaw ob-
served by Fuchs et al. (2009) at fast speech rates.

3.3 Cross wavelet transform

The product of the power spectrum of a signal with the complex conju-
gate of the power spectrum obtained from a second signal returns their
cross spectrum, which represents the amount of energy shared by two
signals at different frequencies of oscillation. The cross power spectra of
the TTip and the LLip and of the jaw and the TTip are shown in panels a
and b of Figure 10. At fast speech rates, only one component is present.
At slow speech rates (t<2 sec. and t>6 sec.) two components are present.
This is shown by the presence of two distinct horizontal gray bands in
the regions of the plot. The stronger component corresponds to the low-
est band (at a frequency slightly lower than 2Hz); the weaker component
lies at a frequency of around 3Hz.

a) TTip - LLip b) JAW-TTip

Frequency (Hz)

Time(Sec)

Figure 10: (a) Cross-spectrum of TTip and LLip oscillations; (b) Cross-spectrum of jaw
and TTip oscillations

3.4 Obtaining relative phase relations

The relative phase between two signals can also be obtained from the
cross spectrum. For each time point, we obtain a whole set of relative
phase values characterizing the phase relations at different frequencies.
A further step is thus needed to select, at each time point, the frequency
of oscillation with the highest-valued coefficients (the band at which the
two signals share the most of their energy), and then the corresponding
phase value is chosen to characterize the instantaneous relative phase
between the two signals at that point in time.
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Figure 11: Phase plot from the spectrum in panel b of Figure 10

The phase plot of the spectrum in panel b of Figure 10 is shown in Fig-
ure 11, following Grinsted et al. (2004). The arrows indicate the rela-
tive phase at different frequencies (y axis) and different points in time (x
axis). The phase angle between the TTip and the jaw is represented by
the counter-clockwise angle between the arrows and the horizontal axis.
The relevant phase values are those corresponding to the peaks of spec-
tral energy which are indicated by the gray stripe on the background of
the figure. It can be observed that the jaw is in phase with the TTip over
all the duration of the sequence. This means that when two cycles per
utterance are present, the strongest one will be in-phase with the TTip.
When only one cycle per utterance is observed this is still in phase with
the TTip.

3.5 Hilbert transform

Discrepancies between the shape of the observed signal and the shape of
the mother wavelet may influence the outcome of the wavelet transform.
This issue may lead to erroneous results in the presence of noisy signals.
An alternative method, based on the Hilbert transform (Rosenblum and
Kurths, 1998), should in principle reduce the effect of this kind of artifact
and its use will be briefly described here (however cf. Bruns, 2004, for
a demonstration of the substantial equivalence of the two approaches).
The Hilbert transform, like the Fourier transform and the wavelet trans-
form, is an analytical method; i.e., the signal is represented as an analytic
function. The limitation of the Hilbert method is that it cannot handle
multifrequency signals. For this reason the two time series are first sub-
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mitted to a filter bank, obtaining two sets of band passed signals. The
Hilbert transform is then applied to pairs of corresponding band passed
signals. In this way both the time dependent relative phase and shared
energy can be obtained for each frequency band. As with the wavelet
transform the relevant values of the relative phase are those occurring at
the shared energy peaks.
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Figure 12: Relative phase between the trajectories of the jaw and the TTip used to pro-
duce the spectrum in Figure 10b. The continuous line represents phase values obtained
using the cross wavelet transform; the dotted line represents values obtained using the
Hilbert transform.

4 Part III: Recurrence and
cross recurrence analysis

4.1 Introduction

Up to now we have explored methods to compare low dimensional sig-
nals or to study the relations between the components of a multidimen-
sional system. What about comparisons among several high dimen-
sional signals? We may ask for example how similar trajectories of jaw,
TTip and LLip might be, across all components of their movement. Or
we may want to evaluate the similarity of the evolution over time of the
acoustic spectra corresponding to different utterances.

FDA is often used in the comparison of low dimensional time series
which contain the same number of events (same number of peaks and
valleys). However, the alignment procedure rapidly loses precision when
the number of dimensions becomes high (>> 2) and if the number of
peaks and valleys varies between the time series. Recurrence analysis
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methods (Maizel and Lenk, 1981; Eckmann et al., 1987; Webber and Zbi-
lut, 1994; Marwan et al., 2007) offer an alternative approach that can deal
effectively with high dimensional non-stationary signals. Such tech-
niques have been developed within the framework of dynamical sys-
tems theory to study the stability of a potentially multidimensional sig-
nal which repeats its trajectory over time, but they have also been ex-
tended to the study of the behavior shared by different systems. In the
former case, when the object of study is a signal which repeats its tra-
jectory over time in a more or less regular fashion, recurrence analysis
considers the distribution over time of the portions of the signal which
are coherently repeated. In the comparisons of two signals, cross recur-
rence analysis focuses on the distribution over time of the subsections in
which the signals show the same behavior (Zbilut et al., 1998; Marwan
et al., 2002; Marwan and Kurths, 2002).

4,2 Method

We represent a multivariate time series as a time-varying sequence of
state vectors, with each state vector containing the values observed on
all the different dimensions of the time series. A recurrence plot (RP) is
a two dimensional representation of those points in time when a state
is repeated. Both axes of the plot represent the time scale of the signal
and a black dot contained at position (7, j) means that the same state is
observed at i and j positions in time (cf. Figure 13). The ith column of the
plot contains the outcomes of the comparisons among the ith coordinate
vector and all the other vectors of the time series. It follows that the plot
is symmetric with respect to the main diagonal. This means that a dot at
position (i, j) implies the presence of a dot at position (j, i).

On the main diagonal line we will always find black dots in a recurrence
plot. This is due to the fact that on the main diagonal each state vector is
compared to itself and the distance is thus 0. This line is therefore called
the line of identity (LOI).

An isolated black dot at position (7, j) indicates that the state observed at
position i is observed again at position j. However a diagonal line going
from (i,]) to (i + n,j + n) indicates that the state found at i is observed
again at j, that the state found at i + 1 is observed again at j + 1, and so
on, up to the state i 4- n. In other words, a continuous diagonal line, i.e. a
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straight line of slope 1, indicates that a section of trajectory, whose length
is equal to the length of the diagonal line divided by /2, is repeated in
the signal. The bivariate signal represented in the figure is periodic and
the same trajectory is perfectly repeated three times. In the RP, on each
side of the LOI, we can thus observe two diagonal lines. 2

Repetitions of the same Diagonal lines
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Figure 13: Top: recurrence plot of the bivariate time series plotted near the axes (see
text).

2 Readers familiar with recurrence analysis may have noticed the absence of any ref-
erence to an embedding procedure. Such processing step is meant to increase the num-
ber of dimensions of the observed time series and it is motivated by the assumption
that when observing a process we usually do not measure all its relevant features. Let’s
make the case that we are observing a process which is defined in three dimensions (for
example, these may be the heights of the TTip, the LLip and the jaw in the production
of our CVCV utterances) and that we can measure only the movement of one of the
articulators involved (as if we were measuring the lip movement by means of a cam-
era system such as Optotrack). Adopting an embedding strategy we can in principle
reconstruct a three dimensional time series which shares several dynamical properties
with the time series obtained by the recording of all the three articulators. The first
dimension of the surrogate time series is represented by the recorded LLip height. The
other two dimensions are copies of the first one but delayed in time. Although embed-
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4.3 Cross recurrence plots

If the state vectors of a signal X are compared to the state vectors of a
signal Y, we obtain what is called a cross recurrence plot (CRP; Marwan
and Kurths, 2002). Each axis of the cross recurrence plot represents the
time scale of one of the signals and the plot will show the points in time
where the two signals exhibit the same state vector. A black dot at posi-
tion (7, j) means that the same state is observed at position i in one signal
and at position j in the other signal.
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Figure 14: The time series shown in panels (a) and (b) and replicated in panels (d) and
(f) are compared trough the cross recurrence plot in panel (e). The evolution of their
Euclidean distance is plotted in panel (c).

The two bivariate time series presented in panels a and b of Figure 14
are compared through the CRP in panel e. Each trajectory is projected
onto its axis in the CRP (panels d and f). The second trajectory has been
obtained from the first one by slightly modifying its amplitude. The ef-
fect of the amplitude modification over the duration of the trajectory is

ding is essential for the analysis of mono-dimensional time series, it can be skipped
when analyzing multi-dimensional time series. The lack of embedding potentially in-
troduces artifacts in the recurrence plots (mainly the presence of lines with negative
slope), however these artifacts are removed by the application of the algorithm pre-
sented in section 4.5. However to perform the embedding, two critical parameters
have to be established: the number of dimensions to reconstruct and the delay. The
computation of these parameters is not a trivial issue; moreover the whole procedure
is sensitive to non-stationarity in the time series. Indeed for non-stationary signals an
appropriate value for the delay parameter cannot be defined (Marwan, 2010). All this
considered, we chose not to use embedding when comparing multivariate time series.
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shown in panel c. Here the absolute difference between the time series is
averaged over the two dimensions and it is plotted point by point. The
two time series are maximally different between frames 50 and 75 and
between frames 90 and 110.

A black dot at position (i, j) in the CRP means that a state vector at posi-
tion i in the horizontal trajectory is replicated at position j in the vertical
trajectory. The straight diagonal starting from the lower left corner of
the plot indicates that the first 15 points of the horizontal time series
match the first fifteen points of the vertical time series. Then a gap is en-
countered indicating the first mismatch between the time series. Notice
that the other diagonal lines present in the CRP correspond to the region
where the distance between the time series is smaller, and the gap is con-
sequently located in the regions of maximal mismatch. If a black dot is
isolated, i.e. surrounded by white regions, it indicates a random match
between the two signals. In a cross recurrence plot, the main diagonal
is not necessarily filled with black dots, because points at the same posi-
tion in the two signals do not necessarily correspond.

Apart from isolated black dots and straight diagonal lines of slope 1,
several other structures composed by connected dark dots can be found.
Importantly the slope of the continuous lines varies as a function of the
relation between the time scales of the two signals. Indeed these slopes
correspond to the ratio between the two rates of change of the matching
parts of trajectories. A slope which is smaller than one indicates that
the signal whose time scale is on the vertical axis is faster, a slope which
is greater than one indicates that the signal whose time scale is repre-
sented on the horizontal axis is faster. Bowed continuous lines indicate
that the relation between the two time scales changes over time. If a
bowed quasi-continuous line is found around the main diagonal, this is
called the line of synchrony (LOS). Indeed to synchronize the two sig-
nals, it suffices to shift the position in time of the points of one signal
by an amount which is equal to the vertical distance between the corre-
sponding points on the LOS and the main diagonal of the plot (i.e. the
line connecting the opposite corners).
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4.4 How a cross recurrence plot is built

Each of the two signals X and Y is represented by N state vectors and
each state vector represents the M coordinates of the system at a given
point in time. A distance matrix is computed by comparing each state
vector of the signal X to each state vector of the signal Y. The vertical
side of that matrix has the same length as the signal Y, while the hor-
izontal side is as long as the signal X. Each cell of the matrix contains
a measure of the difference between the state vector of the first signal
and the state vector of the second signal. If the Euclidean distance is
adopted, this will be equal to the square root of the summed squares of
the distances computed on the different dimensions:

% )| = ¢ 5™ (X — Vi)’ -
k=1

where m is the number of dimensions of the two signals X and Y. In the
construction of a CRP a maximum distance is often used as it is gener-
ally faster to compute; i.e. the distance between two state vectors corre-
sponding to the maximum among the absolute values of the distances
computed on the different dimensions.

| Xi—=Yj||, = argmax <\/(Xi,1 —Yi1)% -, \/(sz — Y]m>2> (6)

The differences are stored in the matrix in the following way: the first
column holds the differences between the first state vector of the signal
X and all the state vectors of the signal Y, going from the bottom to the
topmost row, where the first state vector of X is compared to the last state
vector of Y. The distances from the other points of the signal X are stored
in a similar fashion in the columns which follow the first one. The final
plot is then derived by the distance matrix, deciding, for each distance
measure, if it is sufficiently small such that the compared state vectors
can be considered equal. With a fixed threshold criterion, each point
of the plot corresponding to a distance smaller than a predetermined
threshold will be represented by a dark dot. All the other points will be
represented by white dots. The selection of an appropriate threshold is
aimed at finding an equilibrium between having a threshold which is as
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small as possible, while being capable to detect a sufficient number of
recurrences. Thiel et al. (2002) show that the threshold should be 5 times
larger than the standard deviation of the observational noise present in
the time series. However, how to obtain the appropriate threshold in the
general case where no estimate of the observational noise is available,
remains an open issue (cf. Marwan, 2010, for a review of the relevant
approaches).

In computing a cross recurrence plot different approaches involving an
adaptive threshold can be adopted. For example, with the fixed recur-
rence rate criterion, the number of recurrence points to be found in the
plot is fixed at a given percentage of the number of locations in the plot
(corresponding to the maximum possible number of recurrence points
given the lengths of the time series compared). The threshold is then
adapted in order to obtain the desired number of recurrences. With a
fixed amount of neighbors criterion, the threshold changes from one
column of the plot to the other in such a way that the same number of
recurrences is found in each column. In this way, each point of the time
series represented on the horizontal axis of the plot has the same number
of recurrences in the other time series.

4.5 Recurrence quantification analysis (RQA)

Quantitative indices of the relations between two signals are often de-
rived by counts of the points belonging to diagonal lines of slope 1
(Marwan and Kurths, 2002). For example the percentage of determinism
(%DET) is equal to the number of points belonging to diagonal lines di-
vided by the total number of dark points present in the plot. This means
that it is equal to the ratio between the number of points belonging to
repeated trajectories and the number of the random matches. The mean
length of the diagonals and their maximum length are used as well.

There are at least two reasons not to use these measures for signals de-
rived from speech when comparing different realizations of the same
motion pattern. One is related to the differences in their time scales.
Indeed bowed lines are not captured by the measures described above.
For this reason, the above measures are not able to separate variability in
the amplitude of the time series from variability in their rate of change.
This is particularly problematic if we want to compare different produc-
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tions of the same utterance to measure variability (cf. Lucero, 2005). The
second reason is related to the smoothness of the signals. If X and Y
present a match at position (i,j), and X is particularly smooth, there
are good probabilities that the two signals will also match at position
(i +1,j) because of the small difference between X(i) and X(i +1). A
random match can easily be transformed in a continuous horizontal line,
if the signal whose timescale is represented on the X axis is particularly
smooth. For the same reason a continuous diagonal or bowed line can
become thicker and thicker as the smoothness of the signal Y increases.

While differences in the time scales of the two signals can obscure the
similarity between sections of the two signals, smoothness introduces
false matches. To reduce the bias introduced by these two features, in
our recent work (Lancia, Fuchs and Tiede, in preparation) we introduce
an algorithm based on image processing techniques combined with a
skeletonizing strategy proposed by Marwan et al. (2002).

The main processing steps are the following:

1) Each group of connected dark dots is distinguished through a stan-
dard algorithm for connected components labeling (Ballard and Brown,
1982, pp. 13-62).

2) Each group is then reduced to a thick line which follows its shape. The
tracking is constrained to proceed towards the top-right direction. This
is achieved by first identifying the dark dot nearest to the bottom left
corner of the smallest rectangle including the group. Then the tracking
algorithm described by Marwan and his colleagues is used. In summary
this algorithm starts looking for recurrence points by placing a square
window with its bottom left corner on the starting point. The size of the
window is increased until it includes at least another black dot. When
this happens, the center of mass of the area under the window is com-
puted and it is considered as the second point of the tracked line. A new
window is placed with the bottom left corner onto the found point and
its size is increased until a new dark point is found. The procedure is re-
peated until the tracked line reaches the right or the top side of the plot.
The percentage of determinism is then computed by dividing the num-
ber of dark dots belonging to the thick continuous lines by the total num-
ber of possible dark dots.
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4.6 Application to speech

We consider here 21 sequences of /pata/,/fata/ and /pasa/ utterances
produced by three speakers®. In each sequence, we compare pairs of suc-
cessive utterances using recurrence analysis and consider the %DET as
a measure of similarity between the utterances of each pair. This choice
was motivated by the assumption that two utterances produced one af-
ter the other are more likely to be similar than two utterances far away
in the sequence. Comparisons among successive utterances are thus ex-
pected to better differentiate among levels of variability observed in dif-
ferent conditions.

Since we study the joint motion of the jaw, the TTip and the LLip, a six
dimensional coordinate vector is needed to store the vertical and hori-
zontal positions of the three articulators at different moments in time.
Before performing the comparison each trajectory is down-sampled to a
standard length. This step is performed in order to compare measures
derived from different pairs of utterances®.

The recurrence plot shown in Figure 15b is obtained by comparing two
consecutive utterances. The actual multi-variate trajectories are plotted
along their respective axes (panels a and d). To avoid crowding of tra-
jectories, only the vertical positions of the articulators are displayed. In
panel c we can observe the output of our algorithm when that recurrence
plot is processed.

Note the presence of continuous lines going downward in the unpro-
cessed RP. This means that a portion of the signal in Figure 15b is pulled
in the opposite direction by the signal in 15a. This is reasonable, con-
sidering that the motion of the articulators has an oscillatory nature and
that a movement in one direction is always followed by a movement in
the opposite direction. However the points belonging to these lines do

3 In order to match the results from recurrence analysis with the results from func-
tional PCA, we selected the three speakers in the following way: we extracted the first
principal component separately for each speaker and utterance; we then chose speak-
ers for whom the first principal component reduces the amplitude of the jaw cycle
synchronous with the labial constriction. The loadings obtained in this way were used
to compute the correlation shown in Figure 16.

4 Using the fixed recurrence rate criterion, the probability that the outcome of a com-
parison between two coordinate vectors produces a recurrence point depends on the
number of coordinate vectors compared, i.e. on the lengths of the two time series.
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not represent deterministic matches, in the sense defined in the preced-
ing section, and thus they are correctly discarded by our algorithm.
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Figure 15: Cross recurrence plots of the 6 trajectories produced by the jaw, the TTip and
the LLip in the horizontal and vertical dimensions during two successive utterances.
Trajectories in the horizontal dimension are omitted for clarity. The first trajectory
is plotted on the horizontal axis of each plot, the second trajectory is plotted on the
vertical axis common to the two plots. The plot in panel b is the classic CRP, the plot in
panel c is obtained by submitting the plot in panel b to the algorithm described in the
text.

Once the comparisons have been performed and the %DET has been
computed for all pairs of successive utterances, we obtain a sequence
of values for each sequence of utterances. We will compare the values
of the %DET index with the values of the coefficient relative to the first
principal component of the jaw motion described in the first section.
This comparison is motivated by the following reasoning:

We adopted the hypothesis that in this particular task, the labial coro-
nal ordering is favored by the weakening of the jaw cycle which is syn-
chronous to the movement of the LLip. Using functional PCA we ob-
served that jaw behavior evolves from two jaw cycles per utterance to
one cycle per utterance. This change is captured by the variation of the
first principal component of the jaw’s motion which, when averaged
over the nine sequences, explains just under 90% of the total spatio-
temporal variation. We could then observe that, at the beginning of the
sequences, each utterance presents two jaw cycles of comparable ampli-
tude and, after a transient portion during which speech rate increases,
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the second behavior is observed, with a reduction of one of the two jaw
cycles. If the behavior of the whole system changes because the initial
behavior becomes unstable at high speech rates, we expect to observe
that, for short utterance durations, %DET increases as the coefficient of
the first principal component decreases. In fact, this is supported by
the weak but highly significant negative correlation (r*=-0.37, p<10~°)
shown in Figure 16 where the two indices are plotted against one an-
other.
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Figure 16: %DET regressed with the value of the coefficient of the first principal com-
ponent obtained by applying functional PCA to 24 CVCV sequences obtained from
three speakers 2=-0.37, p<10~>).

5 PartIV: General discussion and conclusions

5.1 Parameterization of the analysis

Functional data analysis: Given a set of curves and a shape for the basis
function, a certain number of parameters are responsible for the qual-
ity of the fit of the smoothed curves to the original trajectories. The
first parameter to be set is the number of the basis functions used to model
the original observations. For the Fourier basis, this corresponds to the
number of sine and cosine components plus one; for the B-spline basis,
this corresponds to the number of segments in which the original curves
are decomposed, plus the order of the polynomials used to model the
different segments. In both cases, a higher number of basis functions
determines an increase in the sensitivity to local features of the trajecto-
ries. An automatic method has been proposed to determine the optimal
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number of basis functions needed to model a trajectory (Friedman and
Silverman, 1989). However this approach does not always give useful
results and often visual inspection remains the only way to evaluate the
fit to the original data.

When using a B-spline basis, the order of the polynomials may be changed
too. This affects the smoothness of the modeled curve and of its suc-
cessive derivatives. The basis functions are constrained to match at the
break points, and their successive derivatives up to the order minus two.
Increasing the order of the polynomials increases the number of succes-
sive derivatives which are constrained to match the break points, and
as a consequence the modeled curves appear smoother. When working
with tangential velocity, the original observations should be modeled
by means of splines of the fourth order or higher to obtain appropriately
smooth derivatives.

The last parameter for the basis expansion represents the emphasis given
to the roughness penalty constraint in the optimization algorithm which
determines the weights of the basis functions. The higher the values for
this parameter (A; Ramsay and Silverman, 1997), the smoother the mod-
eled curves will be. The optimal value for this smoothing parameter can
be obtained by using a generalized cross validation criterion (Craven
and Wahba, 1978). However, even for this parameter, it is necessary to
inspect the results obtained with different values (Ramsay and Silver-
man, 1997).

When the functional observations need to be aligned, the same set of
parameters must be controlled in the basis expansion of the warping
functions. These curves are generally built starting from a B-spline basis
of the fourth order. The general advice is to start with a very small num-
ber of bases (i.e. a small number of break points) and then to increase
this number if the results of the registration are not satisfactory.

Cross wavelet transform: The wavelet transform is subject to the usual
tradeoff between time and frequency resolution. In the implementation
of the cross wavelet transform discussed in this chapter, the equation of
the Morlet mother wavelet is defined by only one parameter which rep-
resents a dimensionless frequency. A good balance between localization
in time and frequency is obtained using a value of 6 for this parameter
(Torrence and Compo, 1998).

Recurrence analysis: In this chapter we used recurrence analysis with
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a fixed recurrence rate criterion to determine if two state vectors of two
different multivariate signals can be considered similar. With this choice,
the parameter that controls the behavior of the analysis is the ratio of
dark dots to the number of possible dots in the plot. If this value is too
small, recurrence points can be missed; however if this value is too high,
false recurrences may be detected. The choice of this parameter for a
nonstationary signal is an unresolved question. Schinkel et al. (2008)
propose to use the value which best separates the classes of trajecto-
ries to be studied. For example, in the case discussed in this chapter,
we could have maximized the difference in the %DET index between
curves which show high values for the first principal component and
curves which show low values for this component. This maximization
can be conducted computing the ROC curve from the obtained %DET
index values. The algorithm outlined in this chapter for post-processing
the recurrence plots reduces the impact of this parameter on the final
results in that false recurrences are detected and discarded. When using
such a method, is thus advisable to choose a value smaller than the 10%
of the total number of possible dots in the plot.

5.2 Limits of this survey

The analyses described in this chapter cover only a small portion of the
possibilities offered by the methods proposed. This is especially true for
FDA and RQA.

Indeed several methods related to multivariate statistics and linear re-
gression have been adapted to the analysis of functional data. Moreover
FDA has been shown to be successful in the assessment of the dynamical
laws underlying the evolution of time series (cf. Ramsay and Silverman,
2002, for a review of several variants and applications of FDA).
Concerning the spectral methods in section 3, it must be noted that, al-
though the different approaches are formulated in different terms, all
correspond to a convolution of a known function with the analyzed
signal and can be implemented to give the same results (Bruns, 2004;
Le Van Quyen et al., 2001; Quiroga et al., 2002; Kiebel et al., 2005). Even
the Fourier transform can reach the same flexibility of the other methods
when the window size is varied along the signal according to its local
frequency. We chose to focus on the wavelet approach due to its ease of
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application: no filter bank has to be implemented and no tracking of the
frequency of the main component has to be conducted before applying
the transform. The only preprocessing needed is a normalization of the
signals compared.

Cross recurrence analysis has been used to detect different kinds of syn-
chronization between time series (Marwan et al., 2007). Recurrence anal-
ysis has been used to recover the dynamical invariants of the processes
underlying the time series and to detect the presence of chaotic behav-
ior (Romano et al., 2005). However, these uses of recurrence analysis are
controversial if the evolution over time of the system is not drawn in its
reconstructed phase space, i.e. the space defined by the actual degrees of
freedom of the system underlying the observed time series (Thiel et al.,
2004).

5.3 General conclusions

In contrast with these advanced uses, the examples illustrated in this
chapter are meant to represent situations in which the application of
the techniques is quite straightforward and requires the smallest pos-
sible number of choices. FDA is a good alternative when the trajectories
observed are low dimensional, smooth, and characterized by moderate
variability (i.e. all the trajectories present the same number of peaks).
Spectral methods as the cross-wavelet transform are useful for charac-
terizing the coordination among different signals. Finally, recurrence
analysis becomes particularly useful when comparing multivariate tra-
jectories having high levels of variability.
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7 Appendices

A Further readings and tutorials

Ramsay and Silverman (2002) offer a collection of case studies analyzed
through FDA with a reduced emphasis on mathematical formulations.
The commented Matlab and R implementations of the analysis described
in this book (and the relative datasets) are available at this address http:
//www.stats.ox.ac.uk/ " silverma/fdacasebook/.

Ramsay et al. (2009) wrote an introduction to FDA and its variants with
examples in both R and Matlab languages. Ramsay and Silverman (1997)
is the principal reference on FDA with a detailed discussion of the math-
ematical and computational aspects. An introductory tutorial with em-
phasis on the concept of spline smoothing is available at this address:
http://www.psych.mcgill.ca/misc/fda/examples.html.

Lucero’s first applications of FDA to study the variability of speech sig-
nals are published in Lucero et al. (1997). A tutorial-like presentation can
be found in Lucero (2005). Gubian maintains a web page on functional
data analysis for speech research (http://lands.let.ru.nl/FDA/). The
available tutorials cover FDA registration, functional PCA and func-
tional linear models.

A general tutorial on the use of cross wavelet transform has been writ-
ten by Torrence and Compo (1998). Grinsted et al. (2004) build on the
work by Torrence and Compo in their very accessible tutorial on the use
of cross wavelet transform for the analysis of geophysical data.
Marwan (2003) provides a comprehensive introduction to recurrence
and cross recurrence analysis, while Marwan et al. (2007) can be consid-
ered the most complete reference on recurrence analysis and its variants.
Van Lieshout and Namasivayam (2010) report results obtained by using
recurrence analysis with speech articulators®. However in that applica-

5 To be more precise, recurrence analysis was not conducted directly on the move-
ments of the articulators. First the relative phase was computed from pairs of kine-
matic signal, then the recurrence analysis was applied to the time series of the relative
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tion no method to compensate for non-stationarity was adopted. Non-
stationarity implies that the rate of change of the signals analyzed varies,
introducing bowed lines in the plot and, as a consequence of that, the re-
sults obtained in that paper are hard to interpret. Webber Jr. and Zbilut
(2005) and Shockley (2005) wrote accessible tutorials on the use of recur-
rence and cross recurrence analysis. A web based tutorial can be found
at the following address: http://www.recurrence-plot.tk/glance.php,
in which an animated introduction presents in an intuitive way the con-
cept of phase space reconstruction. This topic has not been covered in
the present chapter but constitutes the basis for more advanced uses of
this technique.

B Software

With the exception of our algorithm designed for post-processing cross
recurrence plots, all the analyses described in this chapter can be per-
formed through available Matlab and R commands. The FDA software
page is maintained by Ramsay at this address: http://www.psych.mcgill.
ca/misc/fda/downloads/FDAfuns/. Here Matlab, R, and Splus versions
of the software can be found.

Torrence and Compo’s cross wavelet transform software is available at:
http://paos.colorado.edu/research/wavelets/software.html.
Grinsted et al. (2004) wrote a Matlab package that integrates Torrence
and Compo’s toolbox with several useful routines. One of these rou-
tines has been used to produce the phase plots presented in this chap-
ter. The package can be found at this address: http://www.pol.ac.uk/
home/research/waveletcoherence/. Marwan’s Matlab toolbox for re-
currence and cross recurrence analysis can be found at the following
address: http://tocsy.agnld.uni-potsdam.de/crp.php.

Webber produced a series of programs to perform recurrence analysis
in DOS/Windows environment. This can be found at the following ad-
dress: http://homepages.luc.edu/~cwebber/.

phase values.
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