


have been divided into “intrinsic” and “extrinsic” methods
for vowel normalization, a division which dates back to Joos
!1948". Adank et al. !2004" argued though that this division
might not be fine-grained enough to describe all essential
differences between procedures. They extended the usage of
the extrinsic vs intrinsic dichotomy to both !a" vowels and
!b" formants. This work does not consider vowel intrinsic
normalization because it is not clear how it could be related
to parallel articulatory data. The same holds for all vowel-
extrinsic/formant-extrinsic schemes known to us. The only
class containing published normalizations, which correlate
well with the aims of the current work, are formant-intrinsic,
vowel-extrinsic normalizations. According to Adank et al.
!2004", this kind of normalization has been the most effi-
cient. Within this class, the Lobanov !1971" transform has
been described as one of the most efficient procedures. Still,
this kind of normalization is not without drawbacks: As
pointed out by Nearey !1989", despite its success for practi-
cal reasons, i.e., the most substantial scatter reduction, its
cognitive plausibility is questionable because the listener
would have to know the formant frequencies of the complete
vowel system spoken by this particular speaker in order to
recognize a single vowel. This points to the discussion about
the psychological reality of entities such as mean formant
frequencies and scale factors. In contrast to Nearey, Adank
et al. !2004, p. 3105" viewed such factors as possibly ac-
counting for listeners’ life-long experiences with listening to
different types of speakers. Another criticism was noted by
Apostol et al. !2004", according to which statistical methods
cannot be directly related to anatomical differences between
speakers, which ultimately underlie the large variation in the
formant spaces. The basic hypothesis of their model is that
inter-speaker variability in formant spaces “arises from dif-
ferences among speakers in the respective lengths of their
back and front vocal-tract cavities” !p. 337" because of the
formant-cavity affiliation.

In a similar vein, namely, to relate articulatory positions
to formant frequencies, a number of geometrical normaliza-
tion procedures has been applied to tongue contours derived
during vowel production. These procedures are based on re-
expressing fleshpoints on the tongue—usually acquired by
the x-ray microbeam system !Westbury, 1994"—as distances
to the palate !e.g., Beckman et al., 1995; Hashi and West-
bury, 1998; Perkell and Nelson, 1985". Therefore, the pellet
positions are translated into a palate-based coordinate system
in order to minimize the effects of differences in vocal-tract
size and shape on mean articulatory postures. The advantage
is that the new palate-based coordinate system is more
closely related to the oral part of the area function than the
original coordinate space and can therefore more easily be
related to spectral properties. Within this framework, as well
as for the cavity-affiliation model by Apostol et al. !2004",
the major aim is to explain and reduce the speaker-dependent
acoustical variability by anatomical differences, e.g., due to
gender !see Simpson, 2002".

A very different approach is the factor analytic treatment
of vowel production in which the underlying control mecha-

nisms from the highly correlated coordinates of the tongue-
pellets are extracted. In their work, Harshman et al. !1977"
subjected multi-speaker x-ray tongue contours to the
PARAFAC algorithm, yielding two factors consisting of three
matrices: !a" the speaker weights, !b" a speaker-independent
vowel space, and !c" the so-called articulator weights. A con-
sistent and robust interpretation of the application of
PARAFAC arises from these first two factors extracted from
flesh-point data as well as from contours and for a number of
different languages !see, e.g., Harshman et al., 1977; Hoole,
1999; Jackson, 1988". The first factor, usually dubbed front
raising, distinguishes low vowels from high front vowels. In
articulatory terms, front raising is a forward movement of the
root of the tongue and an upward movement of the front of
the tongue. The second factor, back raising, is associated
with the formation of back vowels and characterized by an
upward and backward movement of the tongue. The current
study will make an attempt to evaluate a technique conform-
ing to that of Harshman et al. in its applicability to both
acoustic and articulatory data but differing in its computa-
tional procedure as well as its general orientation. The nor-
malization procedure applied here is based on a method fre-
quently applied in morphometrics/zoology in order to solve
the problem of the superimposition of geometrical land-
marks. In zoology, this is often helpful for shape comparison
between species abstracting from uninformative scaling,
translation, and rotations. These methods are often termed
“Procrustes” methods !see Gower, 1975, and with a special
background in morphometrics Rohlf and Slice, 1990 or
Goodall and Green, 1986". Due to its central importance for
the current work, this approach will be described in greater
detail in the next section.

B. The normalization procedure: A modified
generalized Procrustes analysis

These superimposition techniques can be distinguished
according to the following aspects: !a" The number of ob-
jects to be aligned: Procrustes analysis has originally been
designed for the alignment of only two specimens but has
later been extended to handle any number of objects in
Gower !1975", !b" the nature of the transformation terms to
be applied: If only rigid rotations are allowed, orthogonal
methods—i.e. Procrustes methods in a more narrow sense—
are used, which preserve the angles between data points. If
uniform affine deformation is to be applied, the class of
methods are called oblique and !c" the optimization strategy
applied: If no local shape change is allowed, least-squares
fitting methods are appropriate; if one wishes to account for
local shape change, more advanced, non-parametric methods
based on the median have to be applied. The acoustic and
articulatory data corpora in our study contain more than two
speakers, such that our algorithm a priori has to refer to the
“generalized” case. With respect to the nature of the rotation
terms to be applied, a distinction has to be made between
articulatory and acoustic data sets. While for the articulatory
data, a considerable amount of affine deformation would al-
ready be expected due to different vocal-tract morphologies,
this is not so clear for the acoustic data set. Goodall and
Green !1986" devised a method for checking the amount of
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affine deformation necessary to superimpose landmarks in
the two-dimensional !2D" case. In cases in which the amount
of affine deformation necessary for superimposition is not
substantial, superimposition applying orthogonal transforma-
tions yields similar results. Concerning the optimization
scheme, we used the least-squares technique and not the non-
parametric method described in Rohlf and Slice !1990" be-
cause we were aiming at uniform rather than local shape
change. The approach used here comprises two separate
steps: First, across different speakers, a “consensus configu-
ration” representing an average subject is calculated, and, in
a second step, this consensus is fitted to the data of indi-
vidual speakers to result in normalized data.

1. Construction of the consensus object

The consensus configuration is calculated as follows
#equivalent to the formulation in Rohlf and Slice !1990"$:
First, the data of the n individual speakers are centered and
scaled with a standard z-transform. Then, a first version of
the consensus object is calculated using

A =
1
n%

i

n

Xi!Xi
TXi"−1Xi

T, !1"

where the Xi are the individual speakers’ data matrices after
centering and scaling, n is the number of speakers, and su-
perscript T denotes the transpose of a matrix. This version of
the consensus object does not resemble the original objects
though. In the bivariate case—like in the analysis of formant
spaces—the X!XTX"−1XT operation transforms each object
“so that the variance in the bivariate distribution of land-
marks is the same in all directions in the plane for each
object” !Rohlf and Slice, 1990, p. 49". The final consensus
configuration is calculated as

C = A&1
n%

i
XiXi

T'A . !2"

Thereafter, C is subjected to a singular-value decompo-
sition, and the final consensus configuration is a matrix of
eigenvectors of C subjected to truncation; e.g., for planar
configurations, the first two columns are taken !Rohlf and
Slice, 1990, p. 49".

2. Calculation of normalized data

The second step consists of calculating reconstructed
data for each subject’s configuration. These are calculated by
post-multiplying the consensus object with a transformation
matrix, which in general is calculated as

H* = !X2!
TX2!"−1X2!

TX1! !3"

for two objects in the oblique case. X2 here is the consensus
configuration as calculated above, and X1 is an arbitrary
speaker’s original configuration. This is equivalent to the
equation for the least-squares estimates of partial regression
coefficients in multivariate multiple regression. In the case of
orthogonal rotation, the rotation matrices are calculated by

performing a singular-value decomposition of the product of
the object matrices to be superimposed:

H = VSUT, !4"

where U and V are such that X1!
TX2!=U!VT and ! is a diag-

onal matrix. S is a diagonal matrix with sii= "1, and the
signs of the sii are taken from the corresponding elements of
!. Summing up, the main outputs of the procedure are !a" a
consensus object, which in our case is the configuration of an
average speaker characterized by the statistical properties as
described above, !b" the eigenvalues of the transformation
matrices, i.e., the diagonal of !, as the amounts of uniform
deformation in the directions guaranteeing optimal “superim-
position” in terms of the least-squares criterion applied, and
!c" the normalized data of each single speaker. The data sets
described in the following section will be evaluated with
respect to these statistics. The results of !b" are often dis-
played as “a pair of orthogonal axes with lengths propor-
tional to the two eigenvalues and oriented so that the longer
axis is parallel to the direction !…" of maximum stretching”
!Rohlf and Slice, 1990, p. 48". In the present case, this makes
sense for the acoustic data set: A so-called strain cross, de-
fined by the first two eigenvalues and the angle #, of a given
speaker deviating to a great degree from the unit circle, in-
dicates that this speaker’s vowel space needs a higher
amount of affine transformation in order to fit to the consen-
sus object as compared to a speaker with a smaller strain
cross.

C. Aims of this study

As was pointed out above, the major aim of this study is
to evaluate the usefulness of the algorithm we proposed for
both acoustic and articulatory data. The rationale of speaker
normalization is chosen with regard to the methodological
corollary of the universal articulatory phonetics hypothesis,
according to which it is not sufficient to report patterns of
individual differences among a homogeneous group of
speakers, but “we must also consider ways in which such
variability is lawful, because this variability must be made to
square with the fact that language is a shared system”
!Johnson et al., 1993, p. 702". Therefore, apart from demon-
strating the success of the normalization suggested, the sec-
ond aim of the current work is to explore whether the modes
of affine deformation are correlated to aspects of vocal-tract
morphology.

II. METHOD

A. Data acquisition

Seven native speakers of German !five males, M1–M5,
and two females, W1 and W2" were recorded by means of
electromagnetic midsagittal articulography !EMMA, AG
100, Carstens Medizinelektronik". All speakers spoke a stan-
dard variety of German with at best slight dialectal varia-
tions: three speakers !W1, M1, and M4" originally come
from South Germany, one speaker !W2" from Saxonia, two
speakers !M3 and M5" from Northeast Germany, and one
speaker !M2" from Berlin. At the time of recording, the
speakers were between 25 and 40 years old and had lived in
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Berlin for at least 5 years. The speech material consisted of
words containing /tVt/ syllables with the full vowels
/ib,(,yb,+,eb,$,$b,øb,œ,ab,a,ob,Å,ub,*/ in stressed and unstressed
positions. Stress alternations were fixed by morphologically
conditioned word stress and contrastive stress. Each sym-
metrical CVC sequence was embedded in the carrier phrase
Ich habe /’tVt0/, nicht /tV’tabl/ gesagt. !I said /’tVt0/, not
/tV’tabl/" with the test syllable /tVt/ in the first word always
stressed and in the second word always unstressed. All 15
sentences were repeated six !four speakers" or ten times
!three speakers". Four sensors were attached to the tongue,
one to the lower incisors, and one to the lower lip. The analy-
ses in this study are limited to the four sensors on the tongue
for the remainder of this text and are numbered T1–T4 going
from front to back. Two sensors on the nasion and the upper
incisors served as reference coils to compensate for head
movements relative to the helmet and for the definition of a
preliminary coordinate system. This served as the basis for
the final reference coordinate system, which was defined by
recordings of two sensors on a T-bar, manufactured individu-
ally for each subject in order to determine his or her bite
plane. Simultaneously, the speech signal was recorded by a
digital audio tape recorder. Original sampling frequencies
were 400 Hz for the EMMA data and 48 kHz for the acous-
tical signals. For the analyses, the EMMA signals were low-
pass filtered at 30 Hz and downsampled to 200 Hz, while the
acoustical signals were downsampled to 16 kHz.

B. Measurements

Formant frequencies of the first and second formant
were measured interactively close to the mid of the vowel at
the moment of minimal formant movement or, for lax
vowels, at a turning point in the F2 trajectory. For estimating
the frequencies of the first and second formants, the default
settings of the software package SIGNALYZE !(http://
www.signalyze.com/)" were used, i.e., LPC with 15 ms
smoothing. The same temporal markers as described for the
acoustic analyzes were also used for extracting tongue posi-
tions. Both acoustic and articulatory data were then averaged
over the six respectively ten repetitions of each vowel. Infor-
mation about palate shapes was acquired by measuring the
artificial EPG palates of all seven speakers by means of a
sliding caliper. This procedure gave the 3D coordinates for
all EPG electrodes and the 2D coordinates of the palate mid-
line approximately located between the two most central col-
umns. Since the location of the EPG electrodes is adjusted to
the speakers’ anatomy, e.g., the rear border is aligned with
the rear wall of the second molars, the EPG-based palate
midline was deemed to be more exact compared to the palate
outline, traced by means of EMMA. For addressing the ques-
tion whether speaker-dependent differences can be explained
by their palate shape, two measures were used: the palate
length and a doming index !see Johnson et al., 1993", which
was calculated as the ratio between the total midsagittal
length of individual EPG palates and the vertical distance
between the first and the last point on the palate. Higher
values indicate a palate with a higher degree of doming.
Three sets of data were subjected to the analysis: tongue

configurations during the 15 vowels in two stress conditions,
measured as X and Y coordinates of the four sensors !30
%8 matrix", frequencies of the first and second formant dur-
ing the vowels !30%2 matrix", and palate outlines specified
by 11 x and y coordinates !11%2 matrix". For measuring the
palatal outline, we adapted the method described in Fitz-
patrick and Ni Chasaide !2002". In short the 3D coordinates
of the Reading EPG palates were measured as described
above. From this we estimated the midsagittal outline from
the positions of the two inner columns of the electrode posi-
tions. The outline was then adjusted to the EMMA data by
eye.

C. Statistical apparatus

1. Quantification of the relationship pools of
quantitative variables

Throughout the current work, methods are used, which
require the correlation of data sets with independent as well
as independent variables containing more than two variables.
The correlations between articulatory configurations and the
morphological data set could serve as an example. In this
example, the research interest lies in gaining insight about
the nature of the main directions of isotropic shape change in
these two data modalities, substantial correlations indicating
that similar variance components are targeted in both data
sets. In order to explore relationships as these, canonical cor-
relation analysis !CCA" was applied. CCA can be seen as the
multivariate generalization of product-moment correlation.
Considering the two matrices X and Y, the CCA finds a linear
combination of the variables of X and a linear combination
of the variables of Y of maximal correlation. It has often
been claimed that CCA needs many cases compared to the
number of variables. But Stevens !1986" discussed sample
size in CCA and states that if the canonical correlations are
strong !i.e., R&0.7", then even small samples !e.g., n=50"
can be sufficient to detect significant correlations most of the
time. Another drawback often reported for canonical corre-
lations is that it is reported to be sensitive to multicollinearity
among variables. This issue can at least to some extent be
settled by reporting redundancy indices, which provide a par-
titioning of the explained variance into predictors and crite-
ria. The redundancies of individual canonical variates can be
summed up to yield an R2-like measure of the contribution of
the predictor-side canonical variates in explaining the
criterion-side canonical variates and vice versa.

2. Classification procedures

By means of statistical discrimination, it is possible to
check how successful different normalization procedures are
at preserving the phonemic identity of vowel tokens. Adank
et al. !2004" focused on two such classification approaches
of vowel tokens. The most basic model, linear discriminant
analysis !LDA" assumes that the covariance of each of the
classes is identical. A more advanced method, quadratic dis-
criminant analysis !QDA", makes no such assumptions but
has the drawback of estimating more parameters, making it
more difficult to crossvalidate and more prone to overfitting.
These two approaches are just two instances of classification
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procedures, with the LDA being one standard choice.1 Hav-
ing said that, it is obvious that it is necessary to be selective
with regard to the classification procedures chosen. We com-
pared two classification procedures, including !i" LDA—for
comparability purposes with Adank et al. !2004" and !ii" an
additional logistic discriminator !LOGDA" !Ripley, 1994".
This logistic classifier has the advantage of making less as-
sumptions than both QDA as well as LDA.

III. RESULTS

This section is concerned with the evaluation of the nor-
malization procedure applied in this study. It will roughly be
organized in analyses of the two modalities: acoustic and
articulatory. The acoustic description of the data set involves
comparing raw and normalized F1/F2 spaces. The capability
of the approach to preserve phonemic identity, in particular
with respect to the stress condition manipulated in the data
set comprises both acoustic and articulatory modalities. Of
special interest for the articulatory data is the question of
how the deformations of the articulatory spaces are to be
related to measurements of anatomical characteristics of the
palate, as captured in terms of !a" results of the normalization
procedure of palate outlines and !b" scalar doming indices
!Johnson et al., 1993". This also justifies the parsimonious
selection of acoustic features: As we were primarily inter-
ested in vowel quality as manifested in tongue shapes, we
have limited ourselves to the analysis of the first two for-
mants in the acoustic domain. In other words, we were not
interested in acoustic features such as F0 as it has stronger
prosodic correlations—at least in our corpus—with stressed
vowels carrying pitch accents. Similar arguments hold
against F3, which mostly is associated with rounding infor-
mation.

A. Formant spaces

In order to give a general impression of speaker-
dependent differences for the production of German vowels,
formant spaces of two speakers from Bavaria, one female
!W1" and one male !M4", are presented in Fig. 1. The means
of the frequencies of the first and second formant are indi-
cated as bold symbols with a “'” sign for the stressed vow-
els. Unstressed vowels are indicated by “%.” For reasons of
clarity, the marginal vowels are connected by lines.

As can be seen, the speakers differ not so much in the
relative location of vowels in the vowel system, with the
exception of some minor relative changes in the location of
the low vowels. However, the two speakers do differ in the
way they realized the stressed-unstressed distinction: On the
one hand, speaker W1 reduces the unstressed vowels consis-
tently toward the center of the formant space. On the other
hand, speaker M4’s formant frequencies of unstressed vow-
els differ to a greater degree for the back and low vowels
from their stressed counterparts, whereas the front vowels
are only slightly affected. The direction of change for the
back and low vowels suggests a more fronted and closer
constriction for the unstressed vowels. Therefore, the acous-
tical results suggest that this speaker produces the stressed
vowels with a greater contrast between the neighboring con-
sonants and the vowels.

The consensus object, shown on the left in Fig. 2, gives
more evidence for the latter strategy for reducing vowels;
i.e., the back and the lower vowels are centralized when
unstressed but not the high and mid palatal vowels /i, y, e, ø,
(, +/, which change only very little. This finding correlates
well with the observation that their constriction location is
already quite close to the constriction location of the neigh-
boring apical stops. The formant values of the remaining
unstressed vowels change in the direction of front high vow-
els.

FIG. 1. Means of formant frequencies for stressed !bold and Large symbols with “'”" and unstressed vowels #light and smaller symbols with “%”" for a
female !left" and a male speaker !right"$.
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As was explained in Sec. I B 2, strain crosses display the
amount of necessary affine transformation of individual
speakers in order to fit to the consensus object. The more the
crosses deviate from the cross in the unit circle in length and
orientation, the more affine transformation was necessary for
the corresponding speaker. Only for two speakers !M1 and
W2" do the strain crosses deviate clearly from the unit circle.
This implies that not much affine deformation is applied to
single speakers’ vowel spaces in order to achieve the best fit.

1. Cross-method comparisons

One way of evaluating the quality of a normalization
procedure is to measure the amount of scatter remaining after
normalization, which has been considered good practice as a
tool for the evaluation of speaker normalizations since Dis-
ner !1980". Scatter remaining is computed as the percentage
of ellipse areas of transformed data relative to the ellipse
areas of the raw data. Table I summarized the results for our
method and the Lobanov transform. In terms of scatter re-
duction, our method outperforms the Lobanov transform,
which was confirmed by the results of a t-test !t=3.67, p
(0.01, df=29". Another pattern which becomes evident
from an inspection of Table I is that not all vowels are nor-
malized to the same degree, an effect which appears to be
common to both procedures applied. While there is a consid-
erable amount of scatter reduction for most vowels, there are
instances where there is even more variability after normal-
ization. While technically possible, such a result runs counter
the objective of normalization. This pattern is particularly
prominent for stressed /ub/. Further, from visual inspection of
the dispersion ellipses, it seemed evident that our procedure
affects the orientations of the ellipses to a larger degree than
the Lobanov transform, in particular for back vowels. This
was evaluated by calculating the ellipse orientations of the

raw data and the normalizations and then by bootstrapping
the correlation coefficients of these angles. While the ellipse
orientations of the Lobanov correlated well with the orienta-
tions of the original data !r=0.94**, 95% CI #0.86, 0.97$",
this was not the case for the Procrustes-influenced approach
!r=0.29, p=0.11, 95% CI #−0.08,0.58$". The high CI range
!0.67" for our method further evidences that only a subset of
ellipse orientations is affected !see also Fig. 3".

Apart from scatter reduction, normalization procedures

FIG. 2. Formant consensus object of stressed vowels !large symbols" and
unstressed vowels !small symbols". Lines correspond to the distance be-
tween the speaker-dependent models for each of the speakers and the for-
mant consensus object. Inset: amount of necessary speaker-dependent affine
transformation compared to the consensus object, all speakers, displayed as
strain cross.

TABLE I. Scatter remaining after normalization in percent of the original
data.

Model Lobanov

Stressed Unstressed Stressed Unstressed

i 34.63 29.56 61.73 26.92
( 11.20 5.60 74.06 68.58
y 26.09 19.03 182.59 75.24
+ 1.47 3.43 17.88 44.16
e 19.92 8.98 23.91 12.58
$b 4.34 3.16 23.80 60.34
$ 3.00 1.67 33.41 32.97
ø 4.77 1.61 29.25 21.23
œ 5.17 1.97 48.68 59.73
ab 75.77 27.88 92.50 66.84
a 24.98 21.42 48.43 10.53
o 43.46 10.38 209.51 42.11
Å 19.36 11.94 30.73 64.01
u 151.72 40.43 206.62 37.73
* 6.09 5.05 39.35 75.18

x̄ 28.80 12.81 74.83 46.54
sd 38.06 11.73 65.54 21.56

FIG. 3. 1− ) dispersion ellipses for raw formant data !thin lines", the
speaker-dependent Procrustes data !bold lines", and the Lobanov trans-
formed data !dashed line". Centroids are indicated by ! !Lobanov", ' !Pro-
crustes", and % !raw data", respectively. For reasons of clarity, only the
cardinal vowels are plotted here.
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should also maintain the relative positions of items, e.g., in
order to compare different languages or dialects. In order to
ensure that this is not the case, we conducted a MANOVA to
compare the formant means of the raw data, the Lobanov
transformed data and the modeled Procrustes data. The dif-
ferences were insignificant #Wilk’s lambda F!4,34"
=0.00006, p=1$.

B. Articulatory spaces

In the second part of this section, lingual configurations
for the 15 vowels of German in stressed and unstressed po-
sitions are used as input to the normalization procedure. In
order to exemplify the consequences of speaker-dependent
morphology and inconsistent sensor placements, we turn to a
description of speaker-dependent strategies for the stress dis-
tinction. Figure 4 shows tongue configurations !X-and
Y-coordinates" for the four tongue sensors before normaliza-
tion. The upper two panels of this figure show the tongue
configurations during the vowel /i/ in stressed !filled sym-
bols" and unstressed positions !unfilled symbols". On the left
side, data of the female speaker W1 are displayed together
with her palate outline, and on the right side, those for the
male speaker M4. Typically, for /i/ the tongue is braced
against the sides of the palate. In the lower two panels of Fig.
4, the tongue configurations are presented for the back vowel
/u/. The speakers W1 and M4 not only differ to a great de-
gree in the way they produce the vowel /i/ but also in their
palate shapes. Speaker W1 has an extremely steep and
domed palate, whereas the palate of speaker M4 is rather flat.
Accordingly, the tongue configuration for /i/ of speaker W1
is bunched toward the palate and speaker M4’s is shaped
straighter and oriented in parallel with the palate outline.
Despite these immediately obvious differences between these
two speakers, both show little differences between stressed
and unstressed tongue configurations for /i/. For /u/ the
tongue shapes again show a pronounced difference between
the speakers. In contrast to /i/, however, stress affects the
tongue configurations for both speakers, with the unstressed

/u/ being produced with an elevated tongue tip and a gener-
ally more fronted tongue body. Based on these observations,
it seems reasonable to conjecture !i" that interindividual dif-
ferences in anatomy can to a large extent be made respon-
sible for the patterns just described, !ii" that the speakers’
vowel gestures are still functionally equivalent, i.e., forming
a close palatal constriction with the front part of the tongue
for /i/ and a uvular constriction with the rear part of the
tongue for /u/, and !iii" that speakers apply a general strategy
for producing the stress distinction.2

In order to test these assumptions, the normalization pro-
cedure was separately applied to both the articulatory data
and the palate outlines. Speaker-dependent data were calcu-
lated according to Eq. !3". The results are shown in Fig. 5.
Plotted in bold lines are the X-and Y-coordinates of palate
and tongue configurations of the consensus objects, the thin-
ner lines representing the speaker-dependent normalized data
of speaker W1 !left" and speaker M4 !right". These two
speakers are extreme in their configurations; the remaining
speakers compromise between these two participants and
therefore are closer to the consensus object. These speakers
were displayed to illustrate the problem to be tackled in the
articulatory domain. As can be seen in the upper two panels,
speaker-dependent tongue configurations for the high front
vowel /i/ deviate very little from the consensus object. This
is mainly due to the fact that the applied transformations
rigorously twist the tongue configuration of speaker M4 in
order to fit in the consensus object. For the back vowel /u/
there is more speaker-dependent deviation from the consen-
sus object. Concerning the stressed-unstressed distinction,
tongue configurations of /i/ differ only very slightly with a
somewhat lower tongue tip position for stressed /i/. For /u/,
however, the speaker-dependent and the consensus configu-
rations of stressed /u/ are clearly more retracted, and the
tongue tip points downward. Even though the speakers vary
in the extent of the difference, the direction is similar for the
two speakers and the consensus object.

FIG. 4. Comparison between averaged
articulatory configurations of the two
speakers W1 !thin lines in left panels"
and M4 !right panels". The upper two
panels show tongue configurations for
/tit/ !left" and the lower panels for
/tut/. The upper curved lines show the
outlines derived from EPG palates.
Tongue configurations marked with
filled markers were measured at the
midpoints of stressed vowels and the
empty markers for the corresponding
unstressed vowels.
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C. Relationship between tract morphology and
speaker-dependent modeled data

By means of CCA, we aimed at summarizing the rela-
tions between the eigenvalues—which measure the amount
of affine deformation—in the tongue and the palate data sets
as analyzed by the normalization. Recall that the eigenvalues
of the transformation matrix relating the consensus object to
the individual articulatory spaces contain the amount of uni-
form affine deformation relating the individual speaker to the
consensus. In the morphological data set, these directions
have visually interpretable meanings in 2D-Euclidean space,
which is not the case for the articulatory vowel spaces.
Therefore, we truncated the matrix of eigenvalues in the ar-
ticulatory data set by visual inspection of the scree plot. Its
inspection suggested the use of four eigenvalues, and these
were entered in the canonical correlation as predictors
!7 speakers %4 matrix" and both eigenvalues of the palate
outline analysis served as criteria !7%2 matrix". Given the
low explanatory power of the data set, the results of the
following analyses are to be considered as exploratory de-
scriptions. Further note that the division in predictors and
criteria is meaningless in CCA; the number of extracted ca-
nonical correlations is equal to the minimum number of vari-
ables in either set. The expected behavior of the analysis is as
follows: Apart from finding substantial canonical correla-
tions between predictor and criterion variables, we expected
higher redundancies for the morphological variates, given
the tongue configurations. The canonical correlations in this
analysis were substantial with values of 0.94 and 0.78, and
the summed redundancies over both covariates amounted to
71% of the variance on the criterion side !palate outline data"
but only to 52% on the predictor side. In other words, the
correlation appears to be substantial and, more importantly,
the normalization procedure captures similar directions in the
tongue and palate data. Table II summarizes these results.

As a next step, selected intermediate results as obtained
from the analysis of tongue shapes were related to the palate
doming variable. Here, standard multiple regression was

used in order to roughly describe the correlational structure
between eigenvalue predictors as derived from palate outline
and tongue configuration data sets. To our surprise, the mul-
tiple regression for the palate outline eigenvalues on the
doming index was not substantial with only 11% of ex-
plained variance. In contrast, the regression of the first
four eigenvalues of the tongue analysis was substantial, ex-
plaining 95% of the variance. Furthermore, it was again !as
in the canonical analysis described" necessary to include
more than two predictors to capture the anatomical variance.
In summary—given the exploratory character of these
analyses—a substantial proportion of the variance captured
by the normalization procedure when applied to articulatory
configurations seems to be shared with what is extracted
from the palate outlines.

D. Prediction of phonemic identity

A further check of the success of normalization proce-
dures is to make attempts at measuring the increment of pre-
dictability of phonemic identity caused by normalization pro-
cedures #see Adank et al. !2004" for a more detailed adoption
of such a rationale$. This is possible by means of statistical

FIG. 5. Speaker-dependent modeled
articulatory configurations !tongue
contours with filled square symbols"
and the consensus objects !contours
with circles" for /tit/ !upper panels"
and /tut/ !lower panels". Palate con-
tours of the consensus object are
printed as thin lines, the contours of
speaker-dependent modeled data as
bold lines. Modeled data of speaker
W1 are presented on the left side and
that of speaker M4 on the right side.

TABLE II. Summary of analyses relating tract morphology to tongue ana-
lyzes.

CCA
Can correlations

CC I 0.94
CC II 0.78

Redundancies
Ryx

2 0.71
Rxy

2 0.52

Multiple regressions on doming index
Predictor

Tongue eigenvalues 95%
Palate eigenvalues 11%
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discrimination. The predictors used in the current context
were the first and second formant frequency values in the
acoustic data set and EMMA coil positions for four tongue
sensors in the articulatory data set. The data were pooled
over speaker and vowel identity in stressed and unstressed
positions, yielding 210 !7 speakers%15 vowels%2 stress
conditions" cases altogether. Vowel identity !15 German
monophthongs in stressed and unstressed positions" was the
dependent variable. In order to compare the normalization
we used with an alternative normalization scheme, the acous-
tic data set was also Lobanov transformed and subjected to
the same discrimination analysis. The calculation of an ana-
log to the Lobanov-normalization in the articulatory case
was not considered as meaningful and therefore not under-
taken. Results were evaluated in terms of percentage cor-
rectly classified tokens, which can be calculated from confu-
sion matrices between vowel quality as intended by the
speaker and vowel quality as predicted by the classification
procedures. These percentages were calculated both on the
whole data set and separately for vowels in stressed and un-
stressed conditions in order to reveal potentially different
effects of the normalization procedures on stressed and un-
stressed tokens. Classification results were compared by
means of McNemar *2-tests. In a first step, LOGDA was
compared with LDA. LOGDA had the tendency to perform
better than LDA, although this effect depended on whether
the classification procedures were applied to the raw data or
to one of the normalized data sets. For example, LOGDA
achieved significantly higher amounts of correctly classified
items than LDA for the Lobanov data !*2=2.7, p=0.049",
but this effect did not reach the level of significance neither
for the procedure proposed here !*2=1.33, p=0.12" nor for
the raw data !*2=2.23, p=0.067". In the following we report
the results of our analyses with both classification proce-
dures. In contrast to the comparison of classification meth-
ods, the comparison of normalization procedures yielded the
by far more substantial results !summarized in Table III":

Regardless of the classification method used, the normaliza-
tion procedure proposed performed substantially better than
the Lobanov procedure !LDA: *2=12.38, p=0.0002,
LOGDA: *2=11.69, p=0.0003". This result is in accordance
with the amount of scatter reduction reported above.

IV. SUMMARY AND DISCUSSION

In this paper, we have described and applied a normal-
ization procedure applicable to articulatory and acoustic
vowel spaces. The procedure consists of constructing a so-
called consensus object with the property that the normalized
acoustic or articulatory spaces have equal variances in the
main directions of affine deformation and performing mul-
tiple multivariate regression analysis of this consensus object
on the raw configurations to yield speaker-specific normal-
ized data. We delivered a qualitative description of raw and
normalized configurations as the first empirical step. For the
transformation from the consensus to the speaker-specific
formant spaces, only little affine transformation appeared to
be necessary !see Fig. 1", which is equivalent to the orthogo-
nal and affine versions of the algorithm yielding very similar
results. Still, a higher degree of scatter reduction of speaker-
specific variation was achieved by our procedure as com-
pared to Lobanov speaker normalization !see Table I". This
benefit in terms of scatter reduction comes at the cost of
partially more aggressively transforming the orientation of
the data for some vowel categories. For the articulatory data,
substantial affine transformation was necessary in order to
map the speaker-specific data onto the consensus object. As a
result, affine transformations yielded tongue configurations
for which a large part of speaker-specific pellet placement
and shape differences were removed !see Fig. 5".

We also tested the assumption that the normalization
procedure for the articulatory spaces captures directions in
the data which correspond to primary dimensions of uniform
shape change. For this purpose we applied the normalization

TABLE III. Percentages of correctly classified vowels by LDA and LOGDA. The predictors were first and
second formant values !acoustic data set" or EMMA coil positions of the four tongue sensors !articulatory data
set". Vowel quality with 30 levels !15 German monophthongs is stressed and unstressed positions" served as
dependent variables for both data sets. Percentages are given for the whole data sets and separately for stressed
and unstressed subsets. In brackets: benefit from normalization !in %".

Data set Method Raw Normalized Lobanov

Acoustic
LDA Whole 47 80!33" 63!16"

Stressed 54 82!26" 67!13"
Unstressed 39 77!38" 60!21"

LOGDA Whole 51 83!32" 68!17"
Stressed 57 86!29" 73!16"
Unstressed 44 80!36" 63!19"

Articulatory
LDA Whole 41 74!33" ¯

Stressed 44 70!25" ¯
Unstressed 38 77!39" ¯

LOGDA Whole 48 87!39" ¯
Stressed 59 90!31" ¯
Unstressed 37 83!46" ¯
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procedure to a control data set of anatomical characteristics,
i.e., palate outlines. The substantial correlations obtained
suggest that the procedure’s success is at least partly related
to the removal of uniform shape change differences between
individual speakers.

Finally, in order to measure the procedure’s capability to
recover phonemic identity, we performed separate discrimi-
nation analyzes of original and normalized vowel spaces in
both articulatory and acoustic domains on phonemic identity.
Phoneme recovery probabilities for both articulatory and
acoustic data increased substantially in terms of percentages
of correctly classified tokens !see Table III". In particular, the
classification rates for the unnormalized acoustic data are
relatively low in comparison to results published in the lit-
erature. For example, Adank et al. !2004" reported correct
classification rates for unnormalized data !i.e., their “Hz”
condition" of about 80% and of more than 90% after Lo-
banov transformation. However, we do not consider this as
alarming for the following reasons: First, they entered addi-
tional predictors !F0 and F3" in their discriminators; second,
their data set contained more speakers than ours !160 vs 7",
and, presumably most important, ours contain more than
three times as many categories in the criterion !30 vs 9" due
to the more crowded German vowel system and the addi-
tional word stress condition. A further point to consider for
the articulatory data set is that the discrimination procedure
had no access to lip rounding information, which presumably
provides the most important information for the distinction
between rounded and non-rounded front vowels than the
tongue data presented to the discrimination procedure here.

Another striking aspect of this analysis is that unstressed
vowels benefit more from the result of the normalization.
This pattern in principle holds for both the articulatory and
the acoustic data sets, although there is a large difference in
the performance of the discrimination procedure already in
the unnormalized baseline for the articulatory data. This ob-
servation is compatible with a scenario according to which
unstressed vowels are more prone to coarticulatory influ-
ences of the consonantal environment, which is sensitive to
the normalization !Mooshammer and Geng, 2008".

Still, as already mentioned in the Introduction, the
present study was designed not only to propose an alternative
normalization scheme but also to attempt to quantitatively
relate aspects of vocal-tract anatomy to the functioning of the
normalization. This second aim of the study resembles clas-
sical tenets of the universal articulatory phonetics hypothesis
!Johnson et al., 1993" according to which interindividual dif-
ferences should be lawfully related to factors such as others
vocal-tract geometry. This was achieved by validating the
directions extracted by our normalization method against in-
dependently extracted models of palate shapes, which re-
sulted in high correlations of these independently extracted
directions. This suggests that the normalization procedure in
the articulatory data set partially operates on interindividual
differences related to aspects of tract morphology.

This virtue to some extent might at the same time be the
largest drawback: Allowing orthogonal rotational or even af-
fine transformations in addition to the Lobanov scalings
clearly has a strong desirable effect on phoneme classifica-

tion rates, but in some instances such transformations might
be too aggressive and distort the categorical structure. In
particular, ellipse orientations are affected more strongly by
our procedure than it is the case for the more conservative
Lobanov transform. This particular observation on ellipse
orientation and the likewise less conservative nature of for-
malism and transformation applied might lead to specula-
tions about detrimental effects of the procedure also in other
situations. Still, as demonstrated, the affine version of the
procedure produces output showing how the fit was
achieved. However, affine transformation might be undesir-
able in some settings. Then, it might be indicated to revert
to the orthogonal version—the generalized Procrustes
analysis—or to the Lobanov transform. Still, even in such
cases, the analysis provides relevant diagnostic information
on the data set and therefore presents a useful additional tool
for the phonetic practitioner.
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