


(Figure 1). Each gesture involves its corresponding articulators
and some articulators can be shared by different gestures. For
example, jaw is an articulator shared by LP, LA, TTCL, TTCD,
TBCL and TBCD gestures. The task-dynamic speech produc-
tion model[9] provides a mathematical implementation of the
gesture-to-articulator mapping, and generates constriction tract
variable and articulator time functions from gestural score input
for a given utterance.

The key to articulatory phonology is that the theory
simultaneously captures both cognitive/discrete and physi-
cal/continuous characteristics of speech by posing constricting
actions as primitive units. Since gestures are action units, they
are intrinsically allowed to overlap with one another in time
(Figure 1) unlike traditional units (segments/phonemes) occu-
pying pre-allocated time slots. In addition, gestures can be mod-
ulated in time and space as a function of concurrent gestures or
prosodic context while maintaining their intrinsic invariance.

Figure 1: Gestural score for the word “spad”.

Low performance of speech recognition systems using a set
of traditional phonemes can be attributed to inefficiency of the
basic recognition units, which intrinsically fail to capture direct
relations to the corresponding phonetic variations. Employing
articulatory gestures as sub-word units in recognition would al-
low us to account for such variations as natural outcomes of
simple modulations of gestural patterns or parameter values,
maintaining the units’ invariance and lexical distinctiveness.

3. Gestural pattern vectors
We propose to use a “gestural pattern vector” to encode instan-
taneous gestural information across various tract variables in
the gestural score. A gestural pattern vector (Figure 2) is de-
fined by the constriction targets and stiffnesses associated with
the gesture activations existing at a particular time across all
tract variables.

According to articulatory phonology, the tract variable time
functions, which shape the acoustics of speech, are regulated by
time-varying articulatory dynamics parameterized by the con-
striction targets and stiffnesses of gesture activations. Although
the ensemble of gesture activations tends to be distinctive to
words, their timing, both intergestural and intragestural, can
vary as a function of prosodic or performance (e.g., rate, ca-
sualness) context. This results in significant variation in speech
gestural score as well as tract variable time functions. To find
a quasi-atomic unit set with reasonable size, instead of defining
these units on the whole speech gestural score, we define ges-
tural pattern vectors only using gesture activation information
existing at the current time frame. In this framework, the speech
gestural score is represented by a sequence of gestural pattern
vectors. By recognizing the gestural pattern vector sequence,
we can obtain the speech gestural score, in particular, the en-
semble of gesture activations, which is distinctive to words.

Different tract variable time functions are correlated, partic-
ularly when there is no gesture activation in some tract variable.

Figure 2: Tract variable time functions(the curves), gestures(the
steps) and the gestural pattern vector defined on one frame(5ms)
of the utterance “affirmative”.

Table 1: Cardinalities of the non-null targets and stiffnesses of
the eight tract variables.

Target Stiffness Target Stiffness
LP 1 2 TBCD 5 2

VEL 2 1 TBCL 4 1
GLO 2 1 TTCD 3 1
LA 5 2 TTCL 4 1

Speech gesture activation across all tract variables is used to de-
fine gestural pattern vectors. Note that because of the correla-
tion of speech gesture activation across different tract variables,
the number of different gestural pattern vectors is much smaller
than the product of the cardinalities of constriction targets and
stiffnesses in all tract variables.

Overlapping gesture activations within one tract variable is
equivalent to a gesture activation, with target and stiffness be-
ing the weighted average of their counterparts in the original
set of overlapping gestures. Since the resultant tract variable
time functions are identical, we construct gestural pattern vec-
tors from the equivalent gesture activation with the averaged
parameters.

The cardinalities of the non-null settings of target and stiff-
ness for each tract variable are shown in Table 1. Each variable
can also take a value of “null”, which means no active gesture
for that tract variable. The cardinalities are determined such
that 1) they are not too high to be used in defining a relatively
small gesture unit set, and 2) they preserve the most important
distinctions corresponding to human perception of the language
[10].

4. Recognition of gestural pattern vectors
Articulatory phonology understands speech as an ensemble of
gestures. Although the detailed timing of gesture activation
change with context, the set of involved gestural pattern vec-
tors is invariant. With successful recognition of gestural pattern
vectors, we might be able to recover the ensemble of gestures,
which could further be used to reveal the content of the utter-
ance, even in challenging situations such as speech reduction
and coarticulation.

Previous work has worked on recovering the tract variable
time functions from speech acoustics[6]. However, no work has
been done to recognize the speech gestures from the tract vari-
able time functions. In this work we design various statistical
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models to recognize gestural pattern vectors from tract variable
time functions.

Recognition of gestural pattern vectors is essentially a clas-
sification problem in which we attempt to extract the gestural
pattern vector, therefore the speech gesture activation informa-
tion, including constriction target and stiffness, in all tract vari-
ables at any particular time, from the values of the tract variable
time functions near that time. We use, as observation, tract vari-
able time functions in a local time window centered at the target
gestural pattern vector. The challenges are at least three-fold:
1) The speech gesture activation is not perfectly synchronized
with tract variable time functions. The speech gesture activation
at an immediately preceding time often has a strong impact on
the articulator dynamics, therefore the tract variable time func-
tions at the current and following times. 2) The dynamic model
demands smoothness in some sense, so that the tract variable
time functions have high correlation within a time-local neigh-
bourhood.3) The tract variable time functions correlate across
different tract variables, particularly when gesture activation is
absent at some tract variable. Also, noncritical articulators tend
to have higher associated variance.

We use a tandem model to classify the gestural pattern vec-
tors, given the observed tract variable time functions in local
time windows. As shown in Figure 3, a tandem model uses a
discriminatively trained artificial neural network (ANN) to es-
timate posterior probabilities across all gestural pattern vectors,
which are then used as input features to Gaussian mixture mod-
els (GMM). All the observations from the time functions across
all tract variables from the time window are concatenated into
a single observation vector X , as the input to the ANN. The
observations are normalized with the global mean and variance
of the corresponding tract variable time functions. The output
nodes O of the ANN correspond to different gestural pattern
vector types G, each indicating the posterior probability of one
gestural pattern vector type P (G|X), given the current observa-
tion X . These ANN outputs are transformed into a new feature
using log 1−O

1+O and decorrelated using Principal Component
Analysis (PCA). PCA also reduces the dimensionality of the
new feature, which is then used in GMM, each for one gestural
pattern vector type.

Figure 3: Classification using a tandem model(ANN+GMM).

When testing, we present the observation X to the in-
put nodes, and perform classification using two different ap-
proaches. The first approach only uses the ANN output di-
rectly: the gesture pattern vector type that corresponds to the
output node with highest posterior probability P (G|X) is the
classification output. The second approach uses the whole tan-
dem model by choosing the gestural pattern vector whose GMM
gives the highest likelihood for the new feature obtained by
processing the current observation using the ANN and feature

transform.

5. Speech Gesture Dataset
In this study, we use a speech dataset synthesized by Hask-
ins Laboratories speech production model, TADA[10]. This
dataset provides reasonable synthesized speech with all the
following corresponding information: acoustics, tract variable
functions, gestures and lexical representation. TADA gener-
ates articulatory and acoustic outputs from orthographical in-
put. In the model, orthographical inputs are syllabified by ap-
plying the max-onset algorithm to entries in the Carnegie Mel-
lon pronouncing dictionary. The syllabified inputs are parsed
into gestural regimes and intergestural coupling relations by
gestural dictionary and intergestural coupling principles, re-
spectively. Using the gestural regimes and intergestural cou-
pling, the intergestural timing model in TADA generates gestu-
ral scores including intergestural timing information. The task-
dynamic model in TADA takes the gestural score and outputs
the tract variable and articulator time functions, which are fur-
ther mapped to the vocal tract area function (sampled at 200
Hz), and eventually speech acoustics (synthesized by Sensimet-
rics HLSyn[11], sampled at 10000 Hz). The obtained gestural
score is an ensemble of gestures for the utterance, specifying the
intervals of time during which particular constriction gestures
are active in the vocal tracts. TADA was used to synthesize 363
words in Wisconsin articulatory database.

6. Experiments
6.1. Gestural pattern vectors
We go through the above dataset frame by frame at 200Hz and
label each frame with gestural pattern vector defined in Section
3, i.e., each frame being an instance of a gestural pattern vector
type. In the current dataset, 380 different gestural pattern vector
types show up.

Some gestural pattern vector types in the dataset are very
rare. We exclude frames labeled as rare gestural pattern vec-
tor types for the following reasons: 1) Most rare types do not
bear significant speech production implications compared to the
frequent types. 2) Rare types could hardly be learned by a statis-
tical model. For the classification experiment, from all the 380
gestural pattern vector types, only those types with at least 30
instances are considered, and only those frames labeled as these
considered gestural pattern vector types are used. This results in
181 gestural pattern vector types (37689 frames), reduced from
all the 380 types (39882 frames) that are observed at least once
in the dataset. Only less than 6% frames are excluded from the
dataset.

6.2. Experiment setup
The frames of the 181 gestural pattern vector types in the dataset
are divided into training set (about 12,600 frames)and testing
set(about 25,000 frames) without overlapping, both having sim-
ilar gestural pattern vector type distributions. The neural net-
work is trained on the training set using the back propagation
algorithm. The gestural pattern vector GMMs are trained on the
neural network outputs on the training set. One GMM is first
trained on the whole training set, then adapted to different ges-
tural pattern vector GMMs respectively according to Maximum
A Posterior criteron. Both approaches in Section 4 are applied
to the classification task on the testing set.

The observations, i.e., input X to the neural network, are
values of the eight tract variable time functions over a local
time window of w frames, normalized by the mean and stan-
dard deviation within each tract variable. Different window
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lengths w ∈ {5, 7, 9} are applied in this study. The num-
ber of hidden nodes in the neural network is chosen from
{36, 45, 54, 63, 72, 81, 90, 99}. PCA reduces the dimension-
ality of the new features from 181 to 80.

6.3. Experiment results
In Figure 4, We present the performance of recognizing ges-
tural pattern vectors from tract variables only using the neural
network, with different local time window lengths w and differ-
ent numbers of hidden nodes h.

Figure 4: Recognizing gestural pattern vectors using ANNs.

Among the different local time window lengths used, win-
dow length of nine gives the best performance. Performance
improves with increased number of hidden nodes, which corre-
sponds to the complexity of the neural network, until the num-
ber of hidden nodes go beyond 81, when the neural network is
too complex to be robustly trained on the current dataset.

In Figure 5, We present the classification performance using
the complete tandem models with different numbers of Gaus-
sian components (Tandem1: 1000, Tandem2: 1500). It is
observed that the tandem model gives additional improvement
over the best neural network performance.

Figure 5: Recognizing gestural pattern vectors using tandem
models.

7. Conclusion & Discussion
The instantaneous “gestural pattern vector” is proposed as
a sub-word unit for encoding gesture activation information
across tract variables. We use a tandem model combining artifi-
cial neural network and Gaussian mixture models to recover the
instantaneous gestural pattern vectors from tract variable time
functions in local time windows, and achieve classification ac-
curacy up to over 84.5% for synthesized data from one speaker.

This result suggests that the proposed gestural pattern vector
might be a viable sub-word unit for statistical models of speech
recognition.

The design of these gestural pattern vectors is the first step
towards an automatic speech recognizer motivated by articula-
tory phonology. In such a speech recognizer, speech would be
recognized by recovering the ensemble of gestures.

The ensemble of speech gestures is recognized by classi-
fying each frame into a gestural pattern vector type. This has
different implications than the sequence-of-phones model used
in most current state-of-the-art speech recognition systems, in
that our recovered ensemble of gestures is a phonological and
phonetic representation distinctive to the content of speech. Al-
though the ensemble of gestures is recognized via a sequence of
gestural pattern vectors, we may view the recognized gestures
in a way different from this, taking advantage of the invariant
properties as suggested by articulatory phonology. We plan to
pursue this issue in future study.
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