
Philosophy for the Rest of Cognitive Science

Nigel Stepp,a Anthony Chemero,b Michael T. Turvey
aCenter for the Ecological Study of Perception and Action, University of Connecticut and Haskins Laboratories

bScientific and Philosophical Studies of Mind Program, Franklin and Marshall College

Received 20 December 2009; received in revised form 18 May 2010; accepted 18 May 2010

Abstract

Cognitive science has always included multiple methodologies and theoretical commitments. The

philosophy of cognitive science should embrace, or at least acknowledge, this diversity. Bechtel’s

(2009a) proposed philosophy of cognitive science, however, applies only to representationalist and

mechanist cognitive science, ignoring the substantial minority of dynamically oriented cognitive

scientists. As an example of nonrepresentational, dynamical cognitive science, we describe strong

anticipation as a model for circadian systems (Stepp & Turvey, 2009). We then propose a philosophy

of science appropriate to nonrepresentational, dynamical cognitive science.
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1. Introduction

It will strike many readers as obvious that there is a wide diversity of opinion about how

best to understand cognition. This diversity stems partly from the interdisciplinarity of the

cognitive scientific endeavor—it is unsurprising when computer scientists and neuro-

scientists do not share assumptions. Yet cognitive scientists can also disagree, even within

disciplines, over what can loosely be called ‘‘paradigms.’’ For example, much has been

written concerning whether computational or connectionist or dynamical methods are best

for explaining cognition. Despite deep-seated differences among these approaches and occa-

sional attempts by proponents of one to stamp out the others, computational, connectionist,

and dynamical approaches have coexisted more or less comfortably within cognitive science

since its beginnings. Many of those who comment on this diversity agree that diversity of

opinion is healthy and appropriate in such a young science (e.g., Chemero, 2009; Chemero

& Silberstein, 2008; Dale, 2008). Among those who embrace this diversity is William
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Bechtel. But Bechtel’s (2009a) outline of a philosophy of science for cognitive science

seems to be aimed at making cognitive science a more exclusive club. Bechtel recommends

that the appropriate philosophy of science for cognitive science calls for explanation that is

mechanistic and representational. This is appropriate, of course, for computational

approaches and some connectionist approaches. We will argue here that Bechtel’s proposed

philosophy of science leaves most dynamical approaches out in the cold, and, moreover, that

it does not even necessarily apply to Bechtel’s own example of circadian systems.

2. Circadian systems

Recently, Bechtel has discussed circadian systems with surprising regularity (Bechtel,

2009a,b; Bechtel & Abrahamsen, 2009, 2010; Bechtel & Abrahsmen, in press). Circadian

systems are used as a comparatively simple exemplar for future explanations of much more

complicated cognitive phenomena. Despite the comparative simplicity of circadian systems,

they allow Bechtel to argue for both (a) the necessity of mechanistic explanation and (b) the

pervasiveness of representation in living systems. We address these in order.

2.1. Circadian mechanisms

Circadian systems are traditionally proposed as specialized cellular or neuroanatomical

systems that allow organisms to keep track of the time of day, even when they are temporar-

ily deprived of exposure to sunlight. They operate via well-understood genetic and cellular

mechanisms, mechanisms that are easily depicted in box and arrow diagrams of the sort

familiar in cognitive science. This makes them subject to mechanistic explanation. A mech-

anistic explanation of a phenomenon is an explanation that explains how the interaction of

the components of some structure is responsible for that phenomenon (Bechtel, 2009a,b;

Bechtel & Abrahamsen, 2005; Bechtel & Richardson, 1993; Craver, 2007; Machamer,

Darden, & Craver, 2000). Thus, for example, in Drosphila, mutations of the gene per (for

period) lead to alterations in the circadian system. Moreover, the mRNA transcribed from

the gene per and the associated protein (PER) oscillate over the course of a day, with the

concentration of the protein PER lagging that of per-mRNA by 8 h. This leads to the follow-

ing proposed mechanism for generating circadian oscillations. The gene per is transcribed

to generate per-mRNA in the nucleus; that per-mRNA is transported to the cytoplasm where

it is translated into the protein PER; the increased cytoplasmic concentration of the protein

PER leads more of it to being transported into the nucleus, where it inhibits the transcription

of the gene per; the protein PER is gradually broken down in the nucleus, allowing

increased transcription of the gene per, and so on. (See Bechtel & Abrahamsen, 2009 for

more details and for citations of the original research on Drosophila circadian systems).

This explanation is mechanistic in that there are identifiable components (per, per-mRNA,

PER) interacting in identifiable ways to produce the phenomenon of circadian oscillation.

Bechtel (and Bechtel and Abrahamsen) hold this up as a model for the more complicated

explanations of more complicated cognitive phenomena.
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2.2. Circadian representations

Circadian systems seem, on first glance, to use representations to generate behavior

appropriate to the time of day. As Bechtel (2009a) points out, circadian systems in the

cyanobacterium Chiamydomonas cause a switch from daytime photosynthesis to night-

time phosphorylation in a 24-h oscillation, even when the bacterium is kept in dark-

ness. To maintain an appropriate relationship to light–dark cycles, even when kept in

darkness, Bechtel claims that the circadian system must incorporate an endogenous

clock that represents the time of day. Notice that this seems to require what Clark and

Grush (1999) call a ‘‘full-blooded representation,’’ one that is used to maintain appro-

priate behavior even when the system is not in casual contact with what is represented.

The circadian system is advanced as the entity that maintains appropriate Chiamydo-
monas behavior in darkness, that is, in the absence of information about the time of

day. Accordingly, it seems that even this very biologically basic ability, in this

comparatively simple creature, is to be explained in terms of representations of the

environment.

3. The neglected fact of nonpersistence

In his review of circadian physiology, Refinetti (2006, p. 221) underscores that long free-

runs ‘‘are not unusual, but they are not typical either.’’ Fig. 1 shows examples of the non-

persistence of circadian rhythms when organisms and the light–dark cycle are decoupled.

Both gradual and abrupt losses of rhythmicity are shown in Fig. 1, and they are shown for

plant (A) (Hillman, 1970), bacterial (B) (Tomita, Nakajima, Kondo, & Iwasaki, 2005; Yen,

Huang, & Yen, 2004), and avian (C) (Berger & Phillips, 1994) cases. An unaddressed chal-

lenge for the representational account is to explain the fact, and the forms, of deterioration

of the representation.

Fig. 1. Examples of nonpersistence of circadian rhythms in several types of organism (see text for details).

N. Stepp, A. Chemero, M. T. Turvey ⁄ Topics in Cognitive Science 3 (2011) 427



4. Further challenges for a viable representational account of circadian behavior
in a vacuum

The task for circadian representations becomes ever more difficult considering that finite

persistence is not the single challenging feature of circadian systems. Additional challenges

include: (a) anticipation of the light–dark cycle at the scale of organism, organ, and cell; (b)

multiple subsystem phase shifts with respect to the light–dark cycle; (c) shifts in phase after

some period of exposure to a new light–dark cycle; and (d) dissociation of previously

phase-locked subsystems (see Moore-Ede, 1986; Refinetti, 2006).

Each of these defining properties is a detail to be explained. Feature (a), anticipation of

the light–dark cycle, is particularly challenging and seems to call even more strongly for a

‘‘full-blooded representation.’’ Anticipation is necessary given the very long process delays

involved, for example, protein transcription delays. A theory of anticipation without repre-

sentation opens the door to a theory of free running circadian behavior without representa-

tion. More to the point for our present purposes, it promotes understanding cognition in

terms of coupling of organism and environment (Beer, 1995, 2009; Kelso, 1995; Warren,

2006) as an alternative to understanding cognition in terms of representation of the environ-

ment by organism.

5. Strong anticipation and circadian systems

At the moment, it appears impossible to consider that circadian systems do not use a repre-

sentation of time of day. To think otherwise would require a system that is able to act in an

anticipatory fashion without reference to future states. Anticipation without explicit prediction

seems unreasonable; however, so-called strong anticipation (Dubois, 2003; Stepp & Turvey,

2009) provides for just such a system. In short, strong anticipation operates without the use of

a model for explicit prediction, but on inherent lawfulness within the systems themselves.

One instance of strong anticipation is a type of anticipating synchronization exploiting

delay—such as the delay associated with protein expression in the preceding discussion of

PER. Anticipating synchronization may be represented by a class of delay differential equa-

tion systems shown in Eq. 1 (Voss, 2000)

_x ¼ fðxÞ
_y ¼ gðyÞ þ kðx� ysÞ

ð1Þ

where x and y are in a typical unidirectional coupling arrangement, k is coupling strength,

and ys ¼ yðt� sÞ, that is, delayed feedback. The functionals f and g are stand-ins for the

intrinsic dynamics of x and y, respectively.

The system in Eq. 1 is said to exhibit anticipating synchronization because of the propen-

sity for y, the driven system, to lead, or anticipate, the driver x. Fig. 1 shows such a situation

for two possible combinations of f and g taken from Eq. 2, the Rössler chaotic oscillator,

and Eq. 3, a linear spring.
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_x1 ¼ �x2 � x3

_x2 ¼ x1 þ ax2

_x3 ¼ bþ x3ðx1 � cÞ
ð2Þ

_y1 ¼ y2

_y2 ¼ �sy1
ð3Þ

Fig. 2 presents simulations of the coupling arrangement given in Eq. 1. Notably, the driven

system (dashed) evolves ahead of its driver (solid). In the simulation in Fig. 2A, Eqs. 2 and 3

used as f(x) and g(y), respectively. In this case, a Rössler oscillator drives a linear spring. In

the simulation in Fig. 2B, Eqs. 3 and 2 used as f(x) and g(y), respectively. In this case, a linear

spring drives a Rössler oscillator. The parameters for each system are identical in both panels,

a ¼ b ¼ 0:1; c ¼ 14; s ¼ 1; k ¼ 1; s ¼ 0:6. Fig. 2 shows anticipation without explicit predic-

tion—the driven systems do not contain models of the drivers. In what follows we present

simulations (for details see Stepp & Turvey, 2009) showing the capacity of anticipating

synchronization to capture the aforementioned challenges for a theory of circadian behavior.

5.1. Finite persistence in isolation of the light–dark cycle

Fig. 3A should be compared with Fig. 1. It shows the dynamics of a Rössler system driven

by a linear spring when k = 1 and when k = 0.4, that is, strong and weak coupling, respec-

tively. At time 250, the driver is switched from the oscillatory spring to a constant zero,

analogous to switching from the normal light–dark cycle to constant dark. Two coupling

strengths show one way to simply reproduce abrupt or gradual deterioration of persistence.

5.2. Multiple subsystem phase shifts with respect to the light–dark cycle

Because of the unidirectional coupling in Eq. 1 together with the fact that anticipation

amount is a function of delay, it is natural for many driven systems to be coupled to the
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Fig. 2. Simulations of the coupling arrangement in Eq. 1 showing Eqs. 2 and 3 as (A) f and g and (B) g and f,
respectively.
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same driver. Differing intrinsic delays in each subsystem directly result in differing phase

shifts with respect to the driver. Such a situation is shown simulated in Fig. 3B.

5.3. Shifts in phase after some period of exposure to a new light–dark cycle

As we observe when crossing time zones quickly, a phase change of the light–dark cycle

is followed by a corresponding change in the biological rhythms of the circadian system

experiencing the new phase. The shift is not instantaneous, but occurs over some amount of

time (Moore-Ede, 1986). Fig. 3C is a simulation of a system being driven first by one driver,

then another. The two bottom plots show the differences between each system, highlighting

a period of transition.
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Fig. 3. (A) Simulation of a Rössler oscillator driven by a linear spring. (B) Many driven systems with differing

feedback delays. (C) Simulation showing a transition period after switching from one driver to another.

(D) Continuous relative phase among three driven systems after decoupling.
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5.4. Dissociation of previously phase-locked subsystems

When many subsystems such as heart rate, locomotor activity, and body temperature are

coupled to a single driver, synchronization holds them close to a phase locked state. After

decoupling, for example, by subjecting to constant darkness, each subsystem relaxes toward

its own intrinsic dynamics. Fig. 3D is a plot of continuous relative phase among three driven

systems. The relatively constant relative phases before decoupling at time 250 give way to

independently varying relative phases.

Each of the foregoing simulations demonstrates a defining feature of circadian systems.

While the individual demonstrations are significant, nothing stops the same dynamic from

producing each feature concurrently. A single dynamical system, without representation,

can account for circadian phenomena. If this is the case, full-blooded representations are

not necessarily implicated. The situation is compounded by similar dynamics evident in

circadian rhythms not grounded in the light–dark cycle such as so-called food anticipatory

activity (FAA). If food is provided to a rodent on a regular daily schedule, the rodent will

anticipate this schedule just as it does the light–dark cycle (Landry, Yamakawa, Webb,

Mear, & Mistlberger, 2007). This prompts a search for food entrainable oscillators analo-

gous to light entrainable oscillators in the mammalian suprachiasmatic nucleus. When

organisms show the capacity to entrain to (and to anticipate) any periodic event, as does

the venerable slime mold (Saigusa, Tero, Nakagaki, & Kuramoto, 2008), the quest for spe-

cialized clocks may become less desirable than understanding the general principles at

work.

6. Dynamical philosophy of cognitive science

We think that it is worth taking the strong anticipation model seriously as an explanation

of circadian systems. Indeed, nonrepresentational explanation of circadian phenomena is

especially attractive when one considers that circadian rhythms are active at the levels of

organism, organ, and single cell (e.g., at least Drosophila has clocks in all cells; Sehgal,

Price, Man, & Young, 1994). But the sort of nonrepresentational, nonmechanistic explana-

tion of circadian systems strong anticipation offers has no place in Bechtel’s proposed phi-

losophy of science for cognitive science. We do not wish to go so far as to recommend

replacing Bechtel’s philosophy of science with a different one; rather, we offer a philosophy

of science for the growing minority in the cognitive sciences whose explanations are dynam-

ical and do not posit mechanisms or representations.

6.1. Defining ‘‘cognition’’

For some cognitive scientists, that cognition involves transformations of internal repre-

sentations is simply a matter of definition; they simply define ‘‘cognition’’ and the subject

matter of cognitive science as involving representations. For example, in describing what

they call the ‘‘mark of the cognitive,’’ Adams and Aizawa (2008) argue that cognitive
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systems must traffic in representations with nonderived content. Similarly, Rowlands

(2009) defines cognition as information processing that produces representations. These

understandings of cognition establish by necessity what is surely something that must be

discovered. Whether all, some, or none of cognition involves representations is an empiri-

cal matter, and the empirical facts on this are simply not in. Moreover, like Bechtel’s

proposed philosophy of science, this excludes a good deal of actual published research in

cognitive science. We therefore propose an understanding of cognition that is inclusive of

what is studied by nonrepresentationalist, dynamicist cognitive scientists. We take it that

cognition is the ongoing, active maintenance of a robust animal–environment system,

achieved by closely coordinated perception and action. Of course, this understanding of

the nature of cognition is intended primarily to reflect the phenomena of dynamicist cogni-

tive scientists in philosophy, psychology, AI, and artificial life—that is, perception-action.

But notice that it also applies to learning, speaking, reasoning, and other traditionally

cognitive phenomena.

6.2. Dynamical models are genuinely explanatory

Some cognitive scientists and philosophers of cognitive science maintain that dynami-

cal explanation is not genuinely explanatory, but merely describes phenomena. The rea-

sons for this claim can stem from a strong theoretical commitment to computational

explanation (e.g., Adams & Aizawa, 2008) or from a normative commitment to mecha-

nistic philosophy of science (e.g., Craver, 2007). Yet many cognitive scientists are com-

mitted to neither computational explanation nor normative mechanistic philosophy of

science, and they can embrace dynamical explanations as genuine explanations. There is

good reason to take dynamical explanations to be genuine explanations and not as mere

descriptions. To see why, we must say a bit about how dynamical explanations works

in practice.

Dynamical explanations do not propose a causal mechanism that is shown to produce

the phenomenon in question. Rather, they show that the change over time in set of magni-

tudes in the world can be captured by a set of differential equations, as shown in the case

of circadian systems above. These equations are law-like, and in some senses dynamical

explanations are similar to covering law explanations (Bechtel, 1998; Chemero, 2009).

That is, dynamical explanations show that particular phenomena could have been pre-

dicted, given local conditions and some law-like general principles. In the case of circa-

dian systems and the strong anticipation model, we predict the behavior of the slave

system, using the mathematical model and observed activity of the master system. Notice

too that this explanation is counter-factual supporting: We can use the mathematical model

to make predictions of the activity of the slave system with so-far-unobserved activity in

the master system. These predictions can be the basis of further experimentation. This

allows some dynamical models to act as guides to discovery (Chemero, 2009). Indeed, in

the best dynamical explanations, an initial model of some phenomenon is reused in

slightly altered form, so that apparently divergent phenomena are brought under a small

group of closely related models. Thus, dynamical explanation can provide unification, in
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the sense discussed by Friedman (1974) and Kitcher (1989). We can see this looking at

research on coordination dynamics.

The most well-established body of research that employs complex systems in the cogni-

tive and neural sciences is work on coordination dynamics. Its empirical antecedents were

the investigations of von Holst (1936 ⁄ 1974). Its theoretical antecedents were arguments by

Kugler, Kelso, and Turvey (1980)—and, tangentially, by Gibson (1979), Bernstein (1967),

Iberall (1977)—that explanations of coordination be consistent with strictures of physical

principles that inform the self-organization of biological systems. Its modeling antecedents

were the mathematical formalisms of Haken (1977) developed to address the potentially

profound analogies among seemingly very different systems studied in the physical, biologi-

cal, and social sciences (see Frank, 2004). Coordination dynamics’ departure point was bod-

ily rhythms.

Rhythmic limb movements at a common frequency tend to occur in two stable patterns of

coordination, inphase and antiphase. With an increase in the common frequency there is a

tendency for antiphase of homologous muscles to switch spontaneously to inphase of

homologous muscles but not vice versa. This bistable 1:1 frequency locking of limbs can be

characterized by relative phase with the observed interlimb patterns mapped onto point

attractors at / ¼ 0 radians and / ¼ p radians.

The simplest dynamics of satisfying the aforementioned behavior for two limbs or limb

segments of the same type (e.g., left and right index fingers) are given by

_/ ¼ dV

d/
ð4Þ

where V is the potential function

Vð/Þ ¼ �a cos/� b cos 2/ ð5Þ

It has ‘‘valleys’’ or attractors at 0 and ±p and ‘‘hilltops’’ or repellors (at ±p ⁄ 2 and ±3p ⁄ 2)

with the relative strengths of the attractors governed by the parameter b ⁄ a. Given Eq. 5, Eq.

4 becomes (Haken, Kelso, & Bunz, 1985):

_/ ¼ �a sin/� 2b sin 2/ ð6Þ

For reasons that will become apparent below, Eq. 6 is the deterministic and symmetric

form that captures the law-like principles of elementary coordination (Kelso, 1995; Park

& Turvey, 2008). As such, one expects to see the hand of Eq. 6’s dynamics revealed in

each and every manifestation of monofrequency rhythmic behavior—most notably, the

feature of reflectional symmetry in Eq. 5 and the distinction between the stability of

coordination at (or in the vicinity of) 0 radians and that at (or in the vicinity of) p radi-

ans (Park & Turvey, 2008). The identification of the principles of elementary coordina-

tion accords with three principal lessons from the study of complexity (Goldenfeld &

Kadanoff, 1999).
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Lesson 1: Even in simple situations, Nature produces complex structures and even in

complex situations Nature obeys simple principles.

Lesson 2: Revealing large-scale structure requires a description that is phenomenological

and aggregated and directed specifically at the higher level.

Lesson 3: A modeling strategy that includes very many processes and parameters

obscures (qualitative) understanding.

Equation 6 has proven to be more than a compact and convenient way to describe interlimb

synchrony. It has generated multiple novel predictions that have been evaluated experimen-

tally (see summaries in Kelso, 1995; Fuchs & Jirsa, 2008). This is especially the case for its

stochastic nonlinear Fokker-Plank (Frank, 2005; Schöner, Haken & Kelso, 1986) and

(potentially) nonsymmetric form. The latter obtains when (a) fluctuations in coordination,

and (b) differences between the two limbs are incorporated, respectively, by inclusion of a

Gaussian white noise nt of strength
ffiffiffiffi
Q
p

and an ‘‘imperfection’’ parameter d that can assume

values other than zero:

_/ ¼ �a sin/� 2b sin 2/þ dþ
ffiffiffiffiffiffiffiffi
Qnt

p
ð7Þ

A brief survey of the contributions of Eq. 7 and its extensions to the cognitive and neuro-

sciences follows: Attention (e.g., Amazeen, Amazeen, Treffner, & Turvey, 1997), intention
(e.g., Scholz, & Kelso, 1990), learning (e.g., Newell et al., 2008); handedness (e.g., Treffner

& Turvey, 1995, 1996), polyrhythms (e.g., Sternad, Turvey, & Saltzman, 1999), interper-
sonal coordination (e.g., Schmidt & Richardson, 2008), cognitive modulation of coordina-
tion (Pellecchia, Shockley, & Turvey, 2005), sentence processing (e.g., Olmstead,

Viswanathan, Aicher, & Fowler, 2009), speech production (Port, 2003), and brain-body
coordination (Kelso et al., 1998).

Neurodynamics, as the name suggests, provides its own set of like examples. Skarda and

Freeman (1987) showed that the background activity of the rabbit olfactory bulb can be

modeled as a chaotic dynamical system. Bressler, Coppola, and Nakamura (1993) showed

that the Eq. 7 predicts the coordinated activity of brain areas during perceptual tasks. Varela,

Lachaux, Rodriguez, and Martiniere (2001) suggest that large-scale neural integration is the

result of the establishment of transient phase couplings among brain areas (i.e., couplings

whose relationship is measured by /) forms the substrate for cognition and conscious expe-

rience. Collectively, this work established the now-thriving neurodynamics research pro-

gram (see Cosmelli, Lachaux, & Thompson, 2007 for review).

The above list crosses anatomical, species, and functional boundaries, spanning multiple

disciplines. Dynamical cognitive scientists have brought these disparate phenomena under a

single model, in a case of textbook scientific unification.

We take it that the above gives a sense of how dynamical explanation works in the

cognitive sciences, and how it effectively explains cognition appropriately understood.

Dynamical cognitive science explains the ongoing, adaptive perception-action of robust
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animal-environment systems; dynamical systems models provide law-like explanations,

support counterfactuals, and allow predictions that can be used to guide future experimental

research; the best dynamical models can be used to unify disparate phenomena, capturing

them under a single explanatory scheme.

7. Conclusion

We have presented, in brief outline, a philosophy for nonrepresentational, dynamical

cognitive science. We intend it as a necessary supplement to Bechtel’s representational,

mechanistic philosophy of science, and as philosophical guidance for the substantial and

growing minority of cognitive scientists who use dynamical methods. Philosophers of cog-

nitive science who ignore or exclude this growing minority risk misunderstanding cognitive

scientific practice at best. At worst, they risk irrelevance in a highly plausible future in

which dynamicists are no longer the minority.
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