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Tapping in synchrony with a metronome requires phase error correction, a process often described by a
single-parameter autoregressive model. The parameter (α) is a measure of sensorimotor coupling strength.
This study compares α estimates obtained from three experimental paradigms: synchronization with (1) a
perfectly regular metronome (RM), (2) a perturbed metronome containing phase shifts (PS), and (3) an
“adaptively timed” metronome (AT). Musically trained participants performed in each paradigm at four
tempi, with baseline interval durations ranging from 400 to 1300 ms. Two estimation methods were applied
to each data set. Results showed that allα estimates increasedwith interval duration. However, the PS paradigm
yielded much larger α values than did the AT paradigm, with those from the RM paradigm falling in between.
Positional analysis of the PS data revealed that α increased immediately following a phase shift and then de-
creased sharply. Unexpectedly, all PS α estimates were uncorrelated with the RM and AT estimates, which
were strongly correlated. These results suggest that abruptly perturbed sequences engage a differentmechanism
of phase correction than do regular or continuously modulated sequences.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background

Establishment and maintenance of synchrony between a rhythmic
movement and an external rhythm, such as a metronome in the sim-
plest case, require some form of error correction. Otherwise the variabil-
ity inherent to themovement would accumulate from cycle to cycle and
inevitably lead to phase drift, even if the mean periods are identical
(Vorberg &Wing, 1996). Two error correction processes have been dis-
tinguished: phase correction and period correction (Mates, 1994a,
1994b). Phase correction is a localwithin-cycle adjustment of themove-
ment timing, whereas period correction is a longer lasting change of the
underlying tempo of the movement and thus affects future cycles as
well. Whereas phase correction is largely automatic and does not re-
quire conscious perception of synchronization errors, evidence suggests
that period correction is under greater cognitive control and dependent
on conscious perception of a tempo change in the external rhythm
(Repp, 2001b; Repp & Keller, 2004). In the present study the focus is
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on phase correction, as tempo was not varied systematically within
rhythmic sequences.

If the rhythmic movement is continuous (i.e., oscillatory), phase
correction will likewise be continuous and can then be described in
terms of a differential equation for unidirectional coupling (entrain-
ment) between nonlinear oscillators (e.g., Large, 2008; Pressing,
1999; Torre & Balasubramaniam, 2009). If the movement is discontin-
uous and thereby generates discrete events, such as finger contact
with a solid surface in tapping, phase correction, although potentially
deriving from a continuous internal oscillatory process, will be ob-
served only intermittently (especially if only the time of the tap is
recorded, as is commonly done) and then can be described in terms
of an autoregressive model. A simple linear model, according to
which the timing of each tap is adjusted by a proportion α of the
most recent asynchrony (Mates, 1994a; Pressing, 1998; Vorberg &
Schulze, 2002; Vorberg & Wing, 1996), is generally considered to
give an adequate characterization of phase correction in synchroniza-
tion with a metronome if the tempo is not very fast.1 Asynchrony is
defined as the difference between the time of a tap and the time of
1 At fast tempi or with difficult rhythms, adjustments to tap timing may be based on
the previous two asynchronies (see Pressing, 1998; Semjen, Schulze, & Vorberg, 2000;
Vorberg & Schulze, 2002). In the Discussion section, we point out another potential
complication, due to fractal noise in the data.
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2 Pressing (1998) introduced another method, the method of bins. It seems not to
have been applied since the original publication (though see Williams, 2006), and
we will not consider it further here.
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a metronome tone; it is negative if the tap leads the tone. Stated for-
mally (Vorberg & Schulze, 2002),

In ¼ Tn –αAn þ Mnþ1 –Mn; ð1Þ

where In is the interval between two taps, Tn is the variable interval
generated by an internal timekeeper, α is the phase correction pa-
rameter, An is the asynchrony associated with the tap initiating In,
and Mn+1 and Mn are variable motor delays associated with the two
taps. Because it can easily be shown (see Vorberg & Schulze, 2002)
that

In ¼ Cn þ Anþ1 – An; ð2Þ

where Cn is the current interval between twometronome tones, it follows
that

Anþ1 ¼ 1–αð ÞAn þ Tn þ Mnþ1 –Mn – Cn: ð3Þ

Eq. (3) describes a recursive relation between successive asyn-
chronies governed by the parameter α. Alpha is analogous to the cou-
pling parameter in an oscillator model and captures the efficiency or
gain of phase correction, reflecting the strength of sensorimotor cou-
pling. In theory (Vorberg & Schulze, 2002), stable synchronization re-
quires α to be between 0 and 2, but values larger than 1 (i.e.,
overcorrection, resulting in successive adjustments resembling a
damped oscillation) have rarely been reported (though see Repp,
2011b). The mean asynchrony in tapping with a metronome is typi-
cally not zero but negative (i.e., taps tend to anticipate metronome
sounds). It may correspond to the subjective point of synchrony, so
that phase correction is based not on rawasynchronies but on perceived
asynchronies (i.e., deviations from the subjective point of synchrony).
However, substituting perceived for raw asynchronies does not change
the basic linear model.

The linearmodel of phase correction does not require that the exter-
nal rhythm be completely regular. The model is assumed to apply to
synchronization with any kind of rhythmic sequence (Pressing, 1998),
as long as asynchronies do not get very large. For example, when inter-
mittent timing perturbations such as phase shifts (changes in the dura-
tion of a single interval) are introduced into a metronome to create
unexpected changes in asynchrony, the model predicts that the correc-
tive phase shift of the tap immediately following a perturbation – the
phase correction response (PCR) – should, on average, be proportional
to the perturbation (more precisely, to the change in asynchrony it
causes, which on average is equal to the perturbation but has the oppo-
site sign), with α being the proportionality constant. Repp (2002a,
2002b, 2011b) has shown that this is indeed so for small perturbations
up to about 15% of the baseline inter-onset interval (IOI) of the metro-
nome, though there is sometimes an asymmetry, with positive PCRs
(tap delays) being larger than negative PCRs (tap advances). When
perturbations get large, the PCR gets proportionally smaller, which indi-
cates a nonlinear (sigmoid-shaped) dependence of α on perturbation
magnitude across the range from −50% to 50% of the IOI (see also
Engbert et al., 1997; Engbert, Krampe, Kurths, & Kliegl, 2002). Thus the
linear phase correction model with a fixed α is valid only for relatively
small perturbations and asynchronies, where the sigmoid function is
linear.

The strong linearity of the PCR function as it passes through zero
indicates that even subliminal perturbations are corrected (Repp,
2000, 2001a, 2001b; Thaut, Tian, & Azimi-Sadjadi, 1998). There is no
discontinuity, reflecting a perceptual threshold, in the function. The
linearity suggests a mechanism that is either based on subconscious
registration of all perturbations or asynchronies, regardless of magni-
tude, or on time points (event onsets) instead. Hary andMoore (1985,
1987) proposed that participants reset their tapping phase either in re-
sponse to the precedingmetronome sound, which on average results in
perfect phase correction (α=1), or in response to the preceding tap,
which implies absence of phase correction (α=0). Random alternation
(as suggested by Hary & Moore) or dynamic competition (Repp, 2001a,
2001b) between these two processes can explain α values between
0 and 1, as commonly observed. The idea of suchmixed phase resetting
is similar to the notion of unidirectional coupling between oscillators,
which obviously does not involve mediation by perception; rather,
there is competition and equilibriumbetween the dynamics of the driv-
ing and driven oscillators. It is worth noting, however, that the mixed
phase resetting model is formally identical to the asynchrony-based
linear phase correction model (Eq. (3)); the difference is merely con-
ceptual (see Repp, 2005; Schulze & Vorberg, 2002) and need not con-
cern us here.

Jacoby and Repp (submitted for publication) have recently pre-
sented a general linear framework for error correction in synchroni-
zation that subsumes all kinds of linear models. For an even more
general theory of referential behavior that encompasses linear and
nonlinear models, see Pressing (1999).

1.2. Estimating alpha

As a measure of sensorimotor coupling strength, the magnitude of
the phase correction parameter α is of interest as a dependent vari-
able in studies of individual differences in normal or clinical popula-
tions and in comparisons of experimental conditions designed to
affect coupling strength. Existing empirical studies have often relied
on the perturbation method to estimate α, for example to compare
musicians and non-musicians (Repp, 2010) or to show that α in-
creases with the baseline IOI of the metronome (Repp, 2008,
2011b). It is not known, however, to what extent these findings are
specific to the perturbation method and its associated method of esti-
mating α (described below). There are other ways of estimating α
that do not require intermittent perturbations, and the purpose of
the present study was to compare estimates from three different syn-
chronization paradigms for the same individuals. In this section, we
describe briefly the different paradigms and their associated estima-
tion methods for obtaining α.

1.2.1. Regular metronome (RM paradigm)
Although the linear phase correction model has been developed

formally in considerable detail (Mates, 1994b; Pressing, 1998;
Schulze & Vorberg, 2002; Vorberg & Schulze, 2002; Vorberg & Wing,
1996; Williams, 2006), estimating α from tapping in synchrony
with a perfectly regular metronome is not entirely straightforward.
There is a simple analytic solution (Pressing, 1998; Vorberg &
Schulze, 2002) according to which

α ¼ 1–AC2=AC1; ð4Þ

where AC1 and AC2 are the lag-1 and lag-2 autocorrelations (or auto-
covariances, ACVs) of the time series of asynchronies, respectively.
However, because AC1 approaches zero when phase correction is
optimal in terms of yielding minimal variability of asynchronies
(which, interestingly, occurs at an α value of less than 1; Vorberg &
Schulze, 2002), estimates of α using this formula can be unstable.
Also, values of AC2 can be quite unreliable if they are based on short
time series (Repp & Keller, 2008). Vorberg and Schulze (2002)
furthermore point out an estimation bias in ACVs. To avoid this bias,
they recommend a computer optimization approach to find the α
value that yields the best approximation to the empirical ACV func-
tion (i.e., ACV as a function of lag). For further details, see the
Methods section.2



3 Author BHR prefers to work with musician participants because they are highly
motivated, their performance in rhythmic tasks exhibits low variability, and findings
from such tasks are most pertinent to music performance. There is no reason to believe
that the underlying processes would be substantially different in non-musicians, but
they probably would be more variable.
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1.2.2. Metronome with phase shifts (PS paradigm)
An alternative and seemingly more straightforward method of es-

timating α requires introducing occasional abrupt timing perturba-
tions (typically phase shifts, which are changes in single IOIs) into a
metronome and examining the PCRs of the immediately following
taps (e.g., Repp, 2001a, 2008). The PCR is usually calculated as the dif-
ference between the PCR asynchrony and the preceding asynchrony.
As long as the perturbations stay within about ±15% of the IOI, the
PCR of the next tap will generally vary as a linear function of pertur-
bation magnitude (Repp, 2002b, 2011b), and the slope of this regres-
sion line (which expresses the PCR as a proportion of phase shift
magnitude) is the estimate of α.

1.2.3. Adaptively timed sequences (AT paradigm)
This method was first used in unpublished work by Vorberg

(2005) and then was extended by Repp and Keller (2008). Repp
and Keller employed computer-controlled metronomes that had a
fixed underlying period (IOI=500 ms) but varied in their timing be-
cause the computer was endowed with various degrees of phase cor-
rection capability, following the linear model of Vorberg and Schulze
(2002). Thus, the timing of the metronome varied from one tone to
the next, depending on the asynchronies generated by the partici-
pant. The phase correction parameter assigned to the computer, αc,
was varied between 0 and 1. The computer adjusted each metronome
IOI by adding αcAn to the baseline IOI duration (Cn in Eq. (3) above),
thereby assisting the human participant in reducing asynchronies.
The setting of αc=0 resulted in a perfectly regular metronome. The
lag-1 autocorrelation (AC1) of the asynchronies was found to de-
crease linearly from positive to negative values as αc increased. As
mentioned above, the AC1 is zero when phase correction is optimal
(i.e., when the variance of asynchronies is minimal). In the AT para-
digm, phase correction is optimal (αopt) when the sum of human
and computer phase correction (αh+αc) is optimal (Vorberg,
2005). It follows that

αh ¼ αopt –αc� ð5Þ

where αc* is the value of αc for which AC1=0 (i.e., the x-axis inter-
cept of the regression line relating AC1 and αc). Repp and Keller
obtained an independent estimate of αopt by computer simulation
of their data. Importantly, their simulations showed the data to be
consistent with the assumption that αh remained constant as αc

increased.

1.3. Aims of the present study

The purpose of this study was to compare α estimates obtained from
the PS paradigm, which has been used extensively by the first author in
the past (e.g., Repp, 2001a, 2001b, 2002b, 2008, 2011b), with estimates
obtained from the RMandAT paradigms. In particular,we askedwhether
(1) all three paradigms yield α estimates of the same magnitude, (2) all
estimates increase with baseline IOI duration, as estimates obtained
from the PS paradigm have been shown to do (Repp, 2008, 2011b), and
(3) all estimates are highly correlated (i.e., reflect the same individual
differences in phase correction efficiency).

Our study was fueled by a growing suspicion that the PS paradigm
yields higher α estimates than other paradigms. For example, Repp
(2010) obtained results suggesting instantaneous phase correction
(mean α≈1) at a moderately fast sequence tempo (baseline
IOI=500 ms), which is not a typical finding in synchronization with
a perfectly regular metronome at this tempo (e.g., Pressing, 1998;
Semjen et al., 2000). By contrast, Repp and Keller (2008), using the
AT paradigm with the same baseline IOI, obtained rather low α esti-
mates for their participants, ranging from 0.25 to 0.54. A comparison
of results from different paradigms for the same participants seemed
overdue.
Of several empirical regularities demonstrated with the PS para-
digm, the focus was here on the increase in α with baseline IOI dura-
tion (Repp, 2008, 2011b). Repp found this increase to be linear up to
about 1200 ms and observed overcorrection (α>1) of small phase
shifts at relatively long IOIs (>800–1100 ms, depending on the
study). Although these findings are not inconsistent with the linear
model of phase correction, the model does not predict or explain
them. According to the hypothesis that participants try to minimize
the variance of their asynchronies (Vorberg & Schulze, 2002;
Vorberg & Wing, 1996), α should increase nonlinearly with IOI dura-
tion towards an asymptotic value of 1. There is no good reason why
overcorrection should occur at all, and indeed this phenomenon has
been observed so farmainly in studies using the PS paradigm. However,
these studies also included longer baseline IOIs than earlier studies. We
felt it was important to compare α estimates from different paradigms
across the same range of IOIs and for the same participants, to deter-
mine exactly how α increases with IOI duration.

One complication in making these comparisons arises from the fact
that each paradigm has been associated with a different method for
estimating α. If we find differences between paradigms, they could be
due to the estimation methods rather than to the paradigms them-
selves. To address this problem, we also applied a new estimation algo-
rithm (described in the Appendix) to the data from all three paradigms.

2. Methods

2.1. Participants

The 10 participants were all musically trained and were regular
participants in rhythm and synchronization experiments at Haskins
Laboratories, although 6 had been recruited only recently.3 They in-
cluded 8 graduate students and one postgraduate (ages 22–26) of
the Yale School of Music who were paid for their services, as well as
author BHR (age 65). The young musicians played various primary in-
struments (piano-2, violin-4, viola, oboe, bassoon) at a professional
level; BHR is a life-long amateur pianist.

2.2. Materials and equipment

Tone sequenceswere generated on-line by a programwritten inMAX
4.0.9, running on an Intel iMac computer. The tones (piano timbre) were
produced by a Roland RD-250s digital piano according to musical-
instrument-digital-interface (MIDI) instructions from the MAX program
and were presented over Sennheiser HD280 pro headphones. All tones
had the same pitch (C4, 262 Hz), the same nominal duration (40 ms,
with rapid decay after the nominal offset), and the same intensity
(MIDI velocity). Participants tapped on a Roland SPD-6 electronic percus-
sion pad, held on the lap. Finger impacts were audible as thuds whose
loudness depended on tapping force but was attenuated considerably
by the circumaural headphones.

There were three experimental conditions: regular metronome
(RM), metronome with phase shift (PS) perturbations, and adaptively
timed (AT) sequences. Each trial comprised 62 tones in the RM and
AT conditions but a variable number of tones in the PS condition,
ranging between possible extremes of 58 and 91. Each condition
employed four tempi, corresponding to baseline IOIs of 400, 700,
1000, and 1300 ms. IOI duration was constant within each trial of
the RM condition, mostly constant but occasionally shortened or
lengthened in the PS condition, and variable but in the vicinity of
the baseline IOI in the AT condition.



5 For IOI=400 ms, the slope seems to be shallower on the negative than on the pos-
itive side, but only the linear trend was significant in a one-way repeated-measures
ANOVA with orthogonal polynomial contrasts. This was also the case for the other
three IOI conditions.

6 The justification for this procedure comes from Figs. 1D and 2B of Repp and Keller
(2008), which showed that the standard deviation (SD) of the inter-tap intervals (ITIs)
remained constant across variations in αc, whereas the SD of the metronome IOIs in-
creased almost linearly with αc and reached about the same magnitude as the SD of
the ITIs when αc=1. Even though the metronome SD in the present study (which
we did not measure) clearly must have varied with α , the estimate of α was assumed
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Perturbations in the PS condition were shortenings or lengthenings
of a singlemetronome IOI that ranged from−10% to 10% of IOI duration
in steps of 2%, not including zero. Each trial contained 10 such phase
shifts, one of each magnitude, which occurred in random order with
4–7 (randomly chosen) unperturbed IOIs intervening. The earliest
phase shift could occur at the end of the 8th IOI.

The AT condition used values of 0.2, 0.4, 0.6, and 0.8 for αc (the com-
puter's phase correction parameter) in separate trials at each tempo,
which resulted in 16 different trials. Each IOI of themetronome sequence
was computed on-line as the baseline IOI plus αc times the last tap-tone
asynchrony, rounded to the nearest millisecond.4 Thus, the next tone
occurred earlier after a negative asynchrony (when the tap had been
ahead of the tone) and later after a positive asynchrony, thereby aiding
(more or less) the participant's phase correction, which shifted the next
tap in the opposite direction. As the baseline IOI remained constant (i.e.,
the computer was incapable of changing its period), there were no
substantial changes of tempo in the metronome.

2.3. Procedure

Participants came for three 1-hr sessions, typically 1 week apart.
In the first session, they did the RM and PS conditions, in this order.
Each condition consisted of 6 blocks of 4 trials each, with the four trials
representing the four tempi (IOI durations) and occurring in random
order. The second and third sessionswere taken up by the AT condition,
with 3 blocks of 16 randomly ordered trials in each session. The 16 trials
represented the combinations of four tempi and four αc values. In each
trial, participants started tapping with the third tone and tried to syn-
chronize as closely as possible with the tones. They started each trial
by pressing the space bar and saved the recorded data in a file at the
end of each block.

2.4. Analysis

Each trial yielded a series of asynchronies, calculated by subtracting
the tone onset times from the tap times. These time series constituted
the input to the various methods of estimating α. The first two asyn-
chronieswere omitted to exclude possible start-up effects. Asynchronies
of rare missing taps (due to registration failure) were either treated as
blanks or filled in by linear interpolation, depending on the method.

2.4.1. RM data
A computer simulation was implemented by author PEK in Matlab

to approximate the first three values (lags 0 to 2) of the autocovariance
(ACV) function of the asynchronies (followingVorberg & Schulze, 2002;
see also Semjen et al., 2000). The simulation generated concurrent se-
ries of isochronous metronome events and simulated human taps,
from which asynchronies were calculated. The timing of each consecu-
tive simulated tap was governed by Eq. (1) (see above). Timekeeper
noise (Tn) and motor noise (Mn+1, Mn) were simulated by sampling
randomly from independent gamma distributions. The probability
density function for each gamma distribution represented the sum
of four independent exponentially distributed random variables
(i.e., the shape parameter defining the distributions was set to 4).
For timekeeper noise distributions, the scaling parameter c (which
affects the distribution mean and variance) was set to yield time-
keeper interval standard deviations that increased linearly as a func-
tion of IOI duration. The scaling parameter for the motor noise
distribution was held constant to yield a standard deviation of
5 ms. Each simulated series consisted of 60 asynchronies. The first asyn-
chrony in each series was determined by summing values drawn
randomly from the independent noise distributions (mean=0)
4 The computer's phase correction thus was not based on deviations from the mean
asynchrony but on the raw asynchronies. This had the effect of pulling the participant's
mean asynchrony toward zero but should not have had any effect on αh.
described above. ACV functions were computed for each simulated
asynchrony series as they were for the experimental data.

The values of α that were considered ranged from 0 to 1.5 in .01
steps. ACV functions were calculated for simulated asynchrony series
for all combinations of α and c. The first two asynchronies from each
series of 60 were not included in the ACV analyses. ACV estimates for
each of the four tempi were averaged across 6 simulated series. The
goodness-of-fit between these simulated ACV functions and the em-
pirical ACV functions observed for each individual participant (aver-
aged across 6 trials per tempo condition) was then determined by
computing the root mean square error. The values of α and c that
yielded the smallest root mean square error for each participant
were taken as the best-fitting estimates of these parameters. The
above process was repeated 3 times. The best-fitting values of α
and c were averaged across repeats to yield final estimates of α and
c. The mean estimates of timekeeper standard deviation at the four
tempi were 7.7, 15.5, 23.2, and 30.9 ms, respectively.

2.4.2. PS data
To estimate α from the PS data, the PCR of the tap following each

phase shift was calculated by subtracting its asynchrony from that of
the preceding tap (the one that coincided with the phase-shifted tone
that terminated the changed IOI). This is equivalent to subtracting the
baseline IOI from the interval between those two taps. The PCRs for
each phase shift magnitude at each tempo were averaged across the 6
trials, and these mean PCRs were then regressed onto phase shift
magnitude. The slopes of these regression lines were the estimates of
α. The grand mean data, averaged across all participants and expressed
in percent of IOI, are shown in Fig. 1 to demonstrate that the regression
functions were strongly linear (R2 values ranged from .97 to .997), and
that their slopes increased with IOI duration, as predicted.5

2.4.3. AT data
The analysis of the AT data proceeded as follows. First, the AC1 of

the asynchronies was computed for each individual trial, and these
values were then averaged across the 6 trials for each value of αc at
each tempo for each participant. Fig. 2 shows these AC1 values, aver-
aged across participants, as a function of αc, separately for each IOI
duration. As found previously (Repp & Keller, 2008), AC1 decreased
linearly as αc increased. The slopes of the regression functions for
the four tempi were very similar. This was confirmed by a repeated-
measures two-way ANOVA, which showed the interaction between
tempo (IOI duration) and αc to be far from significance, F(3, 27)=0.18,
p=.908. Therefore, for each participant's data, the mean slope of the re-
gression lines for the four tempi was calculated and the data were then
re-fitted with four parallel regression lines having that slope. Estimates
of the optimal alpha, αopt, for each participant in each tempo condition
were obtained according to equations given by Vorberg and Schulze
(2002: p. 69), using the estimates of timekeeper variance obtained in
the simulations of the RM data. Motor variance was assumed to be con-
stant at 25 ms2, and the variance of the metronome was estimated by
squaring half the standard deviation of the inter-tap intervals.6 The
resulting mean values of αopt for the four tempi were 0.80, 0.93, 0.97,
c h

to be independent of αc and was derived from a regression across all αc conditions.
Therefore, considering that the range of αc values was centered on 0.5, it seemed rea-
sonable to take half the SD of the ITIs as an estimate of mean metronome SD at a given
tempo.



Fig. 1. PS condition:Mean phase correction response as a function of phase shift magnitude
at four IOI durations. Regression lines are linear fits forced through zero. Error bars are
between-participant standard errors.
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and 0.98, respectively. Estimates ofαh at each tempowere then obtained
using Eq. (5) (see above).
2.4.4. A new estimation method: bounded Generalized Least Squares (bGLS)
The bGLS method, developed by author NJ and described in the

Appendix, constitutes an analytic solution to the numerical optimiza-
tion method of Vorberg and Schulze (2002) and yields a maximum
likelihood approximation to Eq. (3) rather than a least squares ap-
proximation to the ACV function. It can be applied to any asynchrony
time series, regardless of how it was generated. Thus we used it to ob-
tain estimates from all three data sets and then compared these
“new” bGLS estimates to the “old” estimates obtained by the other
methods. Asynchronies from trials of the same type (from different
blocks) were concatenated for the bGLS procedure. (The discontinuity
at the concatenation point has a negligible effect on the α estimates.)

For the PS data, bGLS estimates were obtained initially from the
complete time series of asynchronies, including the PCR. Subsequently,
however, separate estimates were obtained for the PCR and for the pre-
ceding and following sequence positions by allowing different alpha
values for different positions and solving the joint problem of
Fig. 2. AT condition: Mean lag-1 autocorrelation as a function of computer alpha (αc) at
four IOI durations. Regression lines are linear fits with two free parameters. Error bars
are between-participant standard errors.
estimating all constants (see Appendix). For the AT data, the four levels
ofαc were combined after separate bGLS estimates confirmed the result
of Repp and Keller (2008) thatαh remained constant asαc increased: A
4×4 repeated-measures ANOVA on the separate α estimates showed
the main effect of αc as well as its interaction with IOI to be non-
significant.
3. Results

Fig. 3A shows mean α estimates as a function of baseline IOI dura-
tion. There are six sets of estimates: three conditions and two estima-
tion methods for each. All estimates increased with IOI duration, but
they differed considerably between the three paradigms, with α
values being largest for PS and smallest for AT. This was true for
both sets of estimates—those from the older methods associated
with each paradigm and those from the new bGLS method.

A 3×4 repeated-measures ANOVA, with paradigm and IOI as the
variables, on the old estimates revealed significant main effects of
paradigm, F(2, 18)=23.46, p=.001, and of IOI, F(3, 27)=66.60,
Fig. 3. Mean alpha estimates as a function of IOI duration. Error bars are between-
participant standard errors. (A) Estimates for three paradigms (RM, PS, AT) according
to different methods: V&S = numerical optimization according to Vorberg and Schulze
(2002); PCR = slope of PCR function (see Fig. 1); R&K = method of Repp and Keller
(2008) (see Fig. 2); bGLS= Jacoby's bounded general least squaresmethod (seeAppendix).
(B) The PS (PCR) estimates from panel A and bGLS estimates for five successive sequence
positions in the PS paradigm. Position 0 is the perturbation point; position 1 is the PCR.



Table 2
Correlations between PS (bGLS) α estimates for individual sequence positions (averaged
across the four IOI durations) and other estimates. (Abbreviations as in Fig. 3B).

bGLS-0 bGLS-1 bGLS-2 bGLS-3 bGLS-4

RM (V&S) .210 –.347 –.531⁎⁎ –.277 –.314
PS (PCR) .517 .994⁎⁎⁎ .594 .738⁎ .651⁎

AT (R&K) .005 –.082 –.539 –.206 –.391
RM (bGLS) –.082 –.466 –.553 –.455 –.465

Table 1
Correlations amongα values (averaged across the four IOI durations) for three paradigms
and two estimation methods for each. (Abbreviations as in Fig. 3A).

PS (PCR) AT (R&K) RM (bGLS) PS (bGLS) AT (bGLS)

RM (V&S) −.311 .812⁎⁎ .873⁎⁎⁎ –.349 .728⁎

PS (PCR) –.003 –.429 .940⁎⁎⁎ –.004
AT (R&K) .720⁎ –.206 .843⁎⁎

RM (bGLS) –.482 .790⁎⁎

PS (bGLS) –.117

⁎ pb .05.
⁎⁎ pb .01.
⁎⁎⁎ pb .001.
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pb .001, as well as a significant interaction, F(6, 54)=4.59, p=.009.7

Pairwise comparisons with Bonferroni correction showed that all
three paradigms differed significantly (pb .01) from each other in
their mean α values. The interaction was evidently due to the low α
estimates obtained at the fastest tempo in the RM and AT paradigms
because it was no longer significant when the data for IOI=400 ms
were omitted from the ANOVA.

An analogous ANOVA on the new bGLS estimates yielded signifi-
cant main effects of paradigm, F(3, 27)=10.85, p=.004, and IOI,
F(3, 27)=34.20, pb .001, but no interaction. These α estimates in-
creased linearly with IOI duration, in parallel for all three paradigms.
Pairwise comparisons showed the difference between AT and each of
the other two paradigms to be significant (pb .01), but not the differ-
ence between RM and PS.

Differences between the estimates obtained by the different
methods for each paradigm were assessed in separate 2×4 ANOVAs,
with method (old vs. new) and IOI as the variables. For the RM para-
digm, there was no significant main effect of method but a significant
Method×IOI interaction, F(3, 27)=13.32, pb .001, due again to the
low α at IOI=400 ms obtained by the old method. The interaction
disappeared when the data for IOI=400 ms were omitted, but then
the main effect of method was almost significant, F(1, 9)=4.69,
p=.059, indicating slightly lower estimates from the new than from
the old method. For the PS paradigm, the new estimates were sub-
stantially lower than the old ones, F(1, 9)=46.15, pb .001, and
there was no interaction. For the AT paradigm, too, the new estimates
were significantly lower than the old ones, F(1, 9)=6.83, p=.028,
while the interaction with IOI was not significant, F(3, 27)=2.33,
p=.126.

While the old and new estimates for the RM and AT paradigms
were based on the same data, the old estimates for the PS paradigm
were based on the PCR alone whereas the new bGLS estimates were
based on all asynchronies, including the PCR. The large discrepancy
between these estimates suggests strongly that α is elevated during
the PCR. This was confirmed when separate bGLS estimates were cal-
culated for each sequence position relative to the perturbation (see
Appendix for computational details). These estimates are shown
and compared with the old PS (PCR) estimates in Fig. 3B. It is evident
that the bGLS estimates based on the PCR (position 1) were large and
similar to the old estimates, though slightly lower; this small differ-
ence was highly significant, F(1, 9)=52.45, pb .001. The bGLS esti-
mates for positions 0 (the perturbation point), 3, and 4 were much
lower and similar to those for the RM paradigm (Fig. 3A). The esti-
mates for position 2 showed a different pattern, being higher at the
shortest IOI and lower at the longest IOI than those of positions 0, 3,
and 4. This is likely to reflect a compensatory response to the PCR,
α being increased when the PCR under-corrected the phase shift (at
short IOIs) and being decreased when the PCR over-corrected (at
long IOIs).

To address the question of whether the different paradigms and
estimation methods yield mutually consistent estimates of individual
differences in α, we computed Pearson correlation coefficients across
participants. We first averaged the individual α estimates across the
four tempi, so that there was a singleα value for each participant pro-
vided by each paradigm and method. Despite the small sample size
(N=10), the correlation matrix, shown in Table 1, yielded a striking
result: Whereas old and new estimates for the same paradigm were
highly correlated (mean r=.885, n=3),8 and estimates for the RM
and AT paradigms were also highly correlated (mean r=.763,
n=4), the PS estimates did not correlate significantly with any of
the other estimates and even tended to correlate negatively with
them (mean r=−.238, n=8).
7 The Greenhouse–Geisser correction was applied automatically to all p values.
8 The symbol n refers here to the number of correlations averaged to obtain the

mean given.
The new PS (bGLS) estimates correlated highly with the old PS
(PCR) estimates, but not with the old or new RM estimates, even
though the PS (bGLS) estimates were based on all asynchronies, and
most of a PS sequence is like an RM sequence. Table 2 unpacks
these correlations in terms of successive sequence positions in the
PS paradigm. While the high correlation of bGLS-1 with PS (PCR) is
not surprising as both are based on the PCR, the bGLS estimates for
other sequence positions also correlated positively with PS (PCR) esti-
mates and not with RM and AT estimates. Moreover, though this is not
shown in Table 2, all positional PS (bGLS) estimates were moderately
correlated with each other (mean r=.658, n=10).

4. Discussion

This study compared three sensorimotor synchronization para-
digms – regular metronome (RM), metronome with phase shifts
(PS), and adaptively timed metronome (AT) – and associated
methods of estimating the phase correction parameter α, with the
aim of establishing whether results obtained with the often-used PS
paradigm are confirmed by data from other paradigms and estima-
tion methods. The particular PS results of interest here were the linear
increase of α with baseline IOI duration and the relatively large values
of α, which include overcorrection at relatively long IOIs (Repp, 2008,
2011b). The study yielded three important findings, which are dis-
cussed in the next three sections.

4.1. Increase in α with IOI duration

First, the increase in α with IOI duration was indeed confirmed by
all paradigms and estimation methods. Thus, this result is not specific
to the PS paradigm but also occurs in synchronization with regular
metronomes (as already noted by Pressing, 1998) and adaptively
timed metronomes. Repp (2008) attributed the increase in α to a de-
crease in the tendency to maintain a constant tapping period. In other
words, as the tempo gets slower, the cyclic tapping movement offers
less resistance to abrupt changes in timing, due to reduced rhythmic
coherence of successive taps and greater timekeeper variability. As a
consequence, sensorimotor coupling strength (indexed by α)
increases as the tempo decreases, so that the tapping rhythm depends
increasingly on the external pacing rhythm, rather than on an
AT (bGLS) .019 –.046 –.547 –.227 –.201

⁎ pb .05.
⁎⁎ pb .01.
⁎⁎⁎ pb .001.
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autonomously maintained period. This increase in coupling strength
evidently occurs also when there are no abrupt perturbations in the
pacing sequence.

The bGLS estimates for all three paradigms yielded parallel linear
functions for this increase in α, consistent with the apparent linearity
found by Repp (2008, 2011b). However, the older estimation
methods for the RM and AT paradigms yielded nonlinear functions,
due to relatively low α values at the shortest IOI (400 ms). One pos-
sible explanation is that there may have been second-order phase
correction at short IOIs (i.e., relying on the asynchrony An−1 in addi-
tion to An; Pressing, 1998; Vorberg & Schulze, 2002), which would
have the effect of increasing the lag-2 autocorrelation and thus lower-
ing the estimate of first-order α (cf. Eq. (4)). However, that lowering
should also have been reflected in the bGLS estimates, which were
first-order as well. Alternatively, assumptions about timekeeper and
motor variance in the old RM and AT estimation methods may have
been responsible for the nonlinearity.9 Note that the bGLS method
does not make any such assumptions but estimates variances together
with α.

4.2. Absolute magnitude of α estimates

The comparison of mean α estimates confirmed our initial suspi-
cion, based on earlier findings (Repp, 2010; Repp & Keller, 2008),
that the PS paradigm yields relatively high α values, whereas the AT
paradigm yields relatively low ones. The differences obtained in this
first direct comparison using a within-participant design were even
larger than expected. The PS (PCR) estimates were the highest by
far, whereas the AT estimates were the lowest, with the RM estimates
falling in between. These differences were not artifacts of different es-
timation methods, for they were confirmed when the new bGLS
method was applied to the data from all three paradigms.

Traditionally, α estimates in the PS paradigm are based exclusively
on the phase correction response (PCR) of the tap immediately follow-
ing a phase shift, whereas AT and RM estimates are based on all taps.
The observed differences therefore could indicate either (1) that α,
and hence sensorimotor coupling strength, increases temporarily fol-
lowing a timing perturbation and then returns to some baseline value,
or (2) that α is elevated continuously in the PS paradigm. We were
able to address this issue by applying the bGLS method selectively to
positions preceding and following the PCR. The results showed very
clearly that α is increased only immediately after a phase shift and
then drops back to values similar to those found in the RM task. This
finding violates one assumptionmade by the linearmodel of phase cor-
rection, namely that α is constant throughout a synchronization task.
We have shown here for the first time that this assumption is not cor-
rect within the PS paradigm.

What might cause the elevation of α immediately following a
phase shift? Conscious detection of a perturbation might boost
phase correction by engaging period correction (Repp, 2001b; Repp
& Keller, 2004) or even by increasing phase correction directly. How-
ever, it is well established that the PCR function is linear throughout
the region of perceptually subliminal phase shifts (cf. Fig. 1), which
suggests that conscious perception of perturbations or of the resulting
asynchronies is irrelevant to phase correction (Repp, 2000, 2001a).
Repp (2011b: Experiment 1) tested the same participants as in the
present study in a similar PS paradigm, but with phase shifts of
fixed absolute magnitude that became increasingly imperceptible as
IOI duration increased. The average α estimates were very similar to
the present ones, and this finding confirms the irrelevance of con-
scious perception. The temporary increase in α would have to be
9 We also calculated α estimates for the RM paradigm according to the method of
bins (Pressing, 1998), using software kindly provided by Pressing's former student
Ben Williams (Swinburne University of Technology, Melbourne, Australia). The α
values were very similar to the bGLS estimates and increased linearly with IOI.
triggered by a subconscious detection mechanism sensitive to either
subliminal timing perturbations or subliminal asynchronies, or it
would have to be the result of a nonlinear dynamic system that reacts
to even minimal perturbations in this specific way.

This is a highly intriguing possibility. Because the mechanism
operates subconsciously, it is best conceptualized in dynamic systems
terms. The obvious candidate is an internal oscillator or network of
coupled oscillators that is entrained to the external rhythm, as dis-
cussed by Large (2008; Large & Jones, 1999). A perturbation is
detected if a sequence event deviates from a predicted time point,
and although this process is usually discussed within the context of
conscious perception and judgment of timing, it is conceivable that
it operates accurately even at subthreshold levels. In particular, the
comparison resulting in subconscious detection of perturbations
must occur in a brain network different from that underlying con-
scious detection, probably one closely linked to motor control
where intrinsic oscillator variability and input timing variability are
both very small, perhaps involving the cerebellum (Thaut, Kenyon,
Schauer, & McIntosh, 1999, Thaut, Stephan, Wunderlich et al., 2009).
Expectancy violations in that network would then have to trigger an
instant gain in phase correction that is implemented in the PCR. Exactly
how this triggering might occur is not clear at this time, but we note a
close parallel with the hypothesis of “internal forward models” that
generate online predictions and compare them to sensory input,without
mediation of conscious perception (e.g., Wolpert, Doya, & Kawato,
2003). Internal models have also been linked with the cerebellum
(Wolpert, Miall, & Kawato, 1998).

One finding that is particularly difficult to explain is the overcor-
rection observed at long IOIs in the PS paradigm (see also Repp,
2011b). The RM and AT paradigms, as well as taps following the
PCR in the PS paradigm, did not yield evidence of overcorrection, al-
though the linear increase of α with IOI duration suggests that over-
correction might emerge at IOIs longer than 1300 ms. Repp (2011b:
Experiment 4) examined the IOI range between 1000 and 2000 ms
using the PS paradigm and found that α continued to increase,
though at a rate much slower than that observed at IOIs below
1200 ms. Given the lower α values yielded by the RM and AT para-
digms, it is possible that these paradigms will not show significant
overcorrection even at long IOIs. In that case, overcorrection would
be specific to the PCR in the PS paradigm, a consequence of the mo-
mentarily enhanced α. Overcorrection is a kind of non-optimal be-
havior, but participants do not seem able to prevent it. Moreover, it
is paradoxical that it occurs at slow tempi, where variability of per-
ceived and produced timing is quite large. The fact that small phase
shifts in particular are overcorrected by the PCR (see also Repp,
2011b: Experiment 1) suggests that the underlying mechanism is
not subject to the commonly observed increase in temporal uncer-
tainty with interval duration.

The relatively low αh values found in the AT paradigm require a
different explanation. They may reflect a strategic lowering of senso-
rimotor coupling strength. Because the computer aided the partici-
pant in phase correction, participants could give increased weight to
maintaining regularity of tapping, thereby reducing αh. However,
the constancy of αh across variation in αc is surprising from that per-
spective. Perhaps αh would have varied if αc had not changed unpre-
dictably from trial to trial. Repp and Keller (2008), too, varied αc from
trial to trial and found that αh remained constant.

4.3. Correlations of α estimates

One completely unexpected finding was that the α estimates
yielded by the PS paradigm were not correlated with the estimates
for the other paradigms, regardless of estimation method. To be
sure, the N of this study was rather small for a correlational analysis,
but the pattern was very clear. The high correlation between the RM
and AT estimates is reassuring, suggesting that these paradigms
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measure the same individual differences in sensorimotor coupling
strength. With regard to the PS paradigm, however, the lack of corre-
lation raises two possibilities: Either only the PCR elicited by abrupt
phase shifts is different in some important way from the phase cor-
rection that occurs in synchronization with regularly or adaptively
timed metronomes, or the whole phase correction process in the PS
paradigm is different. The first possibility seems more plausible, as
the PS sequence is basically a RM sequence between phase shifts,
whereas phase shifts might trigger a separate process (such as period
correction) in the PCR. Here the data yielded a second surprise: The
correlations based on individual differences in α showed quite unam-
biguously that α estimates for the PCR and subsequent taps were cor-
related with each other but uncorrelated with the RM and AT
estimates, which suggests a single underlying process in the PS para-
digm. Thus, the phase correction process in the PS paradigm seems to
be somehow different from that in the RM and AT paradigms, even at
points where the sequence is effectively a RM sequence.

4.4. Estimation methods

The bGLS estimates were generally lower than those yielded by
the older methods. Finding the exact reasons for these differences
would require more extensive simulations, which were beyond the
scope of this study. In the case of the RM and AT data, specific param-
eter settings adopted in the older estimation methods are likely to be
responsible. In the case of the PS (PCR) estimates, the explanation of
the small but remarkably consistent difference may be simple: In the
old method, the PCR (the difference between two successive asyn-
chronies) is regressed onto phase shift magnitude, whereas in the
bGLS method successive asynchronies are (implicitly) regressed
onto each other. When we performed this latter regression explicitly
on the PS (PCR) data, we obtained slightly smaller α estimates that
were almost identical with the bGLS estimates.

One important issue regarding estimation methods remains to be
discussed. It has been shown repeatedly that the asynchronies in syn-
chronization with a regular metronome at a moderately fast tempo
(IOI~500 ms) harbor long-term correlations (also called fractal or
1/fβ noise; see, e.g., Chen, Repp, & Patel, 2002; Delignières, Torre, &
Lemoine, 2008, 2009; Pressing & Jolley-Rogers, 1997; Torre &
Delignières, 2008a). This means that autocorrelations of asynchronies
are positive and, while decreasing with lag, may extend over fairly
long lags. Torre and Delignières (2008b) attributed this correlated
noise to the internal timekeeper (Tn in our Eq. (3) above) and out-
lined a model that treats the timekeeper as a fractal noise generator
but retains the linear phase correction mechanism. To the extent
that fractal noise is present, phase correction is impeded by the posi-
tive lag-1 autocorrelation, and consequently α is underestimated by
methods that do not take fractal noise into account.

This is an important problem, but preliminary simulations by one
of us (NJ) have indicated that it is complex and not easily solved.
Therefore, we are unable to address it in this study. It seems reason-
able to assume that the fractal noise generated by an internal time-
keeper was similar in our three paradigms, so that the observed
differences in mean α estimates are valid. Only the absolute α values
may be too small. As for the increase in αwith IOI duration, it may re-
flect a decreasing presence of fractal noise, in which case it may not
represent a real increase in α. The decreasing tendency to maintain
a constant period, which Repp (2008) hypothesized in connection
with the increase in α, seems conceptually very similar to decreasing
fractal noise. For the actual autocorrelation functions of the present
RM data, see Fig. 8 in Repp (2011a). They show that the positive
lag-1 autocorrelation decreased as IOI increased, reaching zero at
the longest IOI (1300 ms), and that positive autocorrelations extended
beyond lag 4 only at IOI=400 ms. This maymean that fractal noise de-
creased as IOI increased, or that α increased and overcame the fractal
noise, or both.
5. Conclusions

In summary, we have shown three things: (1) Independent of the
paradigm or estimation method, the phase correction parameter α
increases as the baseline IOI of themetronome increases, and accord-
ing to the new bGLS estimates that increase appears to be linear be-
tween IOIs of 400 and 1300 ms. (2) Estimates of α derived from
synchronization with a perturbed metronome (PS paradigm) are
substantially higher than those derived from synchronization with
a regular metronome, which in turn are higher than those obtained
from synchronization with an adaptively timed metronome. The
first difference is due to a transient increase of α following a pertur-
bation, whereas the second difference suggests paradigm-specific
strategic adjustments of α. (3) The PS estimates are uncorrelated
with those obtained from the other two paradigms, which are highly
correlated. Thus, the PS paradigm seems to engage a different pro-
cess of phase correction that is not operating in the other two para-
digms. Explaining the nature of this difference is a challenge for
future research.
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Appendix A
Bounded general least squaresmethod for estimating alpha
(by Nori Jacoby)

The linear model of phase correction (Vorberg & Schulze, 2002) is
(cf. Eq. (1)):

e nþ1ð Þ ¼ 1–αð Þe nð Þ þ T nð Þ þ M nþ1ð Þ–M nð Þ–C nð Þ ðA1Þ

where e is an asynchrony, T is a noisy internal timekeeper, M is motor
noise, and C is the interval of an external pacing sequence. The model
can be rewritten as:

e nþ1ð Þ þ s nþ1ð Þ ¼ 1–αð Þe nð Þ þ z nþ1ð Þ ðA2Þ

where s(n+1)=C(n), and z(n+1)=T(n)+M(n+1)−M(n).
According to Vorberg and Schulze (2002), the autocovariance

function of z has the following properties: γz(0)=var(z)=σT
2+2σM

2 ,
γz(1)=−σ2

M, and γz(j)=0 for every j>1. Writing Eq. (A2) in matrix
form results in the following equation:

B ¼ A 1−αð Þ þ Z ðA3Þ

where B=[e(1)+s(1), e(2)+s(2),…, e(n)+s(n)]; A=[e(0), e(1),…,
e(n−1)], Z=[z(1), z(2), …, z(n)].

If γZ(1)=0 we could estimate α using simple linear regression:

1–αREG
� �

¼ ATA
� �−1

ATB
� �

≈ γe 1ð Þ=γe 0ð Þ ðA4Þ

where A−1 and AT are the inverse and transpose, respectively, of A.
However, when γZ(1) and γZ(0) are known and γZ(1) is not 0, a cor-
rection should be applied. The solution is called Generalized Least
Squares (GLS) and dates back to Aitken (1935):

1–αGLS
� �

¼ ATΣ−1A
� �−1

ATΣ−1B
� �

ðA5Þ

where Σ=γz(0)I+γz(1)Δ, I is the identity matrix, and Δ is a square
matrix with 1 on both diagonals and 0 elsewhere.
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Since in our case γZ(0) and γZ(1) are not known, an iterative algo-
rithm can be applied, called sometimes Feasible Generalized Least
Squares (see Ljung, 1987). In each iteration, Σ is estimated by calcu-
lating the empirical autocovariance function of the residual noise.
Later, using the final estimate of Σ, an estimate of alpha is computed
based on Eq. (A5).

However, using this algorithm as stated causes numerical instability
when α approaches 1 (mentioned already by Vorberg & Schulze, 2002,
p. 76; they call it “parameter interdependence”). A solution to this prob-
lem (also suggested by Vorberg & Schulze) is to restrict the parameter
space. We decided to limit the ratio γZ(0)/γZ(1), since this gives very
good results in simulations.

We have carried out extensive simulations to compare the bGLS
method with the method suggested by Vorberg and Schulze (2002).
The results showed that both methods give unbiased estimates in
the case of a regular metronome, with similar accuracy. However,
the bGLS method gives an analytic solution that does not depend on
slow simulations for parameter estimation.

Algorithm (bounded Generalized Least Squares method)

The input of this algorithm is the matrices A and B, together with
limits on the moments LB, HB. (In this paper LB, HB were chosen such
that 2bσT/σMb9, or LB=6, HB=83.) The output of the algorithm is
the estimates for the parameters: αbGLS, γbGLS, Z(1), γbGLS, Z(0)

a. Start by setting Σ1=I (the identity matrix).
b. Iterate the following steps until a stop criterion is obtained. (In

this paper we used a fixed number of 10 iterations.)
i) Compute an estimate for alpha: (1−αn)=(ATΣn

−1A)−1

(ATΣn
−1)B

ii) Compute the residual noise Dn=B−A(1−αn)
iii) Estimate γn+1(0), γn+1(1) by the autocovariance of the re-

sidual noise:

γnþ1 0ð Þ ¼ γDn 0ð Þ; γnþ1 1ð Þ ¼ γDn 1ð Þ

iv) Adjust γn+1(1) by increasing it or decreasing it so that
LBbγn+1(0)/γn+1(1)bHB

v) Compute Σn+1=γn+1(0)I+γn+1(0)Δ

Estimating alphas in multiple sequence positions

If we allow alpha to change with position in the sequence, then
Eq. (A2) is changed to:

e nþ 1ð Þ þ s nþ 1ð Þ ¼ 1–αv nð Þ
� �

e nð Þ þ z nþ 1ð Þ ðA6Þ

where v(n) is 0, 1, 2, 3,… (the position in the sequence). This set of
equations can be solved together with the same assumptions on
z(n+1) as in estimating a single α, using the same bGLS algo-
rithm but with a slightly changed meaning of the variables in
the matrix representation:

Let the newα=(αv(0),αv(1),αv(2),…) be a vector of the different
constants for different sequence positions. Let A be the matrix with
A(n,v(n))=e(n) and 0 elsewhere. Let B, Z be the same vectors as
before. Then Eq. (A3) holds as before, and the same bGLS algorithm
can be applied. Note that (1−α) in this context means the element-
by-element operation: (1−αv(0),1−αv(1),1−αv(2),…).
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