


described by Gauss and, prior to that, by De Moivre (Porter, 1986;
Stigler, 1986; Tankard, 1984).

Laplace’s reasoning anchored Gauss’s curve in explicit assump-
tions about the system being measured and how components
interact to yield dispersion in the bell shape. These abstract as-
sumptions were justified empirically in the later application to
ballistics. Ballistics research effectively proved that large numbers
of perturbations sum up their effects in ballistic trajectories to
produce the Gaussian pattern (Klein, 1997). By the beginning of
the 20th century, the abstract Gaussian description was trusted to
describe the dispersion of measurements of almost any system
(Stigler, 1986).

Gaussian distributions come from systems whose behavioral
outcomes are subject to vast arrays of relatively weak, additive,
and independently acting perturbations. Weak interactions among
causal components ensure that perturbations affect components
locally, individually, which allows effects to be localized in indi-
vidual components. Weak interactions thus ensure component
dominant dynamics because the dynamics within components
dominate interactions among components.

Given the inherent links between additivity and research meth-
ods to identify causal components (cf. Lewontin, 1974; Sternberg,
1969), the question of how components interact arguably has
priority over identifying components themselves. At least, one
would want to establish first that components interact additively
before applying the general linear (additive) model to infer com-
ponents in component effects. If components interact in some way
other than additive, then scientists require research methods ap-
propriate to the other kind of interaction—at least, that is our
contention (Riley & Turvey, 2002; Riley & Van Orden, 2005;
Speelman & Kirshner, 2005; Van Orden, Kello, & Holden, in
press; Van Orden, Pennington, & Stone, 2001).

Of course, one could always mimic evidence of additive inter-
actions in ways that do not truly entail weak additive interactions
and component dominant dynamics, by artfully mimicking the
Gaussian shape, for example. No theoretical conclusion is iron-
clad. Consider, on the one hand, even strongly nonlinear and
discontinuous trajectories can be mimicked in carefully chosen
component behaviors, combined additively. On the other hand,
linear behaviors are not rare, even for systems of strongly nonlin-
ear equations, which can make the term nonlinear dynamics appear
superficially like an oxymoron.

Still, we accept assumptions that predominate empirically and
provide simple yet comprehensive accounts, while we trust that
scientific investigation, over the long term, will root out false
assumptions. For example, the association between Gaussian pat-
terns of dispersion and component dominant dynamics became so
useful, so engrained, and so trusted, as to license the logical
inverse of Laplace’s central limit theorem. Thus, when an empir-
ical distribution appears Gaussian, then the system must be subject
to vast arrays of relatively weak, independently acting perturba-
tions because it produced a Gaussian distribution. The Gaussian
inference trusts empirical patterns of dispersion to reveal intrinsic
dynamics as component dominant dynamics.

A reliable Gaussian account includes trustworthy links between
ideal description, empirical pattern, and intrinsic dynamics of the
system in question—how the components of a system interact.
The account moves beyond superficial description to become a
reliable systems theory. Understandably, early social scientists like

Galton and Pearson looked to this reliable theory for inspiration
(Depew & Weber, 1997; Klein, 1997; Porter, 1986; Stigler, 1986).
The crucial point for the present article is that one can know how
processes interact without knowing what these processes are. The
necessary information is found in the abstract shape of dispersion
alone.

Multiplicative Interactions and Lognormal Dispersion

At the beginning of the 21st century, other abstract distributions
of measured values vie for scientists’ attention. Many physical,
chemical, and biological laws rely on multiplicative operations, for
instance, which yield a lognormal pattern of dispersion in mea-
surements (Furusawa, Suzuki, Kashiwagi, Yomo, & Kaneko,
2005; Limpert, Stahel, & Abbt, 2001). We stay with the metaphor
of ballistics to explain how multiplicative interactions deviate from
the additive Gaussian pattern.

Imagine a slow-motion film that tracks a bullet’s trajectory from
the point the bullet exits a rifle’s muzzle to its entry point at the
target. At any point along its trajectory, the bullet’s location on the
next frame of film, after the next interval of time, can be predicted
by adding up the effects of all the independent perturbations that
acted on the bullet, up to and including the present frame.

Sources of variation are independent of each other. Some push
left, some right, some up, some down, and most push in oblique
directions, but the overall effect is represented simply by their
sum. Large deviations from the bull’s-eye are uncommon, for a
skilled shooter at least, and a sufficient number of bullet strikes
will yield the expected Gaussian pattern.

Imagine next a magic bullet for which sources of variation
combine multiplicatively. This violates the Newtonian mechanics
of bullets, of course, but we pretend that our magic bullet exists.
Each change in the magic bullet’s trajectory is the product of the
current trajectory and the force of the perturbation.

For magic bullets, sometimes, multiplication has a corrective
influence and shrinks the effects of previous perturbations, when
the multiplier is greater than zero but less than one. Other times,
the multiplier amplifies previous perturbations and exaggerates the
dispersion that they cause, when the multiplier is greater than one.

For magic bullets, corrective multiplicative interactions tend to
concentrate bullets already close to the bull’s-eye in a tighter
distribution, while amplifier multiplications produce more extreme
deviations away from the bull’s-eye. Multiplication erodes the
middle range of deviation compared with addition. It produces a
dispersion of bullets that is denser at its center and more stretched
out at the extreme.

The result, in the limit, appears as a lognormal distribution. The
name comes from the fact that a lognormal will reappear as a
standard Gaussian or normal distribution if its axis of measurement
undergoes a logarithmic transformation. The transformation redis-
tributes the variability to become once again a symmetric Gaussian
distribution, as a comparison of Figures 1A and 1B illustrates.

Gaussian and lognormal patterns are closely related. As such,
they share the assumption that variation comes from perturbations
of independent processes. Multiplication in the linear domain
equals addition in the logarithmic domain. If vast arrays of inde-
pendent perturbations interact as in a serial chain of multiplica-
tions, then event times such as response times will be lognormally
distributed. Independent processes also imply that both distribu-
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tions are additive, one on a linear scale and the other on a
logarithmic scale.

Yet lognormal distributions are produced by multiplicative in-
teractions, which also makes them cousins to multiplicative inter-
dependent interactions. Multiplicative interdependent interactions
produce power laws. As kin to power laws, systems that produce
lognormal distributions illustrate a stable, special case of interde-
pendence. Lognormal dispersion is found in multiplicative feed-
back systems for which the interacting processes are sufficiently
constrained (Farmer, 1990). Sufficiently constrained interactions
quickly stabilize solutions, minimizing the empirical consequences of
feedback, and give the impression of independent processes. Next, we
discuss multiplicative feedback more generally and its consequences
for dispersion of measurements.

Multiplicative Feedback Interactions
and Power-Law Dispersion

Aggregate event times of interdependent processes accumu-
late in lawful patterns called power laws. Specifically, in the

aggregate, interdependent processes produce response times, or
event times, in the pattern of an inverse power law—a straight
line on an x-axis of (log) magnitude and a y-axis of (log)
frequency of occurrence. For example, fast response times are
relatively common, and very slow response times are rare. If the
pattern is a power law, however, then the frequency of occur-
rence of a particular response time will be directly related to its
magnitude.

The probability of a particular event time equals beta times
that event time raised to the power of negative alpha. Alpha is
a scaling exponent that describes the rate of decay in the slow
tail of the distribution. Beta is a scaling term; it moves the
equation up and down on the y-axis. (This is clearer in Equation
2, below, in which Equation 1 has been transformed by taking
the logarithm of both sides.) The power-law relation is repre-
sented in Equations 1 and 2.

P�event time� � � � event time��. (1)

log�P�event time�� � � � � log�event time� � log���. (2)

Figure 1. A: An ideal lognormal probability density function, plotted on standard linear axes. The x-axis
depicts response time, and the y-axis tracks the probability of observing a response time in any given interval
of time. B: The same density, now on log-linear axes, where it appears as a symmetric, standard Gaussian
density. C: The same density curve, now plotted on double-logarithmic axes, where it appears as a downward
turning parabola. D: An ideal inverse power-law density on standard linear axes. E: The same power-law density
on log-linear axes. Notice that the power-law density maintains its extreme, slowly decaying tail distinct from
a simple exponential-tailed density, which falls off linearly on log-linear scales. F: The power-law density falls
off as a line on double-logarithmic axes, the characteristic footprint of a power-law scaling relation. G: The
density depicts an idealized 50%–50% cocktail of the two density functions on standard linear axes. H: The same
mixture density in log-linear domain. I: The same mixture density in the double-logarithmic domain. Depicting
the probability density functions on the different scales helps to distinguish them from other potential ideal
descriptions.
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Notice that Equation 2 is simply the equation for a line; the (log)
probability of an event time equals negative alpha (slope) times the
(log) event time itself plus a constant (log[�]). The graph of an
ideal inverse power law is simply a line with a negative slope on
double-logarithmic axes (see Figure 1F). The key term in these
equations is alpha. Alpha is the exponent of the power law and
describes the rate of decay in the skewed tail of the distribution.

Equation 1 will diverge as event times approach zero. Conse-
quently, raw variables are often normalized to make beta intercept
the y-axis. Instead, in Figure 1, the graphic depiction of the power
law appends a low-variability, lognormal front-end to close up the
probability density. This allows the probability density function to
be shifted off the y-intercept and to resemble standard probability
density functions of response time.

The power-law Equations 1 and 2 describe possible patterns of
dispersion in measurements. Recall that the dispersion of measure-
ments in ballistics is due to a vast array of independent perturba-
tions, of bullet casings, powder load, and so on. Interdependent
interactions are likewise subject to vast arrays of perturbations,
amplified in recurrent multiplicative interactions due to feedback.
Feedback behavior is also lawful behavior in this case, and the
dispersion of (log) event times remains proportional to the mag-
nitudes of the perturbations.

Many natural systems yield event magnitudes that obey inverse
power laws, and power laws are associated with a wide array of
organisms, biological processes, and collective social activities
(Bak, 1996; Farmer & Geanakoplos, 2005; Jensen, 1998; Jones,
2002; Mitzenmacher, 2003; Philippe, 2000; West & Deering,
1995). Allometric laws are examples of power-law scaling in
biology, although they are not statistical distributions like the topic
of this article. Power-law dispersion most like response time
dispersion includes Zipf’s law, earthquake magnitudes, book and
online music sales, and scientific citation rates (Anderson, 2006;
Turvey & Moreno, 2006). These are all succinctly described as
inverse power-law distributions.

Anderson (2006) and Newman (2005) include more examples of
power-law behavior. Newman (2005) and Clauset, Shalizi, and
Newman (2007) are good sources for mathematical and statistical
details of power laws. The key to understanding power-law be-
havior is amplification via multiplicative feedback, to which we
return several times in this article.

The feedback interactions that produce power-law behavior are
called interaction dominant dynamics (Jensen, 1998). Feedback
spreads the impact of perturbations among interacting components.
Consequently, one can no longer perturb individual components to
produce isolated effects. Multiplicative feedback creates stronger
interactions among components and distributes perturbations
throughout the network of components. It is this property of
interaction dominant dynamics that promotes a global response to
perturbations in systems that organize their behavior in multipli-
cative feedback.

The Cocktail Hypothesis

The previous sections introduced power-law and lognormal
distributions. Cognitive dynamics are multiplicative if response
time distributions entail either or both of these distributions. Cog-
nitive dynamics are interdependent if response times are distrib-

uted as power laws. Multiplicative interdependent dynamics are
interaction dominant dynamics, as noted in the previous paragraph.

Interaction dominant dynamics ensure necessary flexibility in
cognition and behavior (Warren, 2006). Flexibility is achieved
when interaction dominant dynamics self-organize to stay near
choice points, called critical points, which separate the available
options for cognition and behavior, thus the technical term self-
organized criticality (Van Orden, Holden, & Turvey, 2003). In-
teraction dominant dynamics anticipated widely evident fractal 1/f
scaling, found in trial series of response times and other data
(Gilden, 2001; Kello, Anderson, Holden, & Van Orden, 2008;
Kello, Beltz, Holden, & Van Orden, 2007; Riley & Turvey, 2002).

This article is not about 1/f scaling, however. The predictions
tested here simply derive from the shared parent hypothesis, in-
teraction dominant dynamics, which predicts fractal 1/f scaling.
The shared parent strictly limits choices for possible distributions
of response times. Most famously and straightforwardly, it favors
data distributed as an inverse power law relating the magnitude
(x-axis) and likelihood (y-axis) of data values (Bak, 1996).

Of course, response times are not exclusively power laws, thus
the hypothesis of lognormal behavior for the fast front end. Log-
normal behavior is a motivated hypothesis due to its theoretical
relation to power-law behavior. The theoretical explanation can be
found in West and Deering (1995), for example, who placed
power-law and lognormal behavior on a continuum with Gaussian
distributions (see also Montroll & Shlesinger, 1982).

The Gaussian, a signature of weak additive interactions among
independent, random variables—component dominant dynam-
ics—is at one end of the continuum. At the other extreme is the
inverse power law, a signature of interdependent multiplicative
interactions—interaction dominant dynamics. The lognormal
stands between the two extremes because it combines independent,
random variables with multiplicative interactions.

In our turn, we have added one fact to the above: Power-law
behavior transitions to lognormal behavior if sufficient constraints
accrue to mask superficial consequences of feedback. For exam-
ple, this is observed in generic recurrent neural models in which
available constraints include configurations of connection weights
(Farmer, 1990). More generally, available constraints derive from
history, context, the current status of mind and body, the task at
hand, and their entailments—available aspects of mind, body, and
world that reduce or constrain the degrees of freedom for cognition
and behavior (Hollis, Kloos, & Van Orden, 2009; Kugler &
Turvey, 1987).

Notice how constraints naturally motivate new predictions about
mixtures of power-law and lognormal behaviors and about the
direction of change in relative mixtures as interactions become
more or less constrained, due to practice or rehearsal, for example
(cf. Wijnants, Bosman, Hasselman, Cox, & Van Orden, 2009), or
aging, damage, and illness (cf. Colangelo, Holden, Buchanan, &
Van Orden, 2004; Moreno, Buchanan, & Van Orden, 2002; Van
Orden, 2007; West, 2006). Available constraints determine the
mixture of power-law and lognormal dispersion, which invites
analyses that may reject either lognormal, power law, or the
mixture of both in response time dispersion.

Figure 1 summarizes the ideal patterns of dispersion on linear,
log-linear, and log-log axes (see caption). Figure 1 also illustrates
a cocktail mix of power-law and lognormal dispersion. Each
pronunciation time is sampled from either a power law or a
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lognormal that, in the aggregate, makes a power-law–lognormal
cocktail. We call this a cocktail because each word’s pronunciation
time, like a liquid molecule in a cocktail, comes from separate
power-law or lognormal bottles. In the subsequent cocktail, re-
sponse times are mixed in proportions that pile up as a partici-
pant’s aggregate distribution. The proportion of power-law behav-
ior and the exponent of the power law are the key parameters of
this hypothesis.

Like a cocktail, different collections of response times, from
different participants, from different task conditions, from the
same participant on different tasks, or from the same task on
different occasions, can be a different mix of power-law and
lognormal behavior. The mix proportions can range from predom-
inantly power-law behavior to almost exclusively lognormal—
lognormal straight up with a dash of power law, so to speak
(compare Holden, 2002; Van Orden, Moreno, & Holden, 2003).

Notice that each response time could summarize deterministic,
stochastic, or random component contributions or all of the above.
The cocktail hypothesis generalizes across all these cases because
we make assumptions not about the intrinsic dynamics of compo-
nents, only about how they interact. The total event time combines
all factors in multiplicative interactions yielding a response time
that is either a power-law or lognormal sample.

The Hazard Function Test

We now introduce a test for generality of the cocktail hypoth-
esis. In the early chapters of Luce’s (1986) classic survey of
response time studies, he underscored the importance of reconcil-
ing cognitive theory with the widely identified characteristic
shapes of response time hazard functions. Hazard functions are
mathematical transformations of probability density functions and
their cumulative distributions. They portray information so that
new questions can be asked about the probability of events. For
instance, the hazard function portrait answers the question, What is
the likelihood that an event will occur now given that it has not
occurred so far? We describe more details of hazard functions
later, but here, we focus on how they function as a test of gener-
ality.

Three characteristic shapes are found for hazard functions
across otherwise different laboratory tasks and manipulations. The
three shapes emerge in single experiments designed to examine a
single kind of performance, such as word pronunciation. A risk of
paradox exists because the three shapes could indicate qualita-
tively different dynamics (Luce, 1986); such heterogeneity could
require that analyses refocus on details of intraindividual variation,
for instance (Molenaar, 2008).

Consequently, although hazard functions are typically ignored
in response time studies, they are nonetheless sources of limiting
constraints for theories of response time (Ashby, Tien, & Bal-
akrishnan, 1993; Balakrishnan & Ashby, 1992; Maddox, Ashby, &
Gottlob, 1998). Arguably, characteristic hazard functions offer
critical linchpins between data and theory because they are so
difficult to simulate with limited ad hoc assumptions (Luce, 1986;
Maddox et al., 1998; Van Zandt & Ratcliff, 1995).

It is this fact, that they are not easily mimicked, that makes
hazard functions useful to test generality. For instance, all other
things being equal, to mimic the full shape of a probability density
function is to provide a more complete account of response times,

compared with accounts focused on summary statistics like means
or standard deviations. In the same vein, to successfully mimic a
hazard function also expands the inclusiveness, completeness, and
generality of an account. Townsend (1990) used these facts to
argue why the qualitative ordering of hazard functions is more
diagnostic than an ordering of condition means or even probability
density functions, for example.

Thus, in the present case, all other things being equal, if math-
ematical transformations of simulated density functions yield the
same hazard functions as their empirical counterparts, then the
simulations have met a much greater challenge than density func-
tions alone. Generality accrues in meeting this challenge because
one can successfully mimic empirical density functions, for exam-
ple, and still fail to mimic their derived hazard functions, but not
vice versa. Consequently, in the existence proofs that follow, we fit
individual participants’ density functions of word-naming times
and also fit participants’ hazard functions.

As the simulations reveal, one easily recognizes in the cocktail
simulations the characteristic hazard functions that other cognitive
scientists have so carefully excavated. Luce (1986) and Maddox et
al. (1998) described the three characteristic empirical hazard func-
tions of response time distributions: Either the hazard function
rises monotonically to an asymptote (compare Figure 2G), or it
rises rapidly to a peak and then declines to an asymptote (see
Figure 2H), or it rises rapidly to a much higher peak and then falls
off sharply (see Figure 2I). This remarkably succinct characteriza-
tion of response time outcomes in very many or all cognitive tasks
is a basis for another kind of generality. A theory of response times
that explains the three characteristic hazard functions generalizes
to response times at large.

An Existence Proof Using Word-Pronunciation Times

We begin with an existing data set of word-pronunciation times
(Thornton & Gilden, 2005; Van Orden, Holden, & Turvey, 2003).
A word-pronunciation trial presents the participant with a single
word that he or she pronounces aloud quickly. Pronunciation time
is measured from when the word appears until the participant’s
voice triggers a voice relay. The data come from a word-
pronunciation experiment in which 1,100 pronunciation trials pre-
sented four- and five-letter monosyllabic words in a unique ran-
dom order, across trials, to each of 20 participants, one word per
trial. Empirical power laws can only be distinguished in the slow
extremes of rare response times, and large samples of within-
participant response times better fill out the slow extremes of a
person’s response time distribution.

Simulations of Participant Probability Density Functions

Figures 2A, 2B, and 2C depict 3 individual participants’
pronunciation-time probability density functions. The smooth and
continuous functions are products of a standard procedure of
nonparametric, lognormal-kernel smoothing (Silverman, 1989;
Van Zandt, 2000; a lognormal kernel is equivalent to a Gaussian
kernel in the log-linear domain). Construction of density functions,
including smoothing, was done after a logarithmic transformation
of raw pronunciation times. The three figures illustrate the three
categories of distributions that produce characteristic hazard func-
tion shapes. We explain more details of hazard functions after
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describing the methods used to simulate individual participants’
probability density functions.

Simulation Methods

Cocktail mixture simulations were conducted to capture each of
the 20 shapes of empirical density curves from the 20 participants’
data reported in Van Orden, Holden, and Turvey (2003). Simula-
tions mixed together synthetic samples from parent distributions of
inverse power-law and lognormal pronunciation times. As the
simulations demonstrate, the sample mixtures sufficed to mimic
participant data. Each choice of parameter values mimicked one
participant’s pronunciation-time distribution.

Data preparation. The criteria to select the data points to be
simulated were conservatively inclusive. In a sample of the skilled
word-naming literature, the most conservative criteria for exclu-
sion were cutoffs less than 200 ms and greater than 1,500 ms (cf.
Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Balota &
Spieler, 1999; Spieler & Balota, 1997). We also included the small
proportion of pronunciation times that resulted in errors because it

did not change the outcome (M 	 2.12%, SD 	 1.48%). Inclusion
of error response times is also conservative; we assume errors are
produced by the same dynamics that produce correct pronuncia-
tions.

The total number of simulated response times, from a partici-
pant’s data set, equaled the total number of pronunciation times
that were greater than or equal to 200 ms and less than or equal to
1,500 ms. The maximum possible number was 1,100. The actual
number varied from participant to participant (M 	 1,094, SD 	
8.76). The number of empirical observations on this interval de-
termined the number of synthetic data points generated in the same
interval on each replication of a simulation.

Parameters. The cocktail simulations included seven param-
eters: the mode 
PL and exponent � of the inverse power law, the
lognormal mode 
LN and standard deviation �, the sample mix-
ture proportions �FLN and �BLN that index relative proportions of
lognormal behavior on each side of the lognormal mode, and �PL,
which indexes the proportion of power-law behavior in the slow
tail. Only two of the three proportion parameters were free to vary

Figure 2. Three characteristic hazard functions found generally in response time data and the distributions of
pronunciation times from which they were computed, on linear (Panels A, B, and C) and log–log (Panels D, E,
and F) scales. Panels A, B, and C correspond to pronunciation times of three individual participants from the first
existence proof. The heavy black line in each panel is the probability density of one participant’s pronunciation-
time distribution. The white points surrounding each black line in each panel represent 22 simulation mixtures
of ideal lognormal and inverse power-law distributions, using fixed parameters of synthetic distributions in a
resampling or bootstrap technique (cf. Efron & Tibshirani, 1993). The boundaries established by the white clouds
of the 22 simulated distributions circumscribe a 90% confidence interval around each empirical probability
density and hazard function.
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since the relative proportions must sum to one. Thus, six param-
eters were available to simulate individual patterns of dispersion
across participants. By comparison, standard diffusion models that
simulate decision time data collapsed across participants include at
least seven parameters, and up to nine have been used in some
circumstances (Wagenmakers, in press).

On log–response time axes, the mode 
LN of a parent lognormal
is also its midpoint. The standard deviation � controls relative
width around this midpoint. The mode 
PL of the parent power
law is also its maximum probability and its starting point—that is,
the minimum or fastest response time on the x-axis at which
power-law behavior is inserted. On double-logarithmic axes, the
exponent parameter � indexes the rate of linear decay of the slow
power-law tail. On linear axes, the slow tail of the distribution
diminishes as the curve of power-law decay (e.g., compare Figure
1F with Figure 1D).

Choosing the mode parameters. Almost all parameter choices
for synthetic parent distributions were equated with estimated
parameters of participants’ empirical distributions. For example, in
most cases, the parent lognormal mode 
LN was equal to the
estimate of the mode of the target empirical distribution, with the
following caveat: The mean, not the mode, is specified in equa-
tions that define the shape of a lognormal density. However, on log
axes, the mean and mode are equal in the statistical long run, and
the mode is relatively impervious to extreme values in the slow
tail. Since the parameters of the lognormal densities were specified
in the logarithmic domain, it was convenient to substitute the log
of the empirical modes in these equations.

The value of the empirical mode was established using a boot-
strap routine that repeatedly resampled and estimated the location
of the empirical mode (Efron & Tibshirani, 1993). Thirteen of the
20 participants’ distributions were successfully approximated us-
ing lognormal mode parameters pulled directly from the mode
statistics of the empirical distributions. Seven additional distribu-
tions required a slight adjustment of the statistical estimate of the
mode to align the empirical and synthetic distributions.

Some empirical distributions appeared to be bimodal, which can
be accommodated by setting the faster time mode equal to the
lognormal mode 
LN and the slower time mode equal to the
power-law mode 
PL. Thirteen of the 20 empirical distributions
were bimodal; the average difference between modes was 29 ms.
Apparent spurious bimodality was also present however (e.g., two
modes very close to each other). Spurious versus real bimodality
was judged from the hazard functions, where real bimodality has
a more prominent effect. For 7 participants’ simulations, the
power-law mode 
PL and lognormal mode 
LN were equivalent.

Choosing the dispersion parameters. The seed estimate to find
a standard deviation (�) for the parent lognormal came from a
conventional error-minimization fitting routine. The routine fits a
lognormal curve to the fast front curve of the empirical distribu-
tion, up to and including the empirical mode. Past this point,
however, the standard deviation parameter � was adjusted by hand
to improve the fit.

All synthetic pronunciation times less than or equal to an em-
pirical distribution’s (fastest) mode (the 
LN parameter) were
sampled exclusively from the lognormal parent. In every case, the
proportion of synthetic lognormal data points was the same as the
corresponding proportion of the participant’s data points, less than

or equal to the empirical mode. The parameter �FLN indicates the
proportion of synthetic times less than or equal to the mode 
LN.

The parameter �BLN equals the maximum proportion of syn-
thetic lognormal times greater than 
LN. The actual proportion of
synthetic lognormal times greater than 
LN depends on the trade-
off of lognormal and power-law behavior in the slow end of the
simulated distribution. The slow tails of distributions were hand-fit
using small adjustments to the two remaining free parameters—
namely, the exponent parameter � and the proportion �PL of
power-law behavior in the slow-tail mixture. Synthetic mixtures
were eyeballed and adjusted using a program that allowed visual
comparison of synthetic and empirical density and hazard func-
tions. The program required that all parameters were set to some
value in any and all adjustments.

Synthetic lognormal–power-law mixture densities were realized
in the following manner. First, both a lognormal and a power-law
density function, defined according to specific mode and disper-
sion parameters, were generated and normalized to occupy unit
area within the specified response time interval. The densities were
then combined in the required proportions, on either side of the
lognormal mode, according to a formula for generating mixture
densities provided by Luce (1986, pp. 274–275). The equation for
a normalized power-law density appeared in Clauset et al. (2007).
The resulting cocktail density was then transformed to a cumula-
tive distribution function. Following that, a rectangular unit-
interval random number generator was used to produce the re-
quired number of synthetic samples from the inverse of the
mixture distribution function.

Initially, the power-law exponent parameter � was set to a
relatively small, shallow value. If initial attempts to mimic the
empirical distribution failed across a range of mixture proportions,
then the exponent of the parent power law was increased to a
larger, steeper value, and another attempt was made. Trial-and-
error fitting continued until an apparently optimal choice of pa-
rameters was reached to approximate the density (and hazard)
function of a participant’s data. Table 1 lists the parameter values
of the parent distributions for each participant’s simulated data.

Simulation details. With parameter values in place, each indi-
vidual’s pronunciation-time distribution was simulated 22 times,
and one synthetic distribution was selected at random for a statis-
tical contrast. The contrast was a two-sample Kolmogorov-
Smirnov goodness-of-fit test with a Type I error rate of .05.
Success was counted if the synthetic distribution captured the
prominent features of the participant’s density functions and if it
passed the Kolmogorov-Smirnov test.

All 22 independent simulation outcomes were plotted in white,
behind each participant’s black empirical curve (see, e.g., Figure
2). The boundaries that define the cloud of white points circum-
scribe statistical estimates of the 5th and 95th percentiles around
each empirical probability density and hazard function (Efron &
Tibshirani, 1993). Thus, the repeated replications of the synthetic
distributions establish 90% confidence intervals around the empir-
ical density and hazard functions. The fact that so few replications
of the synthetic distributions so closely approximate the empirical
curves makes plausible, in a statistical sense, that cocktail mixtures
are reliable descriptions of the empirical patterns.

Shortly, we discuss details of three categories of simulated
distributions, power-law dominant, intermediate mixtures, and
lognormal dominant, right after we describe how we arrived at
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those category distinctions. First, a line was fit to the slow tail of
each participant’s density, on log–log axes, beginning at the em-
pirical mode. The slope of the line was then used to rank empirical
distributions from most shallow to most steep. The distributions
with the most shallow rank versus the most steep rank are what we
eventually call power-law versus lognormal dominant distribu-
tions, respectively.

Of interest here is that the rank of distributions, according to
estimates of unadulterated power-law behavior (their slow-tail
exponents), also respected an ordering of the three characteristic
hazard functions. Small unadulterated exponents corresponded to
hazard functions that rose to relatively constant asymptotes and
tended to lack prominent peaks. These required relatively higher
proportions of power-law behavior drawn from distributions with
smaller exponents.

By contrast, distributions with larger exponents corresponded to
hazard functions that rapidly rose to a high peak and tended to
require low proportions of power-law behavior from parent power
laws with large exponents. The remaining distributions, between
the two extremes, had hazard functions that rose to an intermediate
peak and declined to an asymptote. These intermediate cases
combine the features of the extreme cases. Simulations drew
intermediate proportions of power-law behavior and/or drew from
a power-law distribution with an intermediate exponent.

Nonetheless, the relation between hazard function shape and
cocktail parameters is neither isomorphic nor monotonic. This is
due partly to the log scales. More extreme linear values are more
compressed on log scales. Consequently, a power law with a mode
equaling 400 ms that decays with an exponent of 4 will cover a

narrower range of linear values than a power-law distribution with
the same exponent and a 600-ms mode, for example.

If one could create comparable modes on the response time axis,
however, then the three categories of hazard functions could be set
on a continuum that ties together proportion of power-law behav-
ior and the magnitude of the power-law exponent (�). However,
our goal was to simulate actual values of empirical distributions.

Except where noted, these same methods and criteria were
applied in all simulations reported in this article. PDF files con-
taining plots of all simulations are available online at http://
www.csun.edu/
jgh62212/RTD.

Simulation Results

Characteristic distributions. All participants’ data came from
a common set of stimulus words. Nevertheless, different partici-
pants produced visibly distinct distributions, as we illustrate in
Figure 2. The obvious difference is in the relative skew of slow
pronunciation-time tails (the fast lognormal front ends are pretty
much the same shape). Figure 2A includes a dramatically stretched
slow tail. Figure 2B also has a visible positive skew, but less
dramatic than in Figure 2A, while the density depicted in Figure
2C is similar to the lognormal density in Figure 1A. The solid
black curves in Figures 2D, 2E, and 2F illustrate the same 3
participants’ density functions, now plotted on double-logarithmic
axes. In each plot, the x-axis is the natural logarithm of pronun-
ciation time, and the y-axis is the natural logarithm of the proba-
bility density. (Wavy oscillations in extreme tails are an artifact of
the sparse observations in the extreme tail.)

Table 1
Parameters Used to Generate Synthetic Distributions for the First Existence Proof

Participant 
LN � 
PL � �FLN �BLN �PL

1 6.2500 .100 6.270 6.00 .311 .019 .670
2 6.2560 .095 6.256 5.50 .241 .000 .759
3 6.3200 .110 6.460 7.75 .370 .397 .233
4 6.1230 .085 6.240 8.50 .315 .405 .280
5 6.2000 .090 6.210 7.50 .355 .045 .600
6 6.3700 .110 6.370 8.00 .379 .001 .620
7 6.2540 .110 6.400 8.00 .474 .446 .080
8 6.1269 .090 6.230 8.50 .293 .347 .360
9 6.2050 .100 6.205 8.75 .417 .000 .583

10 6.3490 .100 6.510 8.00 .494 .466 .040
11 6.2530 .095 6.253 7.50 .428 .192 .380
12 6.2400 .110 6.240 8.75 .476 .224 .300
13 6.2360 .090 6.300 7.75 .375 .425 .200
14 6.1400 .100 6.250 8.25 .513 .407 .080
15 6.1760 .120 6.280 8.50 .378 .452 .170
16 6.2300 .110 6.230 8.50 .436 .204 .360
17 6.2540 .085 6.270 8.50 .371 .089 .540
18 6.1440 .110 6.165 10.00 .525 .295 .180
19 6.0400 .080 6.060 10.00 .370 .230 .400
20 6.3040 .090 6.400 10.00 .445 .465 .090
M 6.2200 .100 6.280 8.21 .398 .255 .346

Note. This table lists parameters of the parent lognormal and power-law distributions, as well as the proportion of power-law samples used in the
simulations. The participant numbers were established by ordering each distribution in terms of the empirically estimated slope of the tail of the distribution.
This explains why the participant numbers correspond to a close rank ordering of the alpha parameter. Participants 1 and 2 were classified as power-law
dominant; Participants 17–20 were classified as lognormal dominant. The remaining participants were classified as intermediate mixtures. The full
collection of simulations can be viewed online at http://www.csun.edu/
jgh62212/RTD. 
LN 	 lognormal mode; � 	 lognormal standard deviation;

PL 	 power-law mode; � 	 power-law tail; �FLN 	 proportion in front end of lognormal; �BLN 	 proportion in back end of lognormal; �PL 	 proportion
power law.
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Power-law dominant. Figure 2A shows synthetic density
functions plotted as white points behind the participant’s empirical
density. Figure 2A is plotted on linear axes, and Figure 2D is
plotted on double-logarithmic axes. The white cloud of points
represents the 22 synthetic density functions, one on top of the
other, to depict a range of potential density functions that could
arise from the particular 75.9% power-law mixture. This cloud of
simulated density functions captures virtually every point along
the curve of the empirical density function, so the empirical
density could plausibly be a similar mixture.

For this participant, the proportion of power-law behavior was
�PL 	 75.9% of 1,094 simulated pronunciation times. The power-
law mode was set at 
PL 	 6.256 log units (521 ms), which
corresponds to the first hump on the distribution’s tail; the inverse
power-law exponent � 	 5.5. The parent lognormal had a mode

LN 	 6.256 in natural logarithm units (521 ms) and a standard
deviation � 	 .095 log units (�50 ms; note that when transformed
onto a linear scale, the standard deviation resulting from a given �
depends on the value of 
LN and is not symmetric about the mean.
We report an average of the linear standard deviations that result
from adding and subtracting one � from a given 
LN mean). Of
the 1,094 synthetic trials, 24.1% were drawn exclusively from the
fast end of a parent lognormal distribution; all were less than or
equal to the lognormal mode. This particular case required no data
points from the slow tail (slower than the mean/mode) of the
lognormal distribution. The slow tail is apparently exclusively
power law. The participant’s data were successfully mimicked in
a �FLN 24.1% � �BLN 0% � �PL 75.9% 	 100% mix of lognormal
and power-law behavior.

Looking more closely at details, this participant’s density has a
dramatically stretched slow tail, as seen in Figure 2A. On the linear
axes of Figure 2A, the slow tail begins its dramatic decline from
the mode (�521 ms) extending, at least, through the 1,100-ms
mark. When replotted on double-logarithmic axes in Figure 2D,
the previously stretched tail falls off approximately as a line. The
slow tail in Figure 2D is apparently an inverse power law spanning
an interval of about 600 ms beyond the distribution’s mode, about
2.78 decades of response time. This density illustrates a category
of density functions that we call hereafter power-law dominant.
The solid black lines in Figures 2A and 2D depict one of only two
power-law dominant pronunciation-time distributions present in
the 20 participants’ data sets.

Intermediate mixtures. Figure 2B illustrates an intermediate
mixture of power-law and lognormal distributions. Synthetic den-
sity functions are plotted as white points behind the participant’s
empirical density (and on log-log axes in Figure 2E). The white
cloud represents all 22 synthetic samples and again supplies a
potential range of density functions that can arise from the partic-
ular �PL 	 38% inverse power-law mixture. The synthetic densi-
ties capture the participant’s density function, so the participant’s
data could plausibly be a similar mixture.

For this participant, �PL 	 38% of 1,096 data points were drawn
in each of 22 simulations from the same power-law distribution.
The exponent of the power-law � 	 7.5, and the power-law mode

PL 	 6.253 log units (520 ms). The remaining 62% of the
samples were taken from a lognormal parent with a mode 
LN 	
6.253 log units, or 520 ms, and a standard deviation � 	 .095 log
units (�49 ms). Of synthetic and empirical data, 42.8% are less
than or equal to the lognormal mode, which means 19.2% of data

points came from the lognormal tail (�FLN 42.8%, � �BLN 19.2%
� �PL 38% 	 100%).

Power-law behavior is much less pronounced in the slow tail of
this participant’s density, compared with Figure 2D’s density. Yet
the slow tail in Figure 2B still declines more or less linearly, on log
axes, only at much faster rate. The more rapid decay of the
stretched slow tail and the more symmetric shape are mimicked
with an intermediate mix of power-law and lognormal behavior.
So, we call such examples intermediate mixtures. Fourteen partic-
ipants’ data sets were matched with intermediate mixtures.

Lognormal dominant. Figure 2C illustrates another 22 syn-
thetic density functions plotted as white points behind a partici-
pant’s empirical density. This cloud depicts the potential range of
density functions that can arise from the particular �PL 	 9%
power-law mixture. Figure 2F portrays the empirical and simulated
density functions on double-logarithmic axes. As before, the cloud
of simulated density functions captures the shape of the empirical
function, so the participant’s data could be a similar mixture.

For this participant, the sample proportion of power-law behav-
ior was only �PL 	 9% of 1,100 simulated pronunciation times.
The power-law mode 
PL 	 6.4 log units (602 ms), and the
inverse power-law exponent � 	 10. The parent lognormal had a
mode 
LN 	 6.304 in natural logarithm units (547 ms) and a
standard deviation � 	 .09 log units (�49 ms). The remaining
91% of the 1,100 synthetic trials were drawn from the parent
lognormal distribution of which 44.5% were less than or equal to
the lognormal mode, leaving 46.5% of data points from the log-
normal tail (�FLN 44.5% � �BLN 46.5% � �PL 9% 	 100%).

On double-log axes, the third participant’s data resemble a
symmetric, downturned parabola depicted by the solid black curve
in Figure 2F. This is also how idealized lognormal densities appear
on double-logarithmic axes (see Figure 1C). Given the close re-
semblance, we called this third kind of density lognormal domi-
nant. The solid black lines in Figures 2C and 2F represent one of
four lognormal dominant distributions.

Simulations of Participant Hazard Functions

One simple arithmetic principle captures variation in pronunci-
ation times, namely, multiplicative interaction among random vari-
ables. Hypothetical cocktails of power-law and lognormal behav-
ior successfully mimicked the dispersion of each and every
participant’s data. In each case, repeatedly replicated synthetic
distributions established 90% confidence intervals around the em-
pirical density. These detailed matches between empirical and
simulated probability density functions are encouraging, but the
hazard function test is more conservative.

Next, we combined the discriminatory power of a hazard func-
tion analysis with nonparametric bootstrapping (Efron & Tibshiri-
ani, 1993). The bootstrap procedure is based on resampling tech-
niques to compute standard errors and conduct statistical tests
using empirical distributions with unknown population distribu-
tions. We used the bootstrap procedure to transform hazard func-
tion simulations into a quantitative statistical test.

Hazard Functions

What exactly is a hazard function? Hazard functions track the
continuously changing likelihood of an event, for instance, that a
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response will occur given that some time has passed and it has not
already occurred. The empirical hazard function of response times
estimates the probability that a response will occur in a given
interval of time, provided that it has not already occurred
(Chechile, 2003; Luce, 1986; Van Zandt & Ratcliff, 1995). It is
calculated using the probability density and cumulative density
functions of a participant’s response times.

Equation 3 is a formal definition in which t refers to the time
that has passed without a response on an increasing time axis, f(t)
is the probability density as a function of time, and F(t) is the
cumulative distribution function as a function of time.

h�t� � f�t� � �1 � F�t��. (3)

The hazard rate is represented graphically by plotting the suc-
cessive time intervals against their associated probabilities. It is
straightforward to compute a hazard function from a histogram,
except that the histogram method generally yields unstable hazard
function estimates. This is especially true in the slow tail of the
distribution where the hazard function tracks a ratio of two num-
bers that approach zero as they close in on the slow tail’s end.

The previous difficulty can never be fully eliminated, but it can
be minimized somewhat by using very large data sets and a
random smoothing technique described by Miller and Singpur-
walla (1980). The latter technique divides the time axis so that
each time interval uses equal sample sizes. While other techniques
exist, many previous studies have also used this method, and so,
our results compare with the existing literature.

Response time hazard functions commonly increase to a peak,
decrease, and then level off to a more or less constant value.
Peaked hazard functions have interesting and counterintuitive im-
plications. For response times, they mean that when a response
does not occur within the time interval up to and including the
peak, it becomes less likely to occur at points in the future. This
shape is so widely observed that candidate theoretical distributions
whose hazard functions cannot mimic this pattern are dismissed
out of hand (see discussion in Balakrishnan & Ashby, 1992; Luce,
1986; but take note also of Van Zandt & Ratcliff, 1995).

Probability density functions can appear nearly identical, both
statistically and to the naked eye, and yet are clearly different on
the basis of their hazard functions (but not vice versa). Hazard
functions are thus more diagnostic than density functions
(Townsend, 1990). On this basis, Luce (1986) rejected many
classical and ad hoc models of response time because they lack
known qualitative features of empirical hazard functions—no need
of more details, such as parameter estimation and density fitting.

Despite their utility, hazard functions remain mostly absent from
the wide-ranging response time literature. Perhaps this is because
no straightforward inferential statistical test is associated with
differences in hazard functions. Instead, hazard functions are usu-
ally contrasted qualitatively, in terms of their relative ordering
(Townsend, 1990) or with the help of statistical bootstrapping
methods.

Characteristic Hazard Functions

What do hazard functions of power-law and lognormal cocktails
look like? They look like the three characteristic hazard functions
previously identified by mathematical psychologists. The illus-
trated hazard functions are plotted on standard linear axes and may

be readily compared with hazard functions that appear in the
response time literature. Each participant’s set of 22 synthetic
hazard functions was computed from the same 22 synthetic data
sets used to generate the previously described synthetic density
functions.

Power-law dominant. Recall that the solid black lines in Fig-
ures 2A and 2D each represent an individual participant’s empir-
ical, pronunciation-time density function, on linear and double-
logarithmic axes. Plots of 22 separate simulations of the
participant’s density function are depicted together as clouds of
white points. Cocktail simulations generate both probability den-
sity and hazard functions simultaneously.

The participant data portrayed in Figure 2A is one of two
participants’ distributions that were power-law dominant. The
heavy black curve in Figure 2G represents the empirical hazard
function of the same data, on standard linear axes. In each of the
hazard function graphs, the x-axis indexes pronunciation time in
ms, and the y-axis indexes the instantaneous hazard rate for the
given interval of pronunciation time.

Hazard functions for a participant’s 22 simulations are depicted
as white points plotted behind the participant’s hazard function, as
in Figure 2G. The cloud of points supplies a 90% confidence
interval and a visual sense of the range of hazard function shapes
that emerge from repeated simulations using the same mixture of
power-law and lognormal behavior.

Notice that the synthetic hazard functions in this example match
one class of characteristic hazard functions—hazard functions that
rise to an asymptote and stay more or less constant past that point.
Hazard functions that level off to constant values imply that the
likelihood that a response will occur stays approximately constant
into the future. Past a certain point, knowing how much time has
elapsed supplies no additional information about the likelihood
that a response will be observed. Power-law dominant data also
yield this hazard function shape, and 2 of 20 participants’ hazard
functions fit this description.

Intermediate mixture. Figure 2H portrays hazard functions for
another participant as white points plotted behind the empirical
hazard function. The hazard functions of these synthetic densities
all rise to a peak and decline to an asymptote past that point.
Fourteen of the 20 empirical hazard functions rose to a noticeable
peak and then declined to an asymptote. All 14 match the second
and most prominent class of hazard functions described by Luce
(1986) and Maddox et al. (1998). Intermediate-mixture density
functions yield these characteristic peaked hazard functions.

Lognormal dominant. Four of the 20 participants produced
hazard functions that rose quickly to a much higher peak and fell
off sharply, which matches the third class of characteristic hazard
functions. Lognormal dominant simulated data mimicked this class
of hazard functions. The solid black line in Figure 2I portrays the
hazard function of one participant’s data plotted in Figure 2C, and
the cloud of hazard functions in Figure 2I again illustrates the
range of shapes that emerged from repeated simulations using the
same mixture.

Discussion

The cocktail hypothesis yields a continuum of mixtures that
encompass all three distinct hazard function categories. End points
at the extreme ends of the continuum are simulations of lognormal
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dominant versus power-law dominant distributions. These ex-
tremes are most tightly constrained by the data. Intermediate
mixtures are less constrained and likely support multiple param-
eterizations in some cases. Nonetheless, the intermediate cases do
not require much beyond what is gotten from the extreme ends of
the continuum. They are parsimonious with these two extremes.

Thus, the account is anchored at the extremes in the choice of
lognormal and power-law behaviors, and the intermediate cases
follow without additional assumptions. In each case, 22 replica-
tions of synthetic distributions establish 90% confidence intervals
around the corresponding hazard function. Thus, multiplicative
interaction among random variables again captures participants’
dispersion, this time in the hazard functions of pronunciation
times. Most important, synthetic mixtures of power-law and log-
normal behavior replicate the three generic shapes that Luce
(1986) and Maddox et al. (1998) highlighted as generally charac-
teristic of response time behavior.

The three generic hazard shapes are well documented in the
response time literature and occur in a wide variety of experimen-
tal contexts. On this basis, Maddox et al. (1998) speculated that the
similarity of empirical hazard functions across experimental con-
texts suggests a common origin. We now propose the common
origin to be multiplicative interactions. The sufficiency of the
present mix of lognormal and inverse power-law behavior supports
this proposal.

Notably, the motivation in evidence for multiplicative interac-
tions is more reliable than the motivation for any specific cocktail
model. The fixed parameters of each participant’s parent distribu-
tions were adopted as a simplifying assumption (cf. Van Zandt &
Ratcliff, 1995). Thus, these particular simulations establish that
relatively constrained cocktails of multiplicative interactions are
sufficient to capture salient empirical details of response time
density and hazard functions, the same details that have frustrated
previous modeling efforts.

A Second, More Inclusive Existence Proof

To this point, we have conducted a conservative test of simu-
lated response time densities, using hazard functions, to identify
the kind of system dynamics that underlie cognitive response
times. To the extent that power-law behavior is diagnostic, system
dynamics are interaction dominant dynamics. We next generalize
this result to a new data set more broadly inclusive of variation in
word-naming performance.

This is one kind of model testing approach. The value of the test
is simply that it compares the model’s capacity to mimic human
performance in data that are more inclusive of the performance at
issue (cf. Kirchner, Hooper, Kendall, Neal, & Leavesley, 1996).
This kind of model testing is seen, for instance, when a connec-
tionist model of word naming is tested on a larger or different word
population. The second existence proof includes a wider variety of
words to further explore participant individual differences in dis-
persion of pronunciation times.

The second existence proof also includes another test of the
cocktail hypothesis in a contrast with ex-Gaussian simulations of
response time distributions. Ex-Gaussians resemble power-law–
lognormal cocktails in that both convolve a distribution and a
skewed slow-tail curve. The ex-Gaussian has been introduced
several times in history and is known to closely mimic the details

of response time probability density functions (Andrews & Heath-
cote, 2001; Balota & Spieler, 1999; Luce, 1986; Moreno, 2002;
Ratcliff, 1979; Schmiedek, Oberauer, Wilhelm, Sü�, & Wittmann,
2007; Schwarz, 2001).

Method

Participants

Thirty California State University, Northridge, introductory psy-
chology students participated in exchange for course credit.

Stimuli

From a 23,454-word corpus described in Stone, Vanhoy, and
Van Orden (1997), 1,100 target words were selected at random.
They comprised 4- to 15-letter words (M 	 6.53, SD 	 2.07),
ranging from 2 to 15 phonemes (M 	 5.49, SD 	 2.02), from one
to five syllables (M 	 2.08, SD 	 1.06), and in frequency from 5
to 5,146 per million (M 	 70.2, SD 	 295.16; Kuçera & Francis,
1967). By contrast, the 1,100 targets in the initial existence proof
were sampled from the more narrowly circumscribed corpus of
Spieler and Balota (1997), which were four- to five-letter words
(M 	 4.45, SD 	 .5), with three to five phonemes (M 	 3.59,
SD 	 .61), all single syllable, ranging in frequency from 1 to
10,601 per million (M 	 86.81, SD 	 458.28; Kuçera & Francis,
1967).

Procedure

A participant was presented with each of the 1,100 target words,
one per trial, in a random order. Each trial began with a fixation
signal (���) visible for 172 ms (12 raster refresh cycles) fol-
lowed after 200 ms by the word to be named. Participants were
instructed to pronounce the word aloud quickly and accurately into
a microphone. Each word appeared in the center of a computer
monitor controlled by DMASTR software (Forster & Forster,
1996) running on a PC.

A word target remained on the screen for 200 ms, after its
pronunciation tripped a voice key, but no longer than 972 ms from
presentation. If no response was recorded, trials timed out after
10 s. The voice key was reliable to within 1 ms. The experimenter
sat quietly, well behind the participant, and recorded pronunciation
errors. Each response was followed by a fixed, 629-ms, intertrial
interval. Every participant completed 45 practice trials and then the
1,100 experimental trials, which required about 45 min.

Results

Four analyses were conducted. The first analysis tested for
fractal structure in the form of 1/f scaling in the pattern of variation
of response times across response trials. The second tested whether
the cocktail simulations adequately mimicked the distributions of
word-pronunciation times, to replicate and extend the first exis-
tence proof. The third analysis compared parameters of the cock-
tail mixtures for the two existence proofs and descriptive param-
eters of empirical distributions and cocktail mixtures. The fourth
analysis contrasted the hazard functions of cocktail mixtures, ex-
Gaussian mixtures, and empirical pronunciation times.
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Fractal Scaling

The first analysis was conducted to test for 1/f scaling in each
individual’s trial series of pronunciation times, to replicate Van
Orden, Holden, and Turvey (2003) and Thornton and Gilden
(2005). 1/f scaling in a trial-ordered data series supplies indepen-
dent converging evidence of multiplicative interactions and inter-
action dominant dynamics, a point we return to in the discussion
(see also Van Orden et al., 2003). The rationale and details behind
the procedures are described in Holden (2005).

We again included the small proportion of pronunciation times
that resulted in errors because it did not change the outcome (M 	
2.45%, SD 	 1.84%). As a first step, all naming times shorter than
200 ms and longer than 3,000 ms were eliminated from each
series. After that, naming times that fell beyond �3 standard
deviations from the series mean were eliminated. More than 1,024
data points remained after the censoring procedure, and the initial
observations were truncated so that each series comprised 1,024
observations, with one exception. The exception required a larger
5,000-ms truncation value to ensure 1,024 observations in the data
series.

An initial 511-frequency power spectral density analysis was
computed, and the power spectra were examined visually for
consistency with the fractional Gaussian noise model. Next, the
spectral exponents of the power spectra were computed, using
methods described in Holden (2005). Three different statistical
analyses were conducted on the 29 remaining series (excluding
that of Participant 9, which did not pass the visual test for frac-
tional Gaussian noise). Linear and quadratic trends were removed
from the series, and the analyses were limited to scales equal to or
below one fourth the size of the series to minimize the impact of
the detrending procedure on the analyses (see Holden, 2005; Van
Orden, Holden, & Turvey, 2003, 2005).

The first analysis was a 127-frequency window-averaged spec-
tral analysis. The mean overall spectral exponent for the 29 series
that were straightforwardly consistent with the fractional Gaussian
noise description was .21 (SD 	 .14). Twenty-seven of the 30
series displayed larger spectral exponents than those of a randomly
shuffled version of the same trial series—otherwise known as a
surrogate trial series (Theiler, Eubank, Longtin, Galdrikian, &
Farmer, 1992; p � .05 by a sign test).

The average fractal dimension, computed using the standardized
dispersion statistic, was 1.39 (SD 	 .06). The fractal dimension for
white noise is 1.5. Twenty-eight of the 30 series yielded smaller
fractal dimensions than their shuffled surrogate counterparts ( p �
.05 by a sign test). This outcome was in close agreement with an
average fractal dimension of 1.40 (SD 	 .06) produced by the
detrended fluctuation analysis (Peng, Havlin, Stanley, & Gold-
berger, 1995) in which 29 of the 30 series yielded smaller fractal
dimensions than their surrogate counterparts ( p � .05 by a sign
test).

The outcomes of these fractal analyses replicate previous reports
of fractal 1/f scaling in pronunciation-time trial series conducted
under similar conditions. The average spectral exponent of the data
in the first existence proof, reported in Van Orden, Holden, and
Turvey (2003), was .29 (SD 	 .10) with an average fractal dimen-
sion of 1.40 (SD 	 .06). The reliable difference in average spectral
exponents between the first and second existence proofs, t(47) 	
2.20, p � .05, suggests that the heterogeneity of the inclusive

targets tended, on average, to induce weaker patterns of fractal 1/f
scaling. However, the average fractal dimensions were not reliably
affected. The discrepancy may be due to the spectral analysis being
more readily influenced by changes at the scale of individual trials
(Holden, 2005).

As an additional check, we also computed an eight-point power
spectrum, averaged across participants, as described in Thornton
and Gilden (2005). For this analysis, we expanded the maximum
response time to 5 s, and included all 30 series in the analysis. We
then used a simplex fitting routine to estimate the parameters of a
mixture of 1/f noise and white noise that could yield the same
eight-point power spectrum.

A simple sum of a normalized 1/f noise (M 	 0, SD and
variance 	 1) with a spectral exponent of .61 and a zero-mean
white noise with a variance of 1.29 yields a power spectrum very
much like the trial series of pronunciation times, �2(7) 	 .08, p �
.05 (see Thornton & Gilden, 2005, for details). The analysis
produced almost the same parameters when rerun using only the
series that met the visual 511-frequency spectral analysis and
passed all three of the above sign tests. Overall, the pronunciation
trial series displayed evidence of fractal scaling consistent with the
earlier reports. Tables 2 and 3 list the spectral exponents and
fractal dimensions for the data series from the two existence
proofs.

The contrast of spectral exponents suggests the more inclusive
existence proof yielded a weaker pattern of fractal 1/f scaling. It is
possible that relative presence of fractal 1/f scaling in a trial series
trades off with the relative dispersion in response time. All other
things being equal, wider dispersion of response time may yield
more whitened patterns of fractal 1/f scaling. This finding is
noteworthy because no statistically necessary relation exists be-
tween degree of dispersion and the presence of scaling behavior in
trial series. However, the evidence at this point is merely sugges-
tive, and we address this question more directly in separate studies.

Cocktail Simulations

We used the statistical procedures described in the first exis-
tence proof to estimate initial parameters and simulate the
pronunciation-time distributions of each individual participant. As
expected, this more inclusive heterogeneous set of words yielded
a more heterogeneous set of pronunciation-time distributions com-
pared with naming data in the first existence proof. For the cocktail
simulations, overall, the power-law modes and the lognormal
means were shifted toward slower values.

Twenty-three of the 30 participants’ distributions were suc-
cessfully approximated using modes from the empirical distri-
bution’s mode statistics. For the 20 bimodal participants’ data,
the average difference between the lognormal mode 
LN and
the power-law mode 
PL was 53 ms, an increase of 24 ms from
the average difference for bimodal participants in the first
existence proof.

Cocktail mixtures successfully mimicked 29 of 30 density
and hazard functions. The single failure came from Participant
13. The front fast half of this participant’s density was well
approximated by samples from a lognormal density, but a
double-logarithmic plot of the density revealed a slow tail that
decayed faster than linear. This could mean, for example, that
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slow times are consistent with an exponential tail instead of a
power-law tail.

However, the tail also contained multiple extreme observations
that deviated from the otherwise exponential pattern, more in line
with power-law behavior. Thus, for instance, the data could reflect
a power law, partially collapsed into a lognormal curve, as that
pattern could also appear like the data from Participant 13. None-
theless, we counted this as a failure to disambiguate, one way or
the other. Table 4 lists the parameter values of the parent distri-
butions for each participant’s simulated data.

Power-law dominant. Three of 30 empirical density functions
displayed hazard functions consistent with power-law dominant
behavior. Exponents of the parent power-law distributions ranged
from 3 to 3.25, and the �PL mixture proportions ranged from 65%

to 47%. Lognormal means ranged from 6.24 to 6.37 on a log scale,
or 513 to 584 ms, with lognormal standard deviations set between
.105 and .135 log units. These densities were best approximated by
allowing the mode of the parent power-law distribution to fall
slightly beyond the mode of the parent lognormal distribution, by
.01 to .15 log units.

Figure 3A depicts the power-law dominant distribution of one
participant. The sample proportion of power-law behavior was
�PL 	 65% of 1,029 simulated pronunciation times. The power-
law mode was set at 
PL 	 6.41 log units, or 608 ms, and the
inverse power-law exponent was � 	 3. The remaining 35% of the
1,029 synthetic trials were drawn from a parent lognormal distri-
bution with a mode of 
LN 	 6.26, or 523 ms, and a standard
deviation � 	 .1 log units, or 53 ms. Of this 35% of synthetic
times, 16% were less than or equal to the lognormal mode, and
19% exceeded the lognormal mode (�FLN 16% � �BLN 19% � �PL

65% 	 100%).
Intermediate mixture. Twenty-three of the 30 empirical hazard

functions were simulated with intermediate mixtures of lognormal
and inverse power-law behavior. Power-law exponents ranged
from 4.5 to 9, and the �PL mixture proportions ranged from 68%
to 8%. Lognormal means ranged from 6.13 to 6.65 log ms, with
standard deviations that ranged from .085 to .135 log units. Four-
teen of the 23 densities were best approximated if the mode of the
parent power-law distribution was allowed to fall slightly beyond
the mode of the parent lognormal by .008 to .16 log units.

Figure 3B illustrates the intermediate mix of one participant:
�PL 	 40% of the 1,097 data points drawn in each of 22 simula-

Table 3
Spectral Exponents and Fractal Dimension Statistics for the
First Existence Proof

Participant
Spectral
exponent

SDA fractal
dimension

DFA fractal
dimension

1 .40 1.34 1.31
2 .21 1.41 1.46
3 .28 1.44 1.47
4 .25 1.42 1.42
5 .14 1.43 1.45
6 .22 1.51 1.47
7 .40 1.33 1.31
8 .28 1.35 1.39
9 .41 1.41 1.37

10 .35 1.35 1.33
11 .20 1.52 1.50
12 .49 1.30 1.26
13 .38 1.33 1.32
14 .19 1.40 1.41
15 .27 1.40 1.41
16 .22 1.45 1.45
17 .40 1.33 1.31
18 .16 1.47 1.47
19 .22 1.37 1.40
20 .29 1.40 1.41
M .29 1.40 1.40
SD .10 0.06 0.07

Note. Participants were numbered according to the value of the scaling
exponent that characterized the decay in the slow tail of their response time
distribution. This table supplies a different ordering of the same spectral
and fractal dimension statistics that appeared in Van Orden, Holden, and
Turvey (2003, p. 342). SDA 	 standardized dispersion analysis; DFA 	
detrended fluctuation analysis.

Table 2
Spectral Exponents and Fractal Dimension Statistics for the
Second Existence Proof

Participant
Spectral
exponent

SDA
fractal

dimension
DFA fractal
dimension

1 .07 1.45 1.46
2 .32 1.42 1.38
3 .07 1.42 1.43
4 .15 1.41 1.42
5 .15 1.42 1.46
6 .43 1.33 1.35
7 .25 1.38 1.37
8 .26 1.33 1.35
9

10 .15 1.36 1.40
11 .46 1.27 1.31
12 .17 1.38 1.42
13 .23 1.42 1.45
14 �.05 1.47 1.48
15 .16 1.44 1.39
16 .04 1.44 1.44
17 .24 1.36 1.42
18 .14 1.43 1.42
19 .56 1.25 1.22
20 .11 1.46 1.49
21 .10 1.40 1.42
22 .39 1.35 1.34
23 .32 1.37 1.35
24 .42 1.27 1.25
25 .09 1.42 1.42
26 .32 1.36 1.40
27 .06 1.48 1.43
28 .33 1.39 1.42
29 .11 1.38 1.41
30 .19 1.34 1.38
M .21 1.39 1.40
SD .14 0.06 0.06

Note. Spectral exponent and fractal dimension statistics that characterize
the fractal scaling in the naming series are depicted for both analyses. The
details of the SDA fractal dimension statistic are described in Holden
(2005); the details of the DFA fractal dimension statistic are described in
Peng, Havlin, Stanley, and Goldberger (1995). Participant 1’s series con-
tained many extreme observations, and a more liberal 5-s cutoff was
required to recover at least 1,024 observations for the fractal analyses.
Participant 9 was eliminated from the analyses because visual inspection of
the 512-frequency spectral plot revealed an inverted U-shaped spectrum.
SDA 	 standardized dispersion analysis; DFA 	 detrended fluctuation
analysis.
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tions from an inverse power-law distribution, the exponent of the
power-law � 	 6, and the power-law mode 
PL 	 6.284 log units
(536 ms). The remaining 60% of synthetic data were taken from a
lognormal parent with a mode 
LN 	 6.284 log units, or 536 ms,
and a standard deviation � 	 .11 log units, or about 59 ms. Of the
remaining 60% of the synthetic samples, 45.2% were less than or
equal to the mode, and 14.8% exceeded the lognormal mode (�FLN

45.2% � �BLN 14.8% � �PL 40% 	 100%).
Lognormal dominant. The remaining three empirical densities

were lognormal dominant with less power-law behavior sampled
from power laws entailing larger exponents. Power-law exponents
ranged from 8 to 9.25, and lognormal mean parameters ranged
from 6.16 to 6.463, with lognormal standard deviations of .1 to .13.
Modes of power-law distributions fell just past modes of lognor-
mals by .05 to .11 log units.

Figure 3C illustrates the lognormal dominant mix of one par-
ticipant: �PL 	 15% of the 1,098 data points drawn in each of 22
simulations, the exponent of the power law was � 	 9.25, and the
power-law mode was 
PL 	 6.23 log units. The remaining 85% of
synthetic data came from a lognormal parent with a mode 
LN 	
6.176 log units, or 481 ms, and a standard deviation � 	 .11 log

units, or about 53 ms; 38.3% of synthetic and empirical data were
less than or equal to the lognormal mode, leaving 46.7% of data
points from the lognormal tail (�FLN 38.3% � �BLN 46.7% � �PL

15% 	 100%).

Parameter Contrasts

The two existence proofs used two different samples of word
targets, the principal difference being longer and multisyllabic
words in the present sample. With this in mind, we examined
distributions of cocktail parameters from both sets of simulations.
Figure 4 depicts seven box plots to contrast the parameters re-
quired to mimic the two data sets.

The proportion of lognormal data in the front end of simulated
distributions stayed most consistent across the two data sets. The
inclusive naming study yielded a more heterogeneous distribution
of lognormal modes (
LN), however, focused on somewhat slower
times. This same basic pattern held for the lognormal standard
deviations (�) and the power-law mode (
PL). Simulations of the
inclusive word data tended to exchange samples from the back of
the lognormal for more power-law samples and often required

Table 4
Parameters Used to Generate Synthetic Distributions in the Second Existence Proof

Participant 
LN � 
PL � �FLN �BLN �PL

1 6.260 .100 6.410 3.00 .160 .190 .650
2 6.370 .115 6.480 3.25 .227 .213 .560
3 6.337 .135 6.350 3.00 .339 .191 .470
4 6.312 .135 6.312 4.50 .377 .143 .480
5 6.244 .100 6.244 5.00 .317 .003 .680
6 6.373 .110 6.480 4.74 .259 .311 .430
7 6.506 .110 6.620 5.00 .274 .346 .380
8 6.423 .120 6.590 6.50 .313 .367 .320
9 6.292 .135 6.440 6.00 .445 .325 .230

10 6.123 .090 6.130 6.50 .315 .001 .684
11 6.123 .100 6.130 7.25 .398 .001 .601
12 6.339 .110 6.350 7.25 .436 .005 .560
13 6.378 .100 6.378 7.25 .433 .077 .490
14 6.372 .115 6.380 6.25 .375 .000 .625
15 6.377 .090 6.500 7.25 .310 .400 .290
16 6.372 .090 6.372 6.50 .372 .001 .627
17 6.208 .110 6.208 8.25 .454 .000 .546
18 6.284 .110 6.284 6.00 .452 .148 .400
19 6.196 .110 6.310 8.00 .370 .380 .250
20 6.330 .130 6.490 8.75 .518 .402 .080
21 6.248 .120 6.248 5.00 .482 .218 .300
22 6.303 .120 6.303 6.00 .484 .266 .250
23 6.159 .100 6.280 9.00 .315 .425 .260
24 6.414 .130 6.414 9.00 .507 .000 .493
25 6.130 .085 6.230 8.50 .226 .284 .490
26 6.653 .125 6.740 7.00 .438 .312 .250
27 6.232 .110 6.232 8.00 .453 .147 .400
28 6.160 .115 6.210 8.75 .428 .442 .130
29 6.436 .130 6.550 8.00 .388 .492 .120
30 6.176 .110 6.230 9.25 .383 .467 .150
M 6.304 .112 6.363 6.62 .375 .219 .407

Note. This table lists cocktail parameters that approximate each of the 30 empirical density functions of the second existence proof. The participant
numbers were established by ordering each distribution in terms of the empirically estimated slope of the tail of the distribution. This explains why the
participant numbers approximate a rank ordering of the alpha parameter. Participants 1, 2, and 3 were classified as power-law dominant; Participants 28,
29, and 30 were classified as lognormal dominant. The parameters reported for Participant 13 represent a failure of the cocktail mixture. The remaining
participants were classified as intermediate mixtures. Plots of all the empirical and cocktail distributions and hazard functions can be viewed online at
http://www.csun.edu/
jgh62212/RTD. 
LN 	 lognormal mode; � 	 lognormal standard deviation; 
PL 	 power-law mode; � 	 power-law tail; �FLN 	
proportion in front end of lognormal; �BLN 	 proportion in back end of lognormal; �PL 	 proportion power law.
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shallower power-law tails (i.e., smaller �). Other things being
equal, these differences imply increases in the dispersion of dis-
tributions associated with the inclusive targets, which underscores
the importance of accounting for changes in dispersion in theoret-
ical descriptions of word naming and other cognitive tasks
(e.g., Andrews & Heathcote, 2001; Balota et al., 2004; Balota &
Spieler, 1999; Heathcote, Popiel, & Mewhort, 1991; Schmiedek et
al., 2007; Wagenmakers & Brown, 2007; Yap, Balota, Tse, &
Besner, 2008).

The scatterplots in Figure 5 illustrate how well the cocktail
simulations recovered summary statistics of pronunciation-time
distributions, means, standard deviations, and the positive pattern
of skew. Summary statistics would not likely distinguish the cock-
tail mixtures from empirical data. Cocktail mixtures also captured
the linear correlation between means and standard deviations,
which has long been recognized in response time data (e.g., Luce,
1986, pp. 64–66).

In the most recent example, Wagenmakers and Brown (2007)
examined the relation between a participant’s mean response
time and standard deviation and found a clear pattern of linear

correlation across a wide range of decision-based response time
tasks. They speculated that the relationship is a lawlike property
of response time distributions. We conducted a parallel analy-
sis.

The Wagenmakers and Brown (2007) analysis indexed con-
dition means and standard deviations on a participant-by-
participant basis. This analysis held participant constant to
examine how different experimental conditions varied with
relative task difficulty. By contrast, our analysis holds the task
constant to examine individual differences among participants.
Thus, whereas Wagenmakers and Brown found that more dif-
ficult, slower conditions give more widely dispersed response
times, we find that slower participants tend to produce wider
dispersion.

Faust, Balota, Spieler, and Ferraro (1999) anticipated both
previous outcomes in formal analyses of their rate–amount
model, and they reported similar corroboration in data from
Hale, Myerson, Faust, and Fristoe (1995). Individual partici-
pants’ mean response times were positively correlated with
their respective standard deviations, and condition means were

Figure 3. Three individuals’ pronunciation-time density functions from the second existence proof are depicted
in the same format as Figure 2. Notice that the x-axes now extend out to 3 s, twice what is required for the
distributions in the first existence proof. Panels A, B, and C depict the kernel-smoothed density functions on
linear axes; the solid black line represents the empirical density, and the white cloud of points plotted behind the
participant’s empirical density represents the density functions of the corresponding 22 cocktail simulations.
Panels D, E, and F depict the same densities as in Panels A, B, and C, now on double-logarithmic axes. Panels
G, H, and I depict the empirical hazard functions in black and the 22 simulated hazard functions in white. The
boundaries established by the 22 simulated distributions circumscribe 90% confidence intervals around each
empirical probability density and hazard function.
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positively correlated with standard deviations in the respective
condition.

Both existence proofs also yielded reliable correlations between
the mean and standard deviation, r(47) 	 .86, p � .05. A scatter-
plot of the data is presented in the upper left panel of Figure 6.
Since word naming is not an explicit decision process, the corre-
lation suggests a more general relationship than Wagenmakers and
Brown’s (2007) speculation (that it applies primarily to decision-
based tasks). An identical analysis on the synthetic cocktail data
yielded a nearly identical relationship between means and standard
deviations, r(47) 	 .84, p � .05. A scatterplot of the relationship
for the cocktail simulations is presented in the bottom left panel of
Figure 6.

In addition, synthetic and empirical scatterplots display a similar
pattern of fanning. In the parlance of linear regression, this trap-
ezoidal fanning indicates heterogeneity of error variance. Thus, in
addition to displaying the three characteristic hazard functions of
response time, the cocktail mixtures also successfully replicate and
extend the pervasive pattern of correlation between the mean and
standard deviation in response time distributions (Andrews &
Heathcote, 2001; Balota et al., 2004; Balota & Spieler, 1999; Faust
et al., 1999; Heathcote et al., 1991; Holden, 2002; Van Orden,
Moreno, & Holden, 2003; Schmiedek et al., 2007).

Additional relationships are seen across the mean, standard
deviation, and skew statistics. A reliable positive correlation exists
between participants’ mean pronunciation time and a nonparamet-
ric estimate of skew, r(47) 	 .57, p � .05, and also between the
standard deviation and skew, r(47) 	 .76, p � .05. The same
correlations were present in the cocktail mixtures, mean and skew:
r(47) 	 .60, p � .05; standard deviation and skew: r(47) 	 .79,
p � .05. Notably, the positive skew of pronunciation-time distri-
butions implies that the mean, standard deviation, and skew will
not generally pass as statistically independent (a point made pre-
viously by Van Zandt, 2002).

Ex-Gaussian Contrast

Finally, we provide additional context for the generality of the
cocktail simulations in a contrast with synthetic ex-Gaussian
pronunciation-time distributions. A mixture of samples from ex-
ponential and Gaussian distributions has long been known to
closely approximate empirical response time distributions (e.g.,
Luce, 1986; Ratcliff, 1979). The word-recognition literature in-
cludes the ex-Gaussian as a tool for describing the loci of manip-
ulation effects of factors, such as word frequency, consistency, and
even task, that influence the shape of response time distributions

Figure 4. Individual box plots contrast each parameter used to generate the cocktail mixture distributions
between the two existence proofs. The EP1 label corresponds to data from the first existence proof, and the EP2
label indicates the second existence proof. For these plots, the lognormal parameters and the power-law modes
were converted to linear units of pronunciation time. Distributions of lognormal parameters and power-law
modes from EP1 were somewhat faster and less variable than those of the more inclusive EP2. The proportion
of lognormal behavior in the fast front ends of cocktail simulations was similar between EP1 and EP2, but the
EP2 data sets tended to require more power-law behavior in the slow tails. Prop. 	 proportion.
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(Andrews & Heathcote, 2001; Balota et al., 2004; Balota &
Spieler, 1999; Yap et al., 2008).

We used the ex-Gaussian density function to perform
maximum-likelihood fits to our pronunciation-time distributions
(Van Zandt, 2000). The ex-Gaussian description supplied reason-
able fits to the empirical pronunciation-time distributions despite
our special effort to collect many more observations than a typical
single-session pronunciation experiment. This was true even when
contrasted with a simplified three-parameter version of the cocktail
that rendered it more comparable to the ex-Gaussian. The simple
cocktail convolved a lognormal and inverse power-law distribution
using fixed 50%–50% proportions and fixed the power-law mode
to the value of the lognormal mean. Only the three remaining
parameters, the lognormal mean, standard deviation, and power-
law exponent, were free to vary in our subsequent nonlinear least
squares fits. The ex-Gaussian and both versions of the cocktail
mixtures were statistically indistinguishable at the level of the
probability density.

As others have pointed out, model selection is not easy to decide
on the basis of best fits to probability density functions. It is a
different matter to fit both the probability density and the hazard
function, however, and the following procedures allowed a con-
trast of hazard functions for the two kinds of synthetic hazard
functions. In addition to the 22 cocktail mixture simulations de-
scribed earlier, we generated 22 synthetic ex-Gaussian distribu-

tions for each participant’s empirical distribution. Ex-Gaussian
distributions were generated using samples from a synthetic
Gaussian and exponential distribution, generated according to the
parameters returned by the maximum-likelihood parameter esti-
mation routine.

Both sets of 22 synthetic distributions were collapsed into two
respective omnibus distributions, comprising a maximum of
24,200 data points (less if there were fewer than 1,100 observa-
tions in the empirical distribution). Following that, we computed
hazard functions for each omnibus cocktail and ex-Gaussian syn-
thetic distribution.

Figure 7B depicts the three empirical power-law dominant haz-
ard functions, from the inclusive word data, as three black lines. To
their left, depicted as white lines in Figure 7A, are the hazard
functions of the omnibus cocktail mixtures that correspond to each
empirical distribution depicted in Figure 7B. The synthetic ex-
Gaussian omnibus hazard functions for the same three empirical
distributions appear as white lines in Figure 7C.

These three plots clarify the power of the hazard function test.
The ex-Gaussian hazard functions are qualitatively different from
both the empirical and cocktail hazard functions, for example.
However, the empirical and cocktail hazard functions share many
details in their shapes; they both include subtle peaks and both
decay slowly to asymptotic values. By contrast, ex-Gaussian haz-
ard functions simply rise to a constant asymptote.

Figure 5. The top three scatterplots compare the pronunciation times from the first existence proof with
simulated times in three descriptive statistics: the mean, the standard deviation, and a nonparametric measure of
skew ([M � Md]/SD). The bottom three panels illustrate the same comparison for the second existence proof
(Participant 13 was excluded). The statistics for the simulated times were computed using an omnibus
distribution that included all 22 cocktail mixtures. The successful cocktail mixtures reliably recovered empirical
means, standard deviations, and skews.
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Figures 7D, 7E, and 7F are organized to depict the same triptych
of contrasts for three lognormal dominant distributions from the
inclusive naming task. The two empirical hazard functions with the
highest peaks rise to a prominent peak and fall off sharply past that
point. The cocktail mixtures in Figure 7D do a much better job of
recovering this structure than the ex-Gaussian hazard functions in
Figure 7F.

The third empirical hazard function, with the lowest peak,
presents an ambiguous case. It possesses a peak, but the peak is
broader than those of the cocktail mixtures. The ex-Gaussian
description, on the other hand, does not seem quite peaked enough
to capture its shape. This case illustrates that it is largely the
properties of the slow tails of distributions that are decisive in
discriminating the two frameworks. Lognormal dominant partici-
pants tend to produce tighter pronunciation-time distributions with
few extreme values, and their hazard functions do not span very
large time intervals.

Figure 8 depicts the same triptych of contrasts for distributions
comprising intermediate mixes of lognormal and power-law sam-
ples. Each panel in the center column of the figure depicts four
empirical hazard functions from the inclusive naming study. The
third row contains only 3 participants’ hazard functions because
Participant 13 was excluded as an ambiguous case. The left col-
umn of panels depicts the corresponding omnibus cocktail hazard
functions; the right column depicts the corresponding omnibus

ex-Gaussian hazard functions. In this figure, one sees most clearly
the failure of the ex-Gaussian description. It simply fails altogether
to display peaks prominent in all the empirical hazard functions.

We have only reported simulation details of the ex-Gaussian
contrast, but we also conducted extracurricular simulations of
inverse-Gaussian, ex-Wald, and Weibull alternatives. In contrast to
ex-Gaussian and cocktail simulations, the latter distributions all
failed Kolmogorov-Smirnov tests and failed to mimic the hazard
functions of data from both existence proofs.

We evaluated hazard functions by generating synthetic distribu-
tions based on maximum-likelihood fits of the three alternative dis-
tributions. The resulting parameter sets supplied each distribution’s
best approximation to the empirical distributions. We did this mainly
because, given certain parameter sets, the inverse Gaussian and ex-
Wald can display peaked hazard functions. In fits of the present data,
however, the inverse-Gaussian hazard functions generally failed to
display peaks. Simulated hazard functions tended to rise too quickly,
almost always overtaking the empirical hazard functions.

Weibull hazard functions usually rose monotonically, and too
slowly, always undershooting the empirical hazard functions. Only
the ex-Wald hazard functions fell in the neighborhood of the empir-
ical hazard functions. Ex-Wald hazard functions rarely exhibited
peaks, however. They were qualitatively similar to ex-Gaussian haz-
ard functions but typically failed to track the empirical hazard func-
tion as well as the ex-Gaussian. The results of the extracurricular

Figure 6. The top three scatterplots depict correlations between mean and standard deviation, mean and skew,
and standard deviation and skew for the empirical pronunciation-time distributions. The open squares represent
participants from the first existence proof; the filled circles indicate participants from the second existence proof.
Since they were an ambiguous case, Participant 13’s data were excluded from this and all subsequent analyses.
The white markers on the bottom three plots depict the same information for the cocktail simulation of each
participant’s pronunciation-time distribution. In addition to capturing a comparable magnitude of linear asso-
ciation between the variables, the cocktail mixtures capture additional details of the relationships. For example,
both empirical and cocktail mean–standard deviation plots display a fanning pattern as a function of increases
in both variables, and both empirical and cocktail standard deviation–skew plots display evidence of a curvilinear
relationship.
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simulations are not surprising, given that fits to the empirical density
functions of the three alternative distributions were generally much
poorer than those of the ex-Gaussian.

All these simulations, extracurricular and ex-Gaussian, speak to an
obvious worry about whether cocktail mixtures might be too power-
ful. If power-law–lognormal cocktails can fit any distribution, then
successfully mimicking pronunciation-time distributions is expected.
Recall that ex-Gaussian simulations are essentially indistinguishable
from the empirical distributions and also from the cocktail mixtures,
at least for probability density functions. This is why the ex-Gaussian
is so popular. Once the hazard functions are examined, however, it is
clear that the cocktail descriptions have subtle properties that success-
fully mimic the empirical hazard functions. Nonetheless, and this is
the crux, those same properties render cocktail simulations unable to
mimic ex-Gaussian hazard functions.

Figures 7 and 8 demonstrate that cocktail mixture hazard func-
tions are usually poor descriptions of ex-Gaussian hazard func-
tions. Thus, the cocktail mixture scheme cannot fit every possible
distribution or hazard function. Taking into account the extracur-
ricular simulations, power-law–lognormal cocktails fail to mimic
best-fit density and hazard functions of three common model-
distributions of response time, each tuned to the same empirical
distributions as the cocktail mixtures.

Taken together, these four alternate distributions supply perhaps the
most plausible empirical forms that a participant’s response time
distribution could take, other than the cocktail scheme. They are all
routinely used to model response time distributions. Nevertheless, the
cocktail mixtures fail to represent them reliably. Thus, while the
cocktail mixtures are flexible, they are also poised for falsification.

Plausible data patterns exist that are very similar to empirical response
times that cocktail simulations fail to accommodate.

The most plausible of these is the ex-Gaussian. Repeatedly in
the history of response time research, scientists have either em-
braced the ex-Gaussian description or pointed out its weaknesses.
The ambivalence comes from the excellent fits to response time
distributions versus the discrepancy between the analytic form of
the ex-Gaussian hazard function and empirical hazard functions
(e.g., Ashby et al., 1993; Luce, 1986; Moreno, 2002; Van Zandt,
2003). To the discrepancy, we add that ex-Gaussian hazard func-
tions tend to be too short and that they contain too few synthetic
data points in their slow tails, a failing that is more prominent in
a contrast between exponential and power-law decay.

In conclusion, previous lines of argument that question the
ex-Gaussian have been largely analytic in nature, derived from
knowledge of the asymptotic behavior of idealized hazard func-
tions. What has been missing is the promise of a motivated
alternative that can pass the hazard function test. Interaction dom-
inant dynamics predict multiplicative interactions among compo-
nent processes and power-law behavior in the slow tails of re-
sponse time distributions. Sufficiently constrained interaction
dominant dynamics also predict lognormal behavior, as we have
described. Cocktail combinations of power-law and lognormal
behavior pass the hazard function test.

Discussion

Employing a more inclusive and representative sample of the
English language revealed a more heterogeneous collection of

Figure 7. The center column (Panels B and E) depicts apparently power-law dominant and lognormal dominant
empirical hazard functions from the second existence proof. Each panel displays three different participants’
hazard functions as three black lines. In the left-most column, Panels A and D depict the omnibus hazard
functions as three white lines for cocktail mixtures corresponding to empirical Panels B and E. Similarly, in the
right-most column, Panels C and F depict hazard functions of omnibus ex-Gaussian distributions corresponding
to the empirical data sets in Panels B and E. The figure makes clear that the shapes of cocktail hazard functions
are more consistent with the empirical hazard functions than ex-Gaussian hazard functions.
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response time distributions, as indexed by the wider range of
simulation parameters required to capture empirical distribu-
tions. Nonetheless, no new assumptions were required to ac-
commodate the more inclusive dispersion of pronunciation
times. Once again, different mixes of power-law and lognormal

data points accommodated individual differences in the pattern
of dispersion.

In both existence proofs, power-law and lognormal behavior
sufficiently mimicked the three characteristic hazard functions that
distinguish individual participants. This success is most important.

Figure 8. The center column of panels depicts the apparently intermediate mixture, empirical hazard functions
as black lines. Each panel presents 4 individual participants’ hazard functions from the second existence proof,
except for the third row, which contains three hazard functions. The left-most column of panels depicts the
omnibus hazard functions for cocktail mixtures corresponding to empirical distributions on the same row. The
right-most column depicts hazard functions of corresponding omnibus ex-Gaussian distributions. The plots make
clear that cocktail simulations better approximate empirical hazard functions and that ex-Gaussian hazard
functions fail to display the prominent peaks that are present in both empirical and cocktail mixture hazard
functions.
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It guarantees generality beyond these particular existence proofs;
the same hazard functions are found in most or all response time
performances. This outcome further justifies the choice of word-
naming times as a test case. What we have learned from the
particulars of pronunciation-time distributions tells us about gen-
eral system properties of cognition.

We have learned, for instance, that response time distribu-
tions vary qualitatively across participants, even in the same
cognitive task. Thus, one must either posit different processes
for the different participants or common processes that can
change the quality of their dynamics. This has wide-ranging
implications for how to think about human performance,
whether the goal is data analysis of a particular experiment or
a comprehensive theory of cognitive activity.

One challenge yet remains to the reliability of cocktail simulations,
however, which we fully discuss now. The possibility exists, at least
in principle, that our fitting technique, with six parameters, is too
flexible and simply exploits ad hoc statistical mimicking. This is a
potential problem for any statistical description of any empirical
pattern. As we noted earlier in this article, no theory has ironclad
protection from this challenge. Any curve, including hazard functions,
can be mimicked in many ways, and models with more parameters are
more dubious than models with fewer parameters.

It is worth asking, for example, whether conclusions based on
hazard function structures, such as peaks, are trustworthy. As
one progresses further into the right tail of a hazard function,
for instance, the statistical reliability of the hazard function
tends to diminish. Events that unfold in the slow tails of
response time distributions are always more sparsely sampled
than events that unfold near the mode. Other statistical descrip-
tions of response time are also affected by this limitation, not
only hazard functions, and some statistical tools exist that do a
better job than others to compensate for these issues.

We addressed the previous concern with the following statistical
tools. We chose kernel density estimation (Silverman, 1989; Van
Zandt, 2000) and the Miller and Singpurwalla (1980) hazard
function estimation routine. In addition, we combined the density
and hazard estimation tools with bootstrapping procedures. Boot-
strapping makes the inherent variability of the statistical tools
visible by repeatedly resampling simulated distributions to evalu-
ate them in the same manner as empirical distributions.

Bootstrapping yields visible confidence intervals across the es-
timated function, which supplies information about the reliability
of the features of simulated distributions. For example, the syn-
thetic cocktail mixtures typically preserved the peaks and other
prominent features of empirical hazard functions. Also, reports of
other researchers using different tasks buttress, or focus on, these
features of hazard functions. The three characteristic hazard shapes
were established in the literature at least as early as Luce’s (1986)
monograph, and they replicate across tasks and laboratories.

Laboratory methods were also chosen to enhance statistical
reliability. We collected 1,100 observations from each individual
to greatly increase the resolution of our analyses and used single
laboratory sessions to minimize parameter variability across dif-
ferent sessions. Very importantly, all parameter estimation and all
distribution fitting were executed for individual participants to
avoid known artifacts that result from collapsing across partici-
pants (e.g., Estes & Maddox, 2005).

Nevertheless, all the previous safeguards to enhance reliability
can fail to protect curve fitting from an infinite regress of possible
fits. In that regard, Van Zandt and Ratcliff (1995) recommended
strictly coherent theoretical motivation to justify the chosen de-
scription. They placed a premium on principled, theoretically
motivated, a priori choices when adopting statistical descriptions.
Thus, models must be grounded in reasonable theoretical assump-
tions, which can be tested with empirical patterns.

The cocktail simulations were strictly motivated by interaction
dominant dynamics, which previously anticipated widely ob-
served, fractal, 1/f scaling. Power-law and lognormal distributions
are both necessary consequences of multiplicative interactions, but
neither of these choices is obvious outside of a theory based on
interaction dominant dynamics. 1/f scaling by itself, for instance,
does not strongly constrain the choice of event-time distribution.
The default distribution of synthetic 1/f noise is the Gaussian
distribution.

1/f scaling only entails interdependent processes and multipli-
cative interactions within a theory in which processes interact via
interaction dominant dynamics, which of course also predicts
inverse power-law dispersion (Bak, 1996; Jensen, 1998; Montroll
& Shlesinger, 1982). The remaining challenge was to invent a
reasonable scheme to combine power-law and lognormal distribu-
tions. We chose the simplest scheme that we imagined. The six
parameters of the cocktail mixtures come simply from locating
both distributions within an interval on the response time axis and
mixing them in varying proportions.

In sum, the cocktail hypothesis comes from the a priori hypoth-
esis of interaction dominant dynamics, and cocktail simulations
supply independent tests of this inclusive hypothesis (cf. Wagen-
makers, Farrell, & Ratcliff, 2005). Consequently, the cocktail
hypothesis complies with Van Zandt and Ratcliff’s (1995) recom-
mendations to minimize ad hoc statistical mimicking.

General Discussion

Our essential finding is that the synthetic cocktail mixtures,
symptomatic of interdependence and multiplicative interaction,
successfully mimicked empirical pronunciation-time probability
density and hazard functions. Successfully means simply that the
cocktail descriptions were not contradicted statistically by any of
the analyses we conducted. All other models that we examined
were less successful.

Shapes of synthetic cocktail density functions were consistent
with the shapes of empirical probability density functions over
large portions of the response time interval, whether plotted on
linear or double-logarithmic axes. The cocktail mixtures reliably
produced cumulative distribution functions that passed a
Kolmogorov-Smirnov test of equivalence. Also, the cocktail mix-
tures captured the qualitative features of individual participants’
hazard functions, including the three shapes that characterize most
response time data documented in the literature.

The specific value of the power-law exponent and the relative
mixture proportions in cocktails simulate the transition from
power-law dominant to lognormal dominant densities. Empirical
transitions presumably reflect tipping points or critical points of
constraint that transition individual word pronunciations into
tightly reinforced dynamics, in the broad sense of reinforced, and
therein minimize the contingencies of feedback. This hypothesis
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marks constraints and the power-law–lognormal trade-off to ac-
count for individual differences.

Cocktail mixtures also closely replicate the values of, and rela-
tionships among, empirical parameters such as mean, standard
deviation, and skew. In sum, a working hypothesis grounded in the
interaction dominant dynamics of feedback processes captures
most of the empirical facts of individual participants’
pronunciation-time distributions. We are not aware of a more
inclusive or more general account of response time data.

Standard Cognitive Manipulations

What of the vast library of standard mean effects that resulted
from standard cognitive manipulations? How do they make contact
with the present success? Individual differences in background
history, development, current status, and context—in currently
available constraints—were predicted to yield different mixes of
two kinds of multiplicative functions. Systematic qualitative dif-
ferences among the consequent hazard functions corroborated the
prediction. Reliable qualitative differences in data from the same
word-naming task, however, bring into question the logic of design
or analysis that contrasts or equates descriptive statistics from
different college students’ response times. Such contrasts are not
ruled out by this finding, but it raises the bar for their justification.
One way forward is to develop new statistical tools that are
commensurate with qualitative variability changes and interaction
dominant dynamics (e.g., Riley & Van Orden, 2005).

Also, we noted several times how, all other things being equal,
adequate accounting of distributions or densities supplies the more
inclusive account. For instance, how can an account based on
means alone anticipate correlations among means, standard devi-
ations, and skew? Likewise, how can an account based on distri-
butions alone anticipate the three characteristic hazard functions?
More narrowly conceived empirical findings are not necessarily
inconsistent with the present results, but they are weaker tests of
models. Nonetheless, if researchers could expand the existing
library and reexamine all mean effects using contrasts among
densities and hazard functions, it would greatly increase empirical
power to constrain models and theories.

For example, standard manipulations usually test stimulus prop-
erties in performance, which define different word classes. A
general basis of many word-class distinctions is ambiguity. Am-
biguity refers to the relative consistency of relations between
spelling patterns and pronunciations, among other things; consider
_ear in pear versus near. Ambiguous spellings support more than
one pronunciation, and ambiguous words are more slowly pro-
nounced on average in a word-naming task (Glushko, 1979).

Relatively more ambiguous words also disperse their pronunci-
ation times more broadly, in harmony with the present account
(Holden, 2002). Specifically, word items can be more or less
infected by ambiguity; that is, ambiguity can be restricted locally
to a few letters or the whole word’s spelling can be ambiguous as
in homographs such as tear and wind (Van Orden & Kloos, 2005,
is a review). A close look at word-class effects, using a systematic
increase in pronunciation ambiguity (e.g., punt vs. pear vs. tear),
sampling across participants, revealed progressively wider disper-
sion in the heavy slow tails of pronunciation-time distributions.

The more all-embracing the infection of ambiguity, the more
prominent the power-law behavior in the slow tail. Yet the fast

leading edges of contrasted pronunciation distributions, up to the
mode, were close to the same. The same pattern was found for
ambiguity in a lexical decision task using patterns of pronunciation
that support multiple spellings, such as cube versus hone versus
hare (Holden, 2002; cf. Stone et al., 1997). In fact, the shapes of
the response time distributions to different item classes in Holden
(2002) appear consistent with the cocktail mixtures (however, the
sample sizes were smaller than those reported here). We reexam-
ined those distributions to determine whether different item classes
yielded different hazard functions. Indeed, the item classes most
infected by ambiguity yielded hazard functions most like the
power-law dominant mixtures in both word naming and lexical
decision. The item classes least infected with ambiguity yielded
hazard functions most like the lognormal dominant mixtures.
Qualitatively similar dispersion effects have been reported in other
word-recognition studies (e.g., Andrews & Heathcote, 2001;
Balota et al., 2004).

Power-law behavior was reported in other reading tasks as well.
Schultz and Tabor (2005) reported power-law behavior in sentence
reading times. The extent of garden-path ambiguity in sentence
comprehension amplifies power-law behavior in the slow heavy
tails of reading time distributions. As in Holden (2002), the extent
of power-law behavior is determined by word or phrase ambiguity.
These outcomes agree with the present studies, and the hypothesis
that motivates the trade-off between power-law and lognormal
behavior. All other things being equal, relatively ambiguous stim-
uli produce power-law behavior, and sufficiently unambiguous
stimuli produce lognormal behavior. Unambiguous in our terms
refers to available constraints sufficient to mask, or dampen down,
the contingencies of feedback (cf. Gottlob, Goldinger, Stone, &
Van Orden, 1999; Van Orden & Goldinger, 1994).

The success of the cocktail mixtures generalizes to response
time data from other cognitive tasks as well (e.g., Ashby et al.,
1993; Balakrishnan & Ashby, 1992; Luce, 1986; Maddox et al.,
1998). Thus, the manner in which cognitive manipulations impact
the shape of response time distributions may likewise generalize
and give a common account of contrasts between items, as well as
other factorial contrasts.

Constraint and Cognitive Performance

Historically, cognitive manipulations have been equated with
cognitive components, as efficient causes, in causal chains that
unfold within the brief interval of a response time. Causal config-
urations as constraints, however, refer to relations among pro-
cesses and the coordination of their activities in nonlinear dynam-
ics (Juarrero, 1999). Constraints refer to any aspect of history,
context, present status of mind and body, and task environment
that limit or control the degrees of freedom for cognition and
behavior.

Many standard causal manipulations can be reinterpreted as
manipulations of available constraints. Consequently, one can gen-
erate predictions and manipulate the dispersion of response times.
Other things being equal, manipulations that entail stronger com-
petitions among contradictory sources of constraint or that rely on
a weaker arrays of constraints should display more widely dis-
persed behavior, the increasing presence of power-law behavior.

The current existence proofs demonstrate the plausibility of
constraints on performances organized via interaction dominant
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dynamics. From a cognitive perspective, supporting constraints
change slowly, more slowly than the pace of trial performances,
while they dispose the mind and body on each trial to receive and
pronounce the stimulus word (Hollis et al., 2009; Van Orden,
Holden, & Turvey, 2003). The arrival of the stimulus further
narrows degrees of freedom, to close the system and unfold the
specific pronunciation response (Järvilehto, 1998).

From a physiological perspective, constraints on interaction
dominant dynamics, within the trial, coordinate the fastest rhythms
of the nervous system with the stimulus perturbation of the envi-
ronment upward through intermediate timescales of brain and
body to the limiting timescale of performance, the timescale on
which the stimulus word’s pronunciation unfolds (compare
Buzsáki, 2006). Prestimulus preparation and coordination of em-
bodied dynamics, across all the body’s timescales, guarantee the
appropriate poststimulus degrees of freedom for within-trial dy-
namics on their very fast timescales (Gilden, 2001; Hollis et al.,
2009).

Conclusions

Interaction dominant dynamics anticipated, previously, the
widely evident 1/f scaling in trial series of response times. Pres-
ently, interaction dominant dynamics successfully predict that
aggregate response times disperse as power laws, due to interde-
pendence among feedback processes. Interaction dominant dynam-
ics as multiplicative feedback processes also predict power-law
behavior, as well as lognormal behavior. Power-law and lognormal
dispersion is symptomatic of multiplicative interactions among
process on a hierarchy of timescales.

If mixtures of power-law and lognormal distributions mimic
empirical dispersion, then empirical dispersion originates in a vast
array of multiplicative interactions. This conclusion rests upon an
inverse inference, similar to the classic inference trusted for Gauss-
ian dispersion. Strictly speaking, then, the success of the cocktail
mixtures is not sufficient evidence of interaction dominant dynam-
ics: Success is simply a necessary consequence. That is what it
means when we call cocktail simulations existence proofs. In this
way, of course, the present support in evidence is like most
evidence in science.

The complex emergence of online word-naming performance,
or any response behavior, presents daunting challenges without
simplifying principles. In that regard, all sources of constraint
combine via multiplicative interaction. Each trial performance is a
temporary dynamical structure visible from above in the slower
timescale patterns of scaling relations and from below in the faster
timescale changes that dispersion portrays.

Still, coordination across all these timescales is necessary to
perform a word pronunciation, so scaling relations, inverse power
laws, and lognormal dispersion must imply complementary mech-
anisms. In fact, it suffices to speak of one kind of mechanism,
interaction dominant dynamics, which coordinates processes
slower than and faster than the trial pace of measurement. We draw
this essential conclusion from the success of the present existence
proofs.
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