


perceptually familiar, thus they are recognized more quickly), but
competitor activation slows word recognition (i.e., items with
many neighbors activate more competitors, and competition slows
down recognition). Because spoken words are ambiguous at onset
(e.g., /kæ/ could be the beginning of nearly 800 different words),
competitor words with similar onsets can become active and
compete for activation, thus (potentially) accentuating the compet-
itive aspects of neighborhoods. In contrast, a visual word is pre-
sented all at once, so disambiguating information is available from
the beginning, thus (potentially) reducing competition and accen-
tuating the facilitative aspects of neighborhoods. Preliminary ev-
idence from a study that forces subjects to read words letter-by-
letter suggests that the difference between neighborhood effects in
visual and spoken words results from parallel versus serial expe-
rience of words in the two domains (Magnuson, Mirman, &
Strauss, 2007).

For orthographic and phonological neighborhoods, although
individual metrics differ, there is an intuitive consensus that neigh-
bors should be defined in terms of similarity of letters or phonemes
(e.g., Luce & Pisoni, 1998; Sears et al., 1995). In contrast, the
different approaches to semantics cited above give rise to radically
different sets of primitives over which semantic distance can be
defined. As a step toward developing a definition of semantic
distance, Buchanan et al. (2001) compared two different measures
of SND: one based on number of associates (derived from human
participant generation of single associates to each target word;
Nelson et al., 2004) and one based on mean distance to the 10
nearest neighbors according to the Hyperspace Analogue to Lan-
guage (HAL) model (derived from co-occurrence statistics ex-
tracted from a large corpus of text, such that words that occur in
similar contexts have similar representations and are close in
semantic space; Lund & Burgess, 1996). Buchanan et al. found
that the HAL-based measure was a better predictor of word rec-
ognition than the association-based measure and that the effect of
SND was weaker for high frequency words. These results suggest
that co-occurrence statistics capture neighborhood effects more
accurately than semantic associates do (Balota, Cortese, Sergent-
Marshall, Spieler, & Yap, 2004, also found weak effects of number
of semantic associates). However, although association-based and
co-occurrence-based approaches to semantic representation both
tell us what concepts are similar (i.e., neighbors) and provide a
measure of similarity, neither reveals why particular concepts are
similar. For example, the associates of car include exemplars (e.g.,
Toyota), superordinate terms (e.g., transportation), other vehicles
(truck, train, etc.), interaction-related words (drive, ride), and
various descriptive words (fast, expensive, etc.). It is intuitively
clear that these are all related to car, so association norms are
capturing relatedness (in fact, association norms and co-occurrence
statistics provide excellent fits to behavioral word-pair similarity
ratings; e.g., Rohde et al., 2004), but the various associates have
radically different relationships to the target word, and therefore,
the underlying similarity structure remains opaque.

In contrast to the opacity of association norms and co-
occurrence statistics, representations based on semantic features
explicitly encode the microstructure of semantic representations.
Although feature norms do not capture the full complexity of
semantic knowledge, they do capture a portion of that space at a
level of detail that has a more transparent relationship to underly-
ing similarity structure. Feature-based semantic representations are

developed by asking human participants to generate features of a
target concept (e.g., McRae et al., 2005, had subjects generate up
to 10 features for many concepts; see also McRae, de Sa, &
Seidenberg, 1997; Vigliocco et al., 2004). Models that represent
semantic knowledge in terms of features provide powerful ac-
counts of semantic priming (e.g., Cree, McRae, & McNorgan,
1999; Vigliocco et al., 2004), category-specific impairments (e.g.,
Cree & McRae, 2003), deterioration of semantic knowledge in
progressive semantic dementia (Rogers et al., 2004), and speech
errors and picture–word interference (Vigliocco et al., 2004). In
general, feature-based models of semantic knowledge provide a
coherent framework for understanding a very large set of phenom-
ena (Rogers & McClelland, 2004). Crucially, with feature-based
representations, similarity is defined by feature overlap, thus mak-
ing the reasons for similarity explicitly available for analysis.

With respect to exploring neighborhood effects, feature-based
measures of SND are potentially limited because the semantic
neighborhood is strongly constrained to the items for which feature
norms have been collected.1 Association-based semantic neighbor-
hoods do not have this limitation because an associate need not
have been normed to be part of the target’s semantic neighborhood
(e.g., type can be an associate of print if a participant produces it,
regardless of whether associates were collected for type; in a
feature-based system, type and print could be neighbors only if
feature norms have been collected for both). Co-occurrence-based
semantic neighborhoods are limited by the size of the corpus, but
because the corpus is typically very large (e.g., over 1 billion
words), this is a very weak constraint. Thus, feature-based mea-
sures allow a finer-grain analysis of a smaller set of words relative
to association-based and co-occurrence-based measures.

The present work addresses three questions: (a). How well do
feature-based, association-based, and co-occurrence-based mea-
sures of SND capture semantic neighborhood effects? (b). Are
SND effects facilitative (as previously demonstrated), inhibitory,
or both? (c). Does a simple attractor model of semantic access
capture patterns of neighborhood inhibition and facilitation con-
sistent with the behavioral data?

In Experiment 1 we tested a large set of words in two word-
recognition tasks and evaluated several measures of SND derived
from feature-based, association-based, and co-occurrence-based
semantic representations. The results suggested that, despite their
limitations, SND measures based on feature representations are as
good as those based on association norms and co-occurrence
statistics at capturing the effects of semantic neighborhoods. Fur-
ther, the results of Experiment 1 suggested a more complex story
than simple facilitative or inhibitory effects. In Experiment 2 we
specifically examined the independent effects of near and distant
neighbors on semantic access and found that distant neighbors tend
to have facilitative effects on semantic access and near neighbors
tend to have inhibitory effects on semantic access. Finally, anal-
yses of settling rates in a simple attractor model of semantic access
(Cree, McNorgan, & McRae, 2006) revealed that distant neighbors
have early and transient facilitative effects and near neighbors
have lasting inhibitory effects on settling, consistent with the

1 Collecting and coding feature norms is a time-consuming task; the 541
item McRae et al. (2005) corpus is the result of a massive multiyear project
and is the largest publicly available feature norm corpus.
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human data. These results suggest that neighborhood effects can be
understood by considering the specific impact of neighbors on
attractor dynamics.

Experiment 1

The central goal of Experiment 1 was to examine the effects of
SND in a relatively global manner. Specifically, we compared
measures of SND derived from feature-based semantic represen-
tations to previously used measures derived from co-occurrence-
and association-based representations. To provide the best basis
for examining SND effects, we tested the 532 unique words from
McRae et al. (2005) in lexical decision and semantic categorization
(living thing judgment) tasks. In the following sections we first
describe the six measures of SND that we tested and provide
simple comparisons of the measures, then we describe the exper-
imental methods and results, and finally we discuss how the results
match and conflict with previous studies of SND and the implica-
tions of these results.

Measures of SND

Measures based on feature norms. The McRae et al. (2005)
feature norm corpus contains 541 concepts (532 unique names)
covering a broad range of living and nonliving concepts used in
studies of semantic memory. Thirty participants from McGill
University and/or the University of Western Ontario produced
features for each concept. There were 2,526 unique features listed.
Thus, each concept can be represented by a 2,526-element binary
vector in which the elements code whether or not each feature was
produced for each concept. These vectors are very sparse, ranging
from 6 to 26 features for each concept (M � 13.4, SD � 3.52).

Measures 1–3 comprise our basic set of feature-based measures
of SND. The first two measures are feature-based versions of a
discrete number of neighbors measure (like number of associates)
and a graded distance measure (like distance to neighbors in
HAL); the third measure has been previously found to index the
tightness of concept clusters (e.g., Cree & McRae, 2003). We also
tested several embellishments of these basic measures (such as
word frequency weighting, feature production frequency weight-
ing, and feature distinctiveness weighting), but these embellish-
ments did not improve the amount of variance captured by the
measures.

1. Number of Near Neighbors (NumNear) is the number of
concepts that have more than half of the target’s features. The 50%
threshold was chosen to balance between lower thresholds’ ten-
dency to eliminate the distinction between similar concepts and
near neighbors and higher thresholds’ tendency to eliminate all
neighbors.2 Note that this measure is asymmetric: If Concept A is
a near neighbor to Concept B, Concept B is not necessarily a near
neighbor of Concept A (i.e., if A has many features and B has few,
and A and B overlap on half of B’s features, the proportion of
overlap will be high for B but lower for A). It is possible that
semantic neighborhood relations are in fact asymmetric, which
would be captured by this metric; symmetric similarity would be
captured by another of our measures of SND.

2. Mean Cosine (MeanCos) is the mean cosine between target’s
feature vector and the feature vectors for every other item in the
corpus. Cosine is a nonlinear measure of similarity that varies (for

binary vectors) from 0 (no shared features) to 1 (identical feature
vectors) and provides a symmetric measure of distance that reflects
the similarity between active features in the target and neighbor.

3. Proportion of significantly correlated feature pairs (Prop-
CorrPairs) is the proportion of feature pairs in the object’s repre-
sentation that tend to co-occur in the corpus (i.e., they share at least
6.5% of their variance; see McRae et al., 2005, for details). Objects
with a greater proportion of co-occurring features should have
nearer neighbors because their features tend to come in groups
(i.e., they co-occur), and thus their feature overlap will tend to be
greater. These correlations were based on vectors containing pro-
duction frequency values (i.e., number of participants [maximum
of 30] that produced this feature for this concept) rather than on
binary feature vectors, which were used to compute NumNear and
MeanCos. Production frequency feature vector versions of Num-
Near and MeanCos produced virtually identical results, so the
simpler measures are reported here.

Measures based on association norms. The University of
South Florida free association norms (Nelson et al., 2004) contain
associates produced for each of 5,019 target words. For each word,
an average of 149 participants were asked to write the first word
that came to mind that was meaningfully related or strongly
associated to the presented word. As in previous studies (Balota et
al., 2004; Buchanan et al., 2001; Yates et al., 2003), we defined the
set of associates generated for each target as its semantic neigh-
borhood.

4. Number of Associates (NumAssoc) is the number of associates
for each target in the University of South Florida association
norms. Previous studies found that words with more semantic
associates were recognized more quickly (Balota et al., 2004;
Buchanan et al., 2001; Yates et al., 2003). Because 125 of the
McRae et al. (2005) items were missing from the University of
South Florida association corpus, we excluded them from these
analyses. Excluding these items from all analyses did not change
the pattern of results, so we included all the McRae et al. items for
all other analyses.

Measures based on co-occurrences. Recently, Rohde et al.
(2004) proposed a semantic representation called the Correlated
Occurrence Analogue to Lexical Semantic (COALS) that is similar
to HAL (Lund & Burgess, 1996) in that it is also based on
co-occurrence statistics from a very large corpus (1.2 billion word
tokens representing 2.1 million word types taken from Usenet).
COALS differs from HAL primarily in implementing a normal-
ization technique to reduce the impact of high frequency closed
class and function words and in ignoring negative correlation
values when computing representation vectors (on the intuition
that a target word’s meaning is not informed by words that occur
in very different contexts). COALS provides a better fit to behav-
ioral word-pair similarity ratings and multiple-choice vocabulary

2 Because concepts typically have few features, a low threshold will
count merely similar items as near neighbors. For example, cheetah has 13
features; at a threshold of 30% shared features, it has 28 near neighbors—a
set that includes most of the mammals in the corpus, but at a threshold of
50% shared features, the near neighbor set is reduced to just the large
predators. In general, as the threshold increases, the distribution of seman-
tic neighborhood densities collapses towards 0 (i.e., at a sufficiently high
threshold all concepts have no near neighbors).
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tests (see Rohde et al., 2004), so we used COALS rather than
HAL. We calculated semantic distance based on 500-element
vectors (Rohde et al. used singular value decomposition to reduce
the dimensionality of the vectors) using the Rohde et al. method:
square root of the correlation between semantic vectors.3

5. Mean Distance Within Set (COALS) is the mean semantic
distance to nearest 10 neighbors (cf. Buchanan et al., 2001) within
the McRae et al. (2005) item set. A measure based on mean
distance to all items in the McRae et al. set produced the same
results, so we report the statistic most similar to the one used by
Buchanan et al., who found that words with closer near neighbors
(i.e., denser semantic neighborhoods) were recognized more
quickly. One item (dunebuggy) was missing from the COALS
corpus and was excluded from these analyses.

6. Mean Distance Among All Items (COALS_all) is the mean
distance to nearest 10 neighbors within the 100,000 most common
words in the COALS corpus.

Initial comparisons of SND measures. Before testing the SND
measures, we explored two related questions about the measures
themselves. (a). Were the neighbors identified by the different
measures the same or different? (b). Was there evidence that the
limited size of the feature-norm corpus limits semantic neighbor-
hoods? Table 1 shows partial correlations among measures of SND
after controlling for word frequency (HAL [Lund & Burgess,
1996] frequency norms, which Balota et al., 2004, found to be the
best word frequency predictor of word recognition in young
adults), length (in letters, phonemes, and syllables), bigram fre-
quency, Coltheart’s N (Coltheart, Davelaar, Jonasson, & Besner,
1977), and number of features. Computing partial correlations
removes correlations among SND measures caused by control
variables (e.g., two SND measures might be correlated because
they are both correlated with word frequency) and allows the
similarity between semantic neighborhood measures qua semantic
neighborhoods to emerge. Not surprisingly, SND measures tend to
cluster with measures based on the same underlying representa-
tions. One interesting deviation from this pattern is the strong
negative correlation between MeanCos and PropCorrPairs, though
both are positively correlated with NumNear. We examined more
closely the neighborhoods formed by the different measures, sep-
arately for distance-based measures (MeanCos and COALS) and
number-based measures (NumNear and NumAssoc).

Semantic neighborhoods defined by COALS_all were very differ-
ent from semantic neighborhoods defined by MeanCos: These mea-

sures shared on average less than 1 of the 10 nearest neighbors.
Semantic distance increased more rapidly across the nearest neighbors
for MeanCos than for COALS_all. That is, according to the
COALS_all measure, the second nearest neighbor was about 8.5%
less similar to the target than the nearest neighbor; this decrease was
16% for MeanCos. For the 10th nearest neighbor (the farthest item
included in the COALS_all neighborhood), this decrease was still
only 25% for COALS_all but was 44% for MeanCos. For example,
for sheep, the 10 nearest neighbors according to MeanCos are (with
semantic distance in parentheses) as follows: lamb (0.60), cow (0.47),
goat (0.44), skunk (0.32), squirrel (0.31), fawn (0.30), donkey (0.29),
otter (0.29), moose (0.28), and pig (0.28); according the COALS_all
the 10 nearest neighbors are as follows: bleating (0.78), goats (0.75),
cows (0.71), cattle (0.71), herds (0.65), herders (0.64), oxen (0.61),
goat (0.60), herd (0.59), and ruminants (0.59). As this example
demonstrates, the faster drop-off in similarity for feature-based mea-
sures could be due simply to neighbors that are missing from the
feature norm corpus (e.g., about half of the COALS_all neighbors for
sheep are not in the feature norm corpus); nonetheless, it demonstrates
that feature-based representations are much more sensitive to differ-
ences in semantic similarity than co-occurrence-based measures. The
very high positive correlation between COALS and COALS_all (r �
.6) suggests that this is not merely an effect of the constraints of the
McRae et al. (2005) corpus: When a COALS-based SND measure is
computed from just the McRae et al. results, it produces nearly the
same result as one computed based on the 100,000 most frequent
words. Rather, it seems that feature-based representations are intrin-
sically more sensitive to semantic distance (we discuss possible rea-
sons below).

The number of near neighbors (NumNear: M � 0.9, SD � 2.3)
was consistently smaller than the number of associates (NumAs-
soc: M � 13.5, SD � 5.0). Only 8 of the items had more near
neighbors than associates, and 273 items had 0 near neighbors (this
large proportion of concepts with 0 “near neighbors” severely
limits the variability of this measure and puts it at a predictive
disadvantage; however, as described below, this measure reveals
an interesting and unique effect of near neighbors, thus validating
the use of the relatively strict criterion). Of the 143 items that had

3 Correlation and cosine vector distance measures are equivalent, though
the square root makes this distance measure different from the one used to
compute MeanCos.

Table 1
Partial Correlations Among Measures of SND

SND measure NumNear PropCorrPairs MeanCos NumAssoc COALS COALS_all

NumNear — .39*** .30*** �.11** �.06 �.06
PropCorrPairs .39*** — �.23*** �.02 .19*** .17***

MeanCos .30*** �.23*** — .04 �.11** �.21***

NumAssoc �.11** �.02 .04 — .12** .03
COALS �.06 .19*** �.11** .12** — .60***

COALS_all �.06 .17*** �.21*** .03 .60*** —

Note. SND � semantic neighborhood density; NumNear � number of near neighbors; PropCorrPairs �
proportion of significantly correlated feature pairs; MeanCos � mean cosine; NumAssoc � number of
associates; COALS � Correlated Occurrence Analogue to Lexical Semantic, mean distance within set;
COALS_all � mean distance among all items.
** p � .05. *** p � .01.
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both near neighbors and associates, for 43% (62 items) the near
neighbors formed a subset of associates, for 27% (39 items) the
near neighbors and associates were nonoverlapping sets, and for
the remaining 30% (42 items) the neighbor–associate overlap
ranged from 10% to 50%. In sum, it seems that for some items,
feature-based semantic neighborhoods are very similar to
associate-based semantic neighborhoods, but for other items the
two semantic representations yield very different semantic neigh-
borhoods. As with the distance-based measures, the smaller num-
ber of feature-based neighbors than associates could be due to
neighbors that are missing from the feature-norm corpus and/or to
feature-based measures’ greater sensitivity to semantic similarity.

In addition to corpus size, feature norms also differ in terms of the
corpus contents. The McRae et al. (2005) feature norm database
contains only basic-level concepts, such as “dog” and “chair”; thus the
potential neighborhood is limited to other basic-level concepts, such
as “cat” and “table,” respectively. In contrast, association norms and
co-occurrence measures can, and do, produce neighborhoods that
include parts (e.g., “legs” for table), features (e.g., “green” for grass),
and categories (e.g., “pet” for cat) as neighbors. If semantic represen-
tations are structured such that basic-level terms have substantially
different representations than features, parts, and so forth, then these
different concepts would be distant neighbors, not near neighbors.
This is another way in which feature-based representations may allow
a distinction between near and distant neighbors that is obscured or
missing from association-based and co-occurrence-based semantic
representations.

These analyses comprise a preliminary comparison of the se-
mantic neighborhoods defined by different representations of lex-
ical semantics. They show that association-based, co-occurrence-
based, and feature-based representations produce quite different
semantic neighborhoods and that the limitations of feature-norm
corpora may underestimate semantic neighborhood size and may
reflect greater sensitivity to semantic similarity. Experiment 1 was
designed in part to test whether the corpus size limitation under-
mines the ability of feature-based representations to capture SND
effects.

Method

Participants. All participants were native English speakers
and had normal or corrected-to-normal vision. The semantic cat-
egorization task was completed by 17 participants, and the lexical
decision task was completed by 44 participants (22 participants
randomly assigned to each half of the words). All participants were
undergraduate students at the University of Connecticut who re-
ceived course credit for participating.

Stimuli. The critical stimuli were the 532 unique orthographic
forms in the McRae et al. (2005) feature norm database. These
items were chosen to present the strongest test of feature-based
representations. For the lexical decision test, 532 pronounceable
nonwords were created that were matched in length to the words,
and the items were divided into two lists of 532 items each (266
words, 266 nonwords) to keep the overall number of trials per
participant equal for the two tasks and avoid fatigue effects.

Procedure. Stimuli were presented visually in 18-point black
Courier font on a white computer screen background using
E-Prime software (Psychology Software Tools, Inc., Pittsburgh,
PA). We used a 17 in. (43.18 cm) cathode ray tube monitor with

a refresh rate of 100 Hz and a resolution set to 800 � 600 pixels.
Each trial began with a central fixation cross on screen for 1 s, then
the stimulus was presented centered horizontally and vertically and
remained on screen until the participant responded (or until 5 s had
elapsed). Each participant completed either the lexical decision
version of the experiment or the semantic categorization version.
These tasks were chosen to examine basic word-recognition accu-
racy and latency in one task that requires semantic access (seman-
tic categorization) and one task that, in principle, does not (lexical
decision). The experiment was completed in one session lasting
approximately 20 min. Before beginning the critical block, partic-
ipants completed a 20-trial practice session. In the lexical decision
task, participants were asked to indicate whether each item was a
word; in the semantic categorization task, the participants were
asked to indicate whether each word referred to a living thing or a
nonliving thing.

Results

None of the participants correctly identified budgie as a living
thing, and only 13% correctly identified it as a word,4 so this item was
excluded from analyses. In addition, trials on which reaction time
(RT) was more than two standard deviations away from the overall
mean were excluded from analyses (3.6% of lexical decision trials and
3.9% of semantic categorization trials). Overall accuracy was high in
both tasks (lexical decision, 95.1% correct; semantic categorization,
94.0% correct), and mean RTs were 655 ms for lexical decision and
763 ms for semantic categorization. In the lexical decision task all
critical items received “yes” responses, but in the semantic categori-
zation task critical items included both “yes” (living) and “no” (non-
living) responses; however, there was no difference in RT between
“yes” (living) and “no” (nonliving) responses, Mliving � 761 ms,
SDliving � 140 ms; Mnonliving � 764 ms, SDnonliving � 112 ms;
t(530) � 0.3, p � .76; thus, the two types of items were combined in
semantic categorization analyses (separate analyses are reported in
Appendix A). Only trials on which a correct response was provided
were included in the RT analyses.

The left section of Table 2 shows independent correlations
between error rate and mean RT and control variables5 (top sec-
tion) and measures of SND (bottom section). Not surprisingly,
word frequency and length had strong correlations with both error
rate and RT, particularly for the lexical decision task. Number of
features (words with more features tend to be recognized more

4 Budgie is a nickname for budgerigar, a small parrot that is a popular
pet in Canada, where the feature norms were collected, but apparently
unknown to University of Connecticut undergraduates.

5 Two other control variables were examined: age of acquisition (AoA) and
semantic congruency of orthographic neighbors (Pecher, Zeelenberg, &
Wagenmakers, 2005; Rodd, 2004). Semantic congruency had no significant
correlation with any dependent measures after word frequency was controlled,
so it is omitted from analyses reported here. AoA captured unique variance,
but it did not affect the variance captured by measures of SND. AoA measures
(Gilhooly & Logie, 1980; Stadthagen-Gonzalez & Davis, 2006) are available
for less than half of the McRae et al. (2005) words, thus including AoA as a
control variable in the analyses would undermine the effort to provide a
large-scale examination of SND effects. Because including AoA as a control
variable did not affect the amount of variance captured by measures of SND,
those analyses are not reported here.
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quickly, presumably because they have more robust semantic
representations; see Pexman, Holyk, & Monfils, 2003) was also
strongly correlated with error rate and RT in both tasks.

When the effects of word frequency, length, and number of
features were partialled out, orthographic neighborhood (Colt-
heart’s N) no longer had significant correlations with error rate or
RT for either task, and orthographic familiarity (bigram frequency)
was significantly correlated only with lexical decision RT. Mea-
sures of SND also had significant correlations in one or both tasks
(Table 3). This finding suggests that when the effects of word
frequency and length are controlled, semantic neighborhoods play
at least as large a role in visual word processing as orthographic
neighborhoods do, and semantic neighborhoods are especially
important when the task explicitly requires semantic access (se-
mantic categorization relative to lexical decision). This conclusion
must be tempered by the unique composition of our stimulus set,
though weak or nonsignificant effects of orthographic neighbor-
hood were also found in experiments testing a very large set of
words (Balota et al., 2004).

The bottom right section of Table 2 shows partial correlations
(controlled for word frequency, number of letters, number of
phonemes, number of syllables, bigram frequency, orthographic
neighborhood, and number of features) between error rate and RT
and the measures of SND (analogous semipartial correlation re-
sults were virtually identical to partial correlation results). For the
lexical decision task, NumAssoc and NumNear had marginal par-
tial correlations with accuracy, and NumNear and COALS had
reliable correlations with RT. The COALS correlation was nega-
tive, indicating faster word recognition in denser semantic neigh-
borhoods, which is consistent with previous findings (Balota et al.,

2004; Buchanan et al., 2001; Siakaluk et al., 2003; Yates et al.,
2003). In contrast, the NumNear correlation was positive, indicat-
ing slower RT in denser semantic neighborhoods, a result that has
not been found previously. For the semantic categorization task,
MeanCos and COALS_all were significantly correlated with RT.

Table 2
Error Rate and Mean Reaction Time (RT) Correlations and Partial Correlations

Variable

Correlations Partial Correlations

Error RT Error RT

LD SC LD SC LD SC LD SC

Control variable
Ln(FreqHAL) �.32*** �.20*** �.59*** �.39***

No. letters .03 .01 .33*** .21***

No. phonemes .05 �.02 .31*** .16***

No. syllables .13*** .03 .34*** .19***

Bigram f �.06 .02 �.24*** �.07
Coltheart’s N �.10** �.02 �.30*** �.14***

No. features �.14*** .02 �.23*** �.20***

Basic feature-based measures of SND
NumNear .15*** .12*** .22*** .14*** .08* .08* .09** .03
MeanCos .07 .03 .11** �.02 .01 �.03 .04 �.09**

PropCorrPairs .04 .12*** .06 .08* .03 .10** .03 .07
Association-based measure of SND

NumAssoc �.06 .02 �.20*** �.12** .09* .10** �.04 .01
Co-occurrence-based measures of

SND
COALS .03 .15*** .03 .05 .02 .11*** �.09** .01
COALS_all �.03 .12*** �.17*** �.01 .05 .19*** �.04 .12**

Note. LD � lexical decision; SC � living-thing semantic categorization; HAL � Hyperspace Analogue to Language; SND � semantic neighborhood
density; NumNear � number of near neighbors; MeanCos � mean cosine; PropCorrPairs � proportion of significantly correlated feature pairs;
NumAssoc � number of associates; COALS � Correlated Occurrence Analogue to Lexical Semantic, mean distance within set; COALS_all � mean
distance among all items.
* p � .10. ** p � .05. *** p � .01.

Table 3
Partial Correlations for Measures of Orthographic and
Semantic Neighborhood Controlling for Word Frequency,
Length, and Number of Features

Measure

Error RT

LD SC LD SC

Orthographic measure
Bigram f .01 .03 �.11** .03
Coltheart’s N �.02 .02 �.03 .06

Semantic measure
NumNear .08 .08* .08** .03
MeanCos .01 �.03 .04 �.09**

PropCorrPairs .03 .10** .03 .06
NumAssoc .08* .10** �.04 .01
COALS �.01 .11** �.09** .00
COALS_all .06 .19*** �.04 .10**

Note. RT � reaction time; LD � lexical decision; SC � semantic
categorization; NumNear � number of near neighbors; MeanCos � mean
cosine; PropCorrPairs � proportion of significantly correlated feature
pairs; NumAssoc � number of associates; COALS � Correlated Occur-
rence Analogue to Lexical Semantic, mean distance within set; COAL-
S_all � mean distance among all items.
* p � .10. ** p � .05. *** p � .01.
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COALS-based measures of SND, NumAssoc, NumNear, and
PropCorrPairs were significantly correlated with semantic catego-
rization error rate.

Discussion

Experiment 1 examined whether feature-based measures of
SND can capture the effects of semantic neighborhoods and
whether these effects are facilitative (as previously demonstrated)
or inhibitory. Feature-based measures of SND captured as much
RT variance in both lexical decision and semantic categorization
tasks as association-based and co-occurrence-based SND measures
did. Note also that in the case of ambiguous words (e.g., homo-
phones) feature norms were collected on disambiguated words
(e.g., bat—baseball), but association norms and co-occurrence
measures do not make this distinction, just as the tasks used in this
experiment did not disambiguate the stimulus words. Feature-
based SND measures predicted unique variance in lexical decision
and semantic categorization data despite this disadvantage and the
limitations of the corpus. In general, the results indicate that
feature-based measures of SND are at least as good as previously
used association-based and co-occurrence-based measures of
SND.

In general, SND effects emerged more clearly in RT than in
accuracy measures, which is consistent with the high accuracy and
consequently low error rate variability in both tasks. There was
more variability in accuracy for semantic categorization than for
lexical decision, though this variability was largely due to ambig-
uous items, such as foods. That is, many foods are ambiguous with
respect to their status as a living thing (e.g., corn, potato), although
even relatively unambiguously not-alive foods (e.g., pickle, raisin,
bread) and some nonliving but highly living-related concepts (e.g.,
beehive, shell are natural kinds that house living things) also had
low semantic categorization accuracy scores. These low semantic
categorization accuracy items did not have systematic SND biases
(the low-accuracy item set SND was less than 0.5 standard devi-
ations from the overall mean SND according to all SND mea-
sures), but these task effects call for caution in interpreting our
semantic categorization results. However, the qualitative similarity
between semantic categorization and lexical decision results (e.g.,
significant partial correlations were all in the same direction for
each measure) suggests that the semantic categorization results are
not due to possible “living thing” task artifacts.

Our results replicate and extend previous studies of semantic
neighborhood effects. Two of our SND measures (COALS and
MeanCos) replicate previous findings of facilitative SND effects
(Balota et al., 2004; Buchanan et al., 2001; Siakaluk et al., 2003;
Yates et al., 2003). The COALS semantic representations are
based on the same principles as HAL (which has previously been
used to show facilitative SND effects), so this replication indicates
that peculiarities of the items, tasks, or participants we tested
cannot account for differences between our findings and previous
studies. Specifically, the inhibitory effects of SND as measured by
NumNear and COALS_all must be due to what those measures
index, that is, differences with regard to which aspects of semantic
neighborhoods are captured by the different measures. The inhib-
itory/facilitative difference also cannot be due strictly to underly-
ing semantic representations because the feature-based MeanCos
measure showed facilitative effects, unlike NumNear (COALS and

COALS_all show a similar reversal). One possible explanation for
this reversal is that the NumNear measure captures a different
aspect of semantic neighborhood structure than is captured by
MeanCos.

One way that measures of neighborhood density may differ is in
the impact of near neighbors versus distant neighbors. Semantic
similarity distributions generally exhibit power law distributions,
that is, concepts tend to have a few very near neighbors and many
distant neighbors. One way to examine whether near or distant
neighbors are the primary contributors to a particular measure of
SND is to examine correlations between the measure of SND and
number of neighbors according to the most liberal definition of
semantic neighbor possible: items sharing at least one semantic
feature. Because of the overwhelming number of distant neigh-
bors, this liberal “number of neighbors” (different from NumNear,
which is number of near neighbors) measure primarily reflects the
number of distant neighbors. There was a strong positive correla-
tion between number of neighbors and MeanCos (r � .88, p �
.001), suggesting that the latter primarily reflects the number of
distant neighbors. Because MeanCos is computed over the entire
corpus, a concept with many additional (say, 100 more) distant
neighbors (which will have low but nonzero cosine distances) will
have a higher neighborhood density than a concept with a few
additional near neighbors (which would have cosine distances of
say, .75).

In contrast, a threshold-based measure such as number of near
neighbors (NumNear) is not influenced by distant neighbors (the
correlation with number of concepts sharing at least one feature
was not significant, r � .003, p � .95); by definition, NumNear is
most sensitive to the near neighbor structure. In sum, these anal-
yses suggest that MeanCos and NumNear capture different aspects
of semantic neighborhoods; specifically, NumNear reflects near
neighbors, and MeanCos reflects distant neighbors. We found
facilitative effects of MeanCos and inhibitory effects of NumNear,
suggesting that near neighbors inhibit processing and distant
neighbors facilitate processing.

For the COALS-based measures the near–distant distinction
may also explain the paradoxical pattern of results. Co-occurrence
vectors are defined over a very large corpus, and the McRae et al.
(2005) corpus reflects only a very small sample of that space.
Thus, it is possible that because the COALS measure was re-
stricted to just the 10 nearest neighbors within the McRae et al.
corpus, it captured the effect of relatively distant neighbors (in
co-occurrence vector space), but the COALS_all measure captured
the distance to the 10 nearest neighbors in the entire co-occurrence
vector space and was thus more sensitive to near neighbors.

One way to test the hypothesis that near and distant neighbors
have opposite effects is to examine correlations between semantic
categorization and lexical decision RT data and number of near
and distant neighbors. This type of analysis requires a continuous
measure of similarity, so we used cosine distance between feature
vectors. Defining “near” and “distant” neighbors requires a thresh-
old, such that near neighbors would be those with cosine greater
than the threshold, and distant neighbors would be those with
cosine lower than the threshold but greater than zero (i.e., sharing
some, but not many, features). We tested the correlations between
RT in the two tasks, and near and distant neighborhood size was
defined by three thresholds (.25, .5, and .75). Figure 1 shows that
the results were consistent with an inhibitory effect of near neigh-
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bors (positive correlations) and a facilitative effect of distant
neighbors (negative correlations, statistically reliable only in the
semantic categorization task). We designed Experiment 2 to test
the hypothesis suggested by these correlational results using a
matched experimental manipulation of near and distant neighbor-
hood size and a semantic task that avoids the pitfalls of living thing
judgments.

Experiment 2

This experiment was designed to test the hypothesis that near
semantic neighbors have an inhibitory effect and distant semantic
neighbors have a facilitative effect on visual word processing. To
test this hypothesis, we selected four sets of items and indepen-

dently manipulated the number of near and distant neighbors while
matching the items on all other criteria.

Method

Procedure. Experiment 1 results suggested that SND effects
would emerge more strongly in a semantic task than in a lexical
decision task but that items such as foods are ambiguous with
respect to their status as a living thing. To avoid this problem while
still using a semantic task, we used a concreteness judgment task
in Experiment 2 (participants were instructed to indicate whether
or not it was possible to touch the thing named on the screen). This
task is less susceptible to ambiguity than the living thing task and
all of the critical words referred to concrete things (see Table 4 for
mean concreteness values for each condition; these values are on
a 100–700 scale taken from the MRC Psycholinguistic Database;
Wilson, 1988). In addition, there is some evidence that the use of
a broad category makes for a more difficult semantic decision, thus
encouraging more semantic processing and allowing semantic
effects to emerge more clearly (Hino, Pexman, & Lupker, 2006).
Consistent with this claim, in Experiment 1 we found stronger
SND effects in the living thing judgment task relative to the lexical
decision task, though the convergent results in the two tasks
suggest that semantic neighborhood effects are relatively robust
across tasks. The experiment began with 30 practice trials (with
feedback; 15 concrete, 15 abstract trials) to familiarize participants
with this task. Stimulus presentation details were the same as
Experiment 1.

Materials. Twenty-five critical items were selected for each of
four conditions: 2 (Many or Few Near Neighbors) � 2 (Many or
Few Distant Neighbors). Near neighbors were defined as having
cosine greater than 0.5, distant neighbors were defined as having
cosine less than .25 and greater than 0.0. For near neighbors,
“many” was defined as at least 2, and “few” was defined as 0 or

Figure 1. Experiment 1 correlations between reaction time (RT) and
number of near (black symbols) and distant (white symbols) neighbors
based on three thresholds. Circles indicate results for the semantic (living
thing) categorization (SC) task, triangles indicate results for the lexical
decision (LD) task. *p � .05.

Table 4
Experiment 2 Critical Item Condition Means (and SDs) for Critical and Control Variables

Variable

Many near neighbors Few near neighbors

Many distant Few distant Many distant Few distant

No. near neighbors 4.5 (3.0) 3.9 (3.1) 0.0 (0.0) 0.2 (0.4)
No. distant neighbors 227 (26.5) 109 (28.3) 249 (39.2) 113 (23.9)
No. associates 14.8 (5.2) 13.6 (2.8) 14.7 (6.3) 13.0 (5.2)
COALS_all 0.73 (0.072) 0.76 (0.11) 0.72 (0.08) 0.75 (0.078)
Ln(frequency) 1.8 (1.6) 1.9 (1.6) 2.3 (1.3) 2.5 (1.3)
Familiarity 5.0 (1.9) 5.6 (2.2) 5.8 (1.5) 5.9 (2.1)
Age of acquisitiona 293.5 (63.9) 275.8 (61.2) 290.8 (77.2) 286.3 (31.0)
No. letters 5.4 (1.7) 5.4 (1.7) 5.2 (1.5) 5.2 (1.0)
No. phonemes 4.4 (1.6) 4.3 (1.6) 4.4 (1.4) 4.5 (1.1)
No. syllables 1.6 (0.8) 1.6 (0.6) 1.6 (0.5) 1.7 (0.6)
Coltheart’s N 3.7 (4.3) 3.4 (4.4) 3.2 (4.1) 3.4 (5.0)
Congruent N 2.3 (2.8) 1.7 (2.8) 1.8 (2.5) 1.7 (3.1)
No. features 14.2 (3.9) 13.0 (3.4) 14.8 (3.2) 13.7 (3.9)
Concreteness 598.1 (26.0) 603.0 (17.2) 607.3 (19.0) 598.4 (16.9)
No. creatures 9 9 9 5
No. fruits/vegetables 3 5 5 4
No. nonliving 13 11 11 16

Note. There were 25 words in each condition. COALS_all � Correlated Occurrence Analogue to Lexical
Semantic, mean distance among all items.
a Note that age of acquisition data were available for only 30% of items (24%–36% for each condition).

72 MIRMAN AND MAGNUSON



1; for distant neighbors, “many” was defined as more than 200,
and “few” was defined as less than 150. These thresholds were
chosen because they divided the corpus of words into four rela-
tively equal groups with very different neighborhood properties,
and each of the groups was big enough to allow selection of a
subset for matching on various control variables. This manipula-
tion produced items with different near and distant neighborhood
sizes as measured by cosine distance but equivalent semantic
neighborhoods as measured by number of associates and mean
COALS semantic density (see Table 4). In addition, conditions
were matched on word frequency, familiarity, AoA (AoA data
[Gilhooly & Logie, 1980; Stadthagen-Gonzalez & Davis, 2006]
were available for only 30% of the words), length (in terms of
letters, phonemes, and syllables), orthographic neighborhood
(Coltheart’s N), number of semantically congruent orthographic
neighbors, and number of semantic features, with approximately
equal numbers of creatures, fruits and vegetables, and nonliving
things in each condition. Control variables (including number of
associates and COALS SND) did not differ reliably between
conditions either in terms of analysis of variance main effects or
interactions or in terms of pairwise comparisons. Condition means
for critical and control variables are in Table 4, and the 25 words
in each critical condition are in Appendix B. To balance the critical
“yes” trials, we chose 100 filler words (“no” trials) from the MRC
Psycholinguistic Database (Wilson, 1988) based on low (less than
400, values range from 100 to 700) concreteness and imageability
scores (Mconcreteness � 295; Mimageability � 346) and matched to the
critical words on length and frequency.

Participants. Twenty-two undergraduate students at the Uni-
versity of Connecticut completed the experiment for course credit.
All participants were native speakers of English and had normal or
corrected-to-normal vision.

Results

The word level (few near, few distant neighbors) was judged by
all participants not to be concrete, so it was excluded from anal-
yses.6 Accuracy was high, and there were no significant effects of
number of near and distant neighbors (means and standard errors
are in Table 5; all ps � .25). Only trials on which a correct
response was provided were included in the RT analyses. In
addition, trials on which RT was more than two standard devia-
tions away from the overall mean were excluded from analyses
(4.1% of trials).

Figure 2 shows the RT results for the four critical conditions. As
predicted, words with many near neighbors were categorized more
slowly than words with few near neighbors (24 ms), F1(1, 21) �
17.3, p � .001, partial �2 � 0.45; F2(1, 95) � 4.6, p � .05, partial

�2 � 0.05, and words with many distant neighbors were catego-
rized more quickly than words with few distant neighbors (11 ms),
F1(1, 21) � 5.2, p � .05, partial �2 � 0.20; F2 � 1. There was no
significant interaction between number of near and number of
distant neighbors (F1 � 1; F2 � 1). The condition effects are
within-subjects but between-items, and thus the items analyses
have less power. We found no apparent outlier items (item means
are in Appendix B), suggesting that the subjects effects (F1) were
not driven by a few outlier items and that the weaker effects by
items (F2) were indeed due to differences in statistical power.

Discussion

As in Experiment 1, our results replicate previous findings of
facilitative effects of SND and provide new data casting those
findings as part of a more complex pattern of SND effects. Our
results suggest that previous findings of facilitative SND effects
were primarily driven by distant neighbors. The fine grain of
feature-based semantic representations revealed a novel finding:
Near neighbors exert inhibitory effects on semantic access.

Traditional views of neighborhood density effects cannot ac-
count for these results because these results do not simply reflect
competition (inhibitory effects) or familiarity (facilitative effects).
Rather, the results reveal a complex interplay of neighbor distance
and number such that inhibitory and facilitative effects occur
simultaneously. We interpret these results in terms of an attractor
model of semantic processing. The results suggest that distant

6 In the McRae et al. (2005) feature norm collection study, all target
items were concrete objects, which would encourage participants to list
features for the concrete meaning of level. In the context of our concrete-
ness judgment task, the abstract meaning, which is perhaps more common
for college students, was activated. Because all participants responded that
level was not concrete, including it in the analyses would merely distort the
accuracy data, it would have no effect on the RT data because only correct
response RTs are included. We also note that the conditions are equally
well-matched on control variables (frequency, length, etc.) if level is
removed from the list. Level was included in model analyses because this
ambiguity does not affect model performance, though excluding it had no
qualitative effect on model behavior.

Table 5
Experiment 2 Mean (and SE) Percent Correct Responses for the
Four Critical Conditions

No. distant neighbors

No. near neighbors

Many Few

Many 96.9 (1.0) 98.0 (0.6)
Few 97.3 (0.7) 97.6 (0.9)

Figure 2. Experiment 2 reaction time (RT) results. RTs were slower for
words with many near semantic neighbors (squares relative to triangles)
and faster for words with many distant semantic neighbors. Error bars are
one standard error.
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neighbors create a gradient or gravitational force for faster settling
into attractor basins, and near neighbors create conflicting subba-
sins and increase the likelihood of hitting a saddle point, which
slows the completion of the settling process. In the following
section we analyze an attractor-based computational model to test
whether inhibitory effects of near neighbors and facilitative effects
of distant neighbors could indeed be due to attractor dynamics.

Analysis of a Computational Model

To test the hypothesis that the inhibitory effects of near neigh-
bors and the facilitative effects of distant neighbors could be due
to attractor dynamics, we examined the settling patterns in an
attractor model of semantic access (settling patterns were from the
model reported by O’Connor, McRae, & Cree, 2006; see Cree et
al., 2006, for model architecture and training details). O’Connor et
al. (2006) trained the model to activate the appropriate semantic
features for each of the 541 basic level concepts in the McRae et
al. (2005) norms and for 20 superordinate category names (see
O’Connor et al., 2006, for details). The input layer represented
arbitrary “orthographic” input patterns (3 random units turned on
among the 30 input units) and was fully connected to a semantic
layer. The semantic layer consisted of one unit for each semantic
feature, and each of the semantic units was connected to all other
semantic units (with no self-connections). To compute a word’s
meaning, its word form was presented at the input layer, and
activation propagated to the semantic layer for 20 ticks. To put the
network in a neutral starting state that is generally consistent with
most units being turned off (on average only 0.5% of feature units
should be active), before a word form was presented, semantic unit
activations were set to a random value between 0.15 and 0.25. At
each tick, error was computed using the cross-entropy measure.

We tested the effect of near and distant neighbors on settling by
examining the correlations between number of near and distant
neighbors and cross-entropy error (CEE) at each tick. Model
settling corresponds to decreasing error, thus, at every tick a
positive correlation with neighborhood indicates that the neighbors
are having an inhibitory effect (i.e., having more neighbors is
associated with higher error), and a negative correlation indicates
a facilitative effect of neighborhood (i.e., having more neighbors is
associated with lower error). We computed correlations between
normalized CEE7 and number of distant and near neighbors across
all 541 concepts (similar to the analysis of Experiment 1 data, see
Figure 1) at each tick. As for the behavioral data in Experiment 1,
we used three definitions of “near” and “distant” neighbors based
on cosine similarity thresholds. Near neighbors were defined as
having minimum cosine thresholds .25, .5, or .75; distant neigh-
bors were defined as having nonzero cosine less than .25, .5, or
.75.

The results (Figure 3) showed a strong positive correlation with
number of near neighbors that tends to increase over processing,
consistent with an inhibitory effect of near neighbors (more near
neighbors was associated with higher CEE). The correlation with
distant neighbors was generally around 0 and not reliable, except
for a clear dip to the negative side around tick 10 (reliable only
with the stricter .25 maximum cosine threshold, which was used in
Experiment 2). This dip is consistent with a transient facilitative
effect of distant neighbors (more distant neighbors was associated
with lower CEE) at an intermediate point in processing.

As a second test of the model, we examined model RTs for the
words tested in Experiment 2. For behavioral tests it was critical to
match the words on a variety of control variables such as word
frequency, length, and so forth. However, this basic model is not
sensitive to those properties, so we also tested the full set of words
divided into the four design cells according to the thresholds used
in Experiment 2 to define near versus distant neighbors and many
versus few neighbors. The four sets of items were matched on the
two factors that would impact model performance: number of
features and concept familiarity. This approach produced 39 words
with many near and many distant neighbors, 60 words with many
near and few distant neighbors, 60 words with few near and many
distant neighbors, and 92 words with few near and few distant
neighbors, thus increasing the critical item set from 100 words to
251 words. Because the model analyses are restricted to the weaker
by-items analysis (in Experiment 2 by-subjects analyses were
stronger than by-items analyses), this increase in number of items
is an important increase in power.

We assume that behavioral response probability is some mono-
tonic function of cognitive states related to cross-entropy error,
that is, that participants respond when they have come sufficiently
close in semantic space to the representation of the presented word.
This was operationalized by setting a CEE response threshold and
computing the number of ticks required for the model to come
within the threshold normalized CEE level (this approach is typical
for measuring RTs in attractor models [e.g., Cree et al., 1999], and
more dynamic measures, such as minimum CEE reached and
number of ticks required to reach minimum CEE, produced exactly
the same pattern of results). We set the threshold at 0.2, but the
model behavior is quite orderly, and a relatively large range of

7 Normalization (dividing raw CEE by the maximum CEE for each item)
removes the effects of model starting state. Conceptually, normalized CEE
corresponds to proportion of the distance from the target state (activation
of all and only the correct features) to the starting state of the model.

Figure 3. Correlations at each tick between cross-entropy error (CEE)
and number of near neighbors (solid lines, black symbols) and number of
distant neighbors (dotted lines, white symbols) across all concepts in the
corpus. Correlations greater than � .09 are statistically reliable ( p � .05).
The correlations were computed for three levels of threshold defining near
and distant neighbors. In the legend, “near � 0.25” indicates that near
neighbors were defined as having minimum cosine 0.25 and “distant �
0.25” indicates that distant neighbors were defined as having maximum
cosine 0.25 (for distant neighbors the minimum cosine was always 0).
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thresholds would produce the same qualitative pattern. The results
for the Experiment 2 items are shown in the left panel of Figure 4
and the results for the full set of words are shown in the right panel
of Figure 4. The model was consistent with the behavioral data:
The model responded faster to words with fewer near neighbors
(triangles lower than squares), Experiment 2 set, F(1, 96) � 2.3,
p � .13; full set, F(1, 247) � 25.8, p � .001, partial �2 � 0.094;
and to words with more distant neighbors (lines angle up from left
to right), Experiment 2 set, F(1, 96) � 1.9, p � .17; full set, F(1,
247) � 4.1, p � .05, partial �2 � 0.016. There was no interaction
(both Fs � 1) between number of near and distant neighbors in the
model data.

In sum, the model results demonstrate that an attractor model
exhibits the contrasting inhibitory effect of near neighbors and
facilitative effect of distant neighbors. These results suggest that
the effect of neighbors on processing depends on their specific
influence on an attractor surface that must be traversed in order to
reach the target attractor, providing further support to attractor-
based models as a promising approach to understanding semantic
processing.

General Discussion

In Experiment 1 we found that feature-based SND measures
capture unique variance (i.e., beyond seven control factors such as
word frequency and length) in lexical decision and semantic cat-
egorization accuracy and latency. Despite the comparatively lim-
ited corpus for which feature norms are available, our feature-
based measures performed as well as measures based on
association norms and co-occurrence statistics did. Although each
of the three approaches to semantic representation has strengths
and weaknesses, feature-based representations provide a set of
primitives, namely semantic microfeatures, for further exploration
of the structure of semantic knowledge and the most transparent
(albeit limited) theoretical link to the basis of semantic similarity.

The results of Experiment 1 showed an intriguing partial con-
flict with previous studies of SND: Some measures captured a
facilitative effect of SND, consistent with previous results, but
other measures captured an inhibitory effect of SND. Post-hoc

correlational analyses suggested inhibitory effects of near neigh-
bors and facilitative effects of distant neighbors. We tested this
hypothesis directly in Experiment 2, in which near and distant
neighborhood sizes were manipulated independently. The results
of Experiment 2 confirmed that near neighbors tend to slow word
processing and distant neighbors tend to speed word processing.
We proposed that this complex pattern arises due to the conse-
quences of near and distant neighbors on attractor dynamics:
Distant neighbors create a gradient that facilitates settling to the
correct attractor, and near neighbors are competitor attractors that
delay word recognition.

As a test of this proposal, we analyzed the settling patterns of a
simple attractor model of semantics trained on the 541 concept
feature norm corpus. The results showed a relatively early transient
facilitative effect of distant neighbors and a persistent and increas-
ing inhibitory effect of near neighbors. This is precisely the pattern
that would be predicted from the general attractor dynamics per-
spective that we proposed. Independent manipulation of near and
distant neighborhood size revealed that the model does exhibit the
inhibitory effect of near neighbors and the facilitative effect of
distant neighbors. These results suggest that attractor dynamics are
a promising approach to understanding how neighborhood struc-
ture impacts word recognition because they capture the opposite
effects of near and distant neighbors.

The opposite effects of near and distant neighbors mirror the
opposing forces of familiarity facilitation and competitor inhibi-
tion and should apply to phonological and orthographic processing
in addition to semantic processing. In speech perception research-
ers have also found both types of effects (Luce & Large, 2001), but
they have attributed them to different processes or levels
(Vitevitch & Luce 1999; see also Lipinski & Gupta, 2005). Spe-
cifically, Vitevitch and Luce (1999; also Luce & Large, 2001)
argued that the inhibitory lexical neighborhood effects are due to
competition at the lexical level and the facilitative phonotactic
effects are due to sublexical benefits of familiarity. Both lexical
neighborhood density and phonotactic probability capture aspects
of phonological neighborhood density, but the measures are
slightly different (though highly correlated) and seem to capture
opposite effects, much like our different SND measures. Our
analyses of semantic neighborhood effects suggest that both facil-
itative and inhibitory effects may arise from the same level de-
pending on how distant and near neighbors impact attractor struc-
ture. Based on these results, we hypothesize that phonotactic
probability measures may be capturing a facilitative influence of
distant phonological neighbors, and lexical neighborhood density
may be capturing an inhibitory influence of near phonological
neighbors.

Orthographic neighborhood effects are generally thought to be
facilitative (e.g., Sears et al., 1995), but there is at least one
example of inhibitory orthographic neighbor effects: inhibition due
to transposed-letter neighbors (e.g., Andrews, 1996). Words such
as salt, which have a transposed-letter neighbor (slat) are pro-
cessed more slowly than carefully matched words (sand). The
standard definition of an orthographic neighbor is a word that
differs from the target word by a single letter (e.g., Sears et al.,
1995). The contrasting effects of transposed-letter neighbors and
replaced-letter neighbors are consistent with the near/distant
neighbor distinction under the hypothesis that transposed-letter
neighbors (e.g., salt—slat) are nearer in orthographic representa-

Figure 4. Model response times (RTs; in ticks) to each of the four
conditions tested in Experiment 2. The left panel shows RTs for the word
sets used in Experiment 2. The right panel shows RTs for the full set of
words based on the same threshold definitions of near and distant neigh-
bors. Error bars are one standard error.
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tional space than replaced-letter neighbors (e.g., salt—sale). Future
research will test this hypothesis directly.

The feature norm corpus used in the present experiments con-
tained only concrete basic-level concepts, but the feature-based
approach to semantic representation is not limited to just these
types of words. For example, Vigliocco et al. (2004) developed a
single feature-based semantic representational space for objects
and actions, including both action verbs (e.g., to scream) and
action nouns (e.g., the trade). Their key assumption was that the
semantic representations of even relatively abstract words are
grounded in our interactions with the environment and in partly
modality-specific representations (see also Barsalou, 1999, for a
comprehensive theory of grounding semantic knowledge in per-
ceptual processes). Abstraction is correlated with a variety of
semantic factors that affect neighborhood structure (e.g., number
of features [Pexman et al., 2003], hierarchical structure [e.g.,
Breedin, Saffran, & Schwartz, 1998], and cross-correlation of
feature pairs). These factors suggest that abstract concept repre-
sentations are more sparsely distributed in semantic space, sug-
gesting that facilitative distant neighbor effects should dominate.
However, it is possible that because abstract concepts have vaguer
representations (fewer features, possibly broader attractors), there
is more potential for near neighbor interactions. Behavioral and
computational tests are required to adjudicate between these con-
flicting hypotheses.

In sum, our results support two related points. First, among the
different theories of semantic processing, those that can be cast as
nonlinear dynamical systems characterized by attractor dynamics
will be best able to capture the effects of neighborhood density,
particularly the opposite effects of near and distant neighbors. In
attractor models such as the one we analyzed (Cree et al., 2006;
O’Connor et al., 2006), these effects emerge naturally in the course
of the settling process. It may also be possible to build the opposite
effects of near and distant neighbors into models that do not have
intrinsic nonlinear dynamic attractor properties (e.g., semantic
networks based on association norms or categorical hierarchies),
though we see this approach as ad-hoc and less parsimonious. Our
results suggest that inhibitory effects of near neighbors and facil-
itative effects of distant neighbors are a property of attractor
dynamics and would emerge in attractor-based models regardless
of the underlying representation. Thus, we do not rule out associ-
ation norms (or other semantic representations) as possible char-
acterizations of semantic knowledge; rather we argue that these
representations must be recast in attractor-dynamic terms in order
to account for the present data. Second, traditional formulations of
neighborhood effects—be they phonological, orthographic, or se-
mantic—must be reconsidered in terms of nonlinear dynamic
attractors, which allow both inhibitory and facilitative neighbor-
hood effects to emerge without assigning them to different levels
of processing.
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Appendix A

Supplemental Analyses of Experiment 1 Data

To examine differences in semantic neighborhood density (SND) effects for living and nonliving
things, which received “yes” and “no” responses, respectively, in the semantic categorization, we
computed separate partial correlations for living (199 concepts) and nonliving (332 concepts) things
(see Table A1). The pattern of results closely corresponds to the overall data (see Table 2), but SND
effects are much stronger for living things than for nonliving things (note also that statistical power
is reduced by choosing smaller subsets of items; thus, some correlations that were reliable in the
overall analysis are not reliable here). The difference in SND effects between living and nonliving
things is generally not due to differences in SND variability—the standard deviation for each SND
measure is very similar (�30%) for living and nonliving things (the one exception is NumNear
[number of near neighbors], for which the standard deviation is more than five times greater for
nonliving things than for living things). Critically, the opposing pattern of facilitative SND effects
based on some measures (MeanCos [mean cosine] and COALS [Correlated Occurrence Analogue
to Lexical Semantic, mean distance within set]) and inhibitory SND effects based on other measures
(NumNear and COALS_all [mean distance among all items]) emerges here as well, although these
effects appear to be largely driven by the living things.

Table A1
Error Rate and Mean RT Partial Correlations for the Six SND Measures in Lexical Decision (LD) and Living-Thing Semantic
Categorization (SC) Separately for Living Things and Nonliving Things

Variable

Living things Nonliving things

Error RT Error RT

LD SC LD SC LD SC LD SC

Basic feature-based measures of SND
NumNear .11 �.06 .13* .02 .17*** .02 .13** .04
MeanCos .04 �.28*** .13* �.21*** .05 �.07 .04 �.02
PropCorrPairs .08 .12* .06 .14* .02 �.02 .01 .00

Association-based measure of SND
NumAssoc �.03 .11 �.17* .11 .17*** .10 .05 .07

Co-occurrence-based measures of SND
COALS �.09 .31*** �.27*** .06 .03 �.02 .02 �.04
COALS_all .03 .39*** �.09 .20*** .07 .10* .00 .04

Note. RT � reaction time; SND � semantic neighborhood density; NumNear � number of near neighbors; MeanCos � mean cosine; PropCorrPairs �
proportion of significantly correlated feature pairs; NumAssoc � number of associates; COALS � Correlated Occurrence Analogue to Lexical Semantic,
mean distance within set; COALS_all � mean distance among all items.
* p � .10. ** p � .05. *** p � .01.
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Appendix B

Critical Words and Mean Reaction Times for Experiment 2

Many near neighbors Few near neighbors

Many distant
neighbors

Few distant
neighbors

Many distant
neighbors

Few distant
neighbors

buffalo 599 guppy 872 rooster 655 hyena 796
chicken 530 squid 632 calf 655 coyote 655
fox 566 otter 688 pony 707 chimp 691
goose 630 owl 636 raccoon 615 dolphin 566
gopher 716 beaver 697 cow 621 cat 566
minnow 781 hawk 602 turkey 596 crown 645
moose 668 swan 632 rabbit 595 tripod 791
parakeet 737 dove 702 worm 676 saddle 695
pelican 642 cod 712 spider 566 axe 704
couch 644 church 739 rocket 675 raft 737
boat 668 bottle 618 cannon 684 level NA
dagger 712 mittens 710 cigar 655 gown 781
gun 629 shawl 829 barrel 676 guitar 625
jet 636 jacket 657 barn 609 helmet 636
peg 747 shovel 705 cage 678 rope 666
pistol 603 sweater 635 tractor 689 basket 614
revolver 801 blender 751 sled 718 brick 593
sword 647 shoes 652 bridge 678 candle 678
tongs 734 coat 614 box 585 skirt 633
fridge 804 van 734 desk 660 closet 706
bucket 644 broccoli 641 olive 663 carpet 619
pin 757 cantaloupe 690 oak 609 lemon 627
nectarine 736 spinach 669 pumpkin 644 carrot 574
peas 666 orange 621 mushroom 654 pepper 637
plum 646 yam 667 garlic 632 corn 613
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