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Abstract

■ Successful knowledge acquisition requires a cognitive system
that is both sensitive to statistical information and able to dis-
tinguish among multiple structures (i.e., to detect pattern shifts
and form distinct representations). Extensive behavioral evidence
has highlighted the importance of cues to structural change, dem-
onstrating how, without them, learners fail to detect pattern shifts
and are biased in favor of early experience. Here, we seek a neural
account of the mechanism underpinning this primacy effect in
learning. During fMRI scanning, adult participants were presented
with two artificial languages: a familiar language (L1) on which
they had been pretrained followed by a novel language (L2).
The languages were composed of the same syllable inventory
organized according to unique statistical structures. In the ab-
sence of cues to the transition between languages, posttest famil-

iarity judgments revealed that learners on average more accu-
rately segmentedwords from the familiar language comparedwith
the novel one. Univariate activation and functional connectivity
analyses showed that participants with the strongest learning of
L1 had decreased recruitment of fronto-subcortical and posterior
parietal regions, in addition to a dissociation between down-
stream regions and early auditory cortex. Participants with a
strong new language learning capacity (i.e., higher L2 scores)
showed the opposite trend. Thus, we suggest that a bias toward
neural efficiency, particularly as manifested by decreased sam-
pling from the environment, accounts for the primacy effect in
learning. Potential implications of this hypothesis are discussed,
including the possibility that “inefficient” learning systems may be
more sensitive to structural changes in a dynamic environment. ■

INTRODUCTION

Our environment is composed of a vast and uncertain
number of perceptual patterns. A successful learning
mechanism must detect the statistical regularities inherent
in these patterns and crucially determine whether samples
from the environment reflect a single common pattern or
multiple separable patterns. Thus, the processes of learn-
ing and structural change detection are fundamentally in-
tertwined. The importance of differentiating between
patterns is highlighted when considering multilingual ac-
quisition in young children (see Weiss, Poepsel, & Gerfen,
2015; Genesee, 1989; Meisel, 1989; Lindholm & Padilla,
1978). An infant raised in a multilingual home is exposed
to linguistic structures that may or may not be clearly
marked as mapping onto separable languages. Particularly
in the case of conflicting information, successful acquisition
hinges on distinguishing between rather than combining
across the statistics of multiple languages (Weiss, Gerfen,
& Mitchel, 2009; Bosch & Sebastián-Gallés, 2003). Fortu-
nately for the naive learner, the disambiguation of linguistic
structures is often facilitated by external cues. These cues

may be social or contextual in nature; for example, an in-
fant may associate a specific language with a specific par-
ent, gender (male vs. female speaker), or social context
(e.g., within vs. outside the home). Alternatively, these
cues might be tied to the input itself; for example, lan-
guages to which a young child is exposed might differ
markedly in terms of phonemic inventory or inflectional
patterns (Gervain & Werker, 2013; see Bosch & Sebastian-
Galles, 2001).
In addition to making use of perceptual and contextual

cues, learners can proficiently detect changes in under-
lying statistical representations when explicit feedback is
available (e.g., in the form of reward; Behrens, Woolrich,
Walton, & Rushworth, 2007; Gallistel, Mark, King, & Latham,
2001). However, when neither source of evidence for
structural shifts is present, individuals tend to fall short of
an ideal learner. For example, Weiss et al. (2009) dem-
onstrated that adults could segment words from inter-
leaved syllable streams containing competing statistics
only when the speech streams were paired with an index-
ical voice cue corresponding to the pattern change. When
the streams were produced by the same speaker, neither
stream was accurately segmented. However, when the
conflicting streams were produced by different speakers
(male or female), adults were able to segment the two
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statistical patterns with similar levels of accuracy. This find-
ing offers evidence that adults are sensitive to contextual
cues to structural change, and that in the absence of such
cues, learning may be significantly diminished.
Overlaid onto the challenge of detecting structural

changes in the environment is a bias toward efficiency.
Cognitive resources are finite—learners have limitations
in processing speed, attention, and memory (e.g., Osaka,
Logie, & D’Esposito, 2007; Miller, 1956). Evidence that
our neural systems are geared toward efficiency is abun-
dant. A classic case is light/dark adaptation—when overall
illumination is suddenly altered, sensitivity to small changes
in illumination shifts to the mean level of illumination. This
adaptive gain-control mechanism is highly efficient—it
enables neural firing of retinal ganglion cells to concentrate
its high sensitivity around the mean illumination rather
than spreading that sensitivity across several orders of
magnitude of illumination (which would flatten its sensi-
tivity profile; see Ohzawa, Sclar, & Freeman, 1985). This
phenomenon, facilitated processing of or adaptation to
the most common or frequent stimulus in the immediate
environment, is not unique to low-level perception and has
also been demonstrated in complex language comprehen-
sion tasks that measure processing behaviorally (Fine,
Jaeger, Farmer, & Qian, 2013). Thus, adaptive mechanisms
enable the efficient use of processing resources for pre-
dictable stimuli at both the neural and the behavioral
levels. Broadly construed, neural correlates of “efficiency”
could take a variety of forms ranging from the topological
organization of functional networks (i.e., high levels of
local clustering and shorter connections between these
clusters; Sporns, 2011) to decreased recruitment of cogni-
tive control regions during attentionally demanding tasks
(Kozasa et al., 2012). In addition to monitoring the overall
activation of brain areas during language exposure, we
focus here on a metric of efficiency that is likely to have
specific consequences for change detection tasks: de-
creased sampling of the environment as a function of
learning. In other words, we predict that functional connec-
tions with sensory cortex should weaken when learners
encounter familiar patterns.
The brain therefore contends with competing forces:

the potential benefit of monitoring for new structures
in the environment and a bias toward minimizing use
of its resources. Evidence of a bias toward efficiency
can be found in certain types of behavioral learning tasks,
in which failure to detect changes in continuous input
manifests as insensitivity to downstream patterns. For
example, Jungé, Scholl, and Chun (2007) demonstrated
such an early bias effect on learning in a contextual cue-
ing task. One group of participants was first exposed to a
visual display where distractor shapes were not correlated
with target location. When the displays were subsequently
altered, such that the distractor shapes were then cor-
related with target location, those participants showed
no facilitation effect on motor RT. In other words, initial
experience with the noisy (uncorrelated) displays pre-

vented learners from capitalizing on predictive informa-
tion later in learning. In contrast, participants who were
first exposed to displays where the distractors were pre-
dictive of target location later showed the expected facil-
itatory effects on motor RT, even after an intervening
distractor phase. The authors proposed that learning does
not necessarily unfold uniformly over time and that initial
hypotheses about the statistics of the environment may
be resistant to updating. Although it is certainly possible
that learners in this case were unwilling to update an
already entrenched representation of the environment,
another related possibility is that entrenched represen-
tations actually induce learners to sample less from down-
stream input.

In addition to situations in which early input is noisy,
there is evidence that early information is favored in learn-
ing situations that contain multiple patterns. Gebhart,
Aslin, and Newport (2009) conducted a segmentation
experiment similar to that of Weiss et al. (2009), but in
which participants were presented with two languages
(which we will hereafter refer to as L1 and L2) for
5.5 min each in direct succession, as opposed to inter-
leaved in shorter blocks. When the transition to L2 was
marked with a 30-sec pause, participants successfully dis-
criminated high probability syllable triplets (“words”)
from low probability triplets (“partwords”) in both lan-
guages. When the transition was unmarked and the L2
stream followed continuously from the L1 stream, partic-
ipants learned only the first language. This primacy effect
held even when L2 consisted of the same inventory of
consonants and vowels that comprised L1 (i.e., the lan-
guage streams were perceptually overlapping). In the
unmarked condition, L2 learning was achieved only by
tripling the amount of L2 exposure relative to L1.

Thus, the existing behavioral data and theoretical per-
spectives suggest that (1) learning of multiple structures
in a continuous context is heavily dependent upon index-
ical cues (Mitchel &Weiss, 2010; Gebhart et al., 2009; Weiss
et al., 2009) and (2) in the absence of such cues learning
favors early experience (Gebhart et al., 2009; Jungé et al.,
2007). We hypothesize that this primacy effect results
from a bias toward efficiency: If learners expect an envi-
ronment to be stationary, it is inefficient to sample con-
stantly from it once they have robust knowledge of its
underlying structure. This hypothesis, if supported, could
have significant implications for understanding the con-
straints of language acquisition and plasticity of learning.

Here, we seek to characterize through fMRI the spe-
cific mechanism by which neural efficiency impedes learn-
ing of a novel language after participants have formed a
representation of a perceptually similar language. In the
present experiment, we first pretrained participants on a
statistically structured syllable stream. Next, we recorded
brain responses as participants relistened to that syllable
stream (L1), followed immediately by a novel stream
consisting of the same syllables organized in a different
pattern (L2). As in the unmarked condition of Gebhart
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et al. (2009), we removed any accompanying indexical
cue. Following exposure, we evaluated learning of each
language by asking participants to discriminate between
high and low probability triplets from L1 and L2. We then
used a combination of univariate and functional connec-
tivity measures to examine how decreases in activation
levels and the interplay between high-level association
and low-level sensory-specific cortical regions might give
rise to the primacy effect in learning.

Our work diverges from prior studies of learning in
nonstationary environments in that we examine neural
responses to prolonged (>5 min), rather than short-term
(<10 sec), exposures with nonuniform patterns (Tobia,
Iacovella, Davis, & Hasson, 2012; Tobia, Iacovella, &
Hasson, 2012). Indeed, converging neural and behavioral
evidence shows that learners are adept at change detec-
tion on such rapid time scales (Tobia, Iacovella, Davis,
et al., 2012; Tobia, Iacovella, & Hasson, 2012; Huettel,
Mack, & McCarthy, 2002), suggesting that early pattern
changes may override the primacy effect and the expec-
tation for stationarity observed after lengthy L1 exposure.
Other work has examined neural response to statistical
learning over longer time frames (e.g., approximately
2.5 min; Andric & Hasson, 2015; McNealy, Mazziotta, &
Dapretto, 2006), but in those cases researchers examined
a highly structured sequence relative to a less structured
or random sequence. Here, we investigate the acquisition
of two different but equally structured language systems.

In examining how the neural processes engaged dur-
ing L1 exposure might interfere with L2 acquisition, we
hypothesize that, because the brain prioritizes efficiency
over change detection, it will sample less from its audi-
tory environment as a function of the efficacy of L1 learn-
ing. We hypothesize that this diminished sampling rate
should manifest itself as an uncoupling (i.e., decreased
connectivity) between auditory cortex, where sensory
input is initially processed, and fronto-basal ganglia re-
gions, particularly the inferior frontal gyrus and dorsal
striatum, where some evidence suggests statistical learn-
ing is mediated (Karuza et al., 2013; Turk-Browne, Scholl,
Chun, & Johnson, 2009). Given prior evidence suggest-
ing temporal lobe involvement in statistical learning, it
is also possible that early perceptual cortex might dis-
sociate from more medial areas (i.e., the hippocampus;
Turk-Browne, Scholl, Johnson, & Chun, 2010; Turk-Browne
et al., 2009) and superior temporal association areas
(Plante et al., 2015; McNealy et al., 2006).

Overall, we predict a negative correlation between L1
learning and connectivity with auditory cortex; learners
who have acquired L1 most robustly should have neural
learning systems that are not only less active but also less
integrated with sensory cortex. However, this decrease
in sampling should come at a cost: When interregional
connections are weaker, learners should be less likely to
pick up on the shift to L2 because the input to higher-level
systems has been attenuated. Thus, we also predict a
positive correlation between connectivity during L1 expo-

sure and L2 learning as measured at posttest. Learners
whose systems are still functionally integrated and ac-
tively monitoring the sensory input during L1 processing
should be more sensitive to the new statistical informa-
tion present in L2. This account is compatible with prior
neuroimaging work that has demonstrated deactivation
of control-related frontal and parietal areas as a function
of successful language learning (Grant, Fang, & Li, 2015;
Stein et al., 2009; Chee, Hon, Lee, & Soon, 2001). It also
accords with recent observations that sensorimotor and
fronto-cingulate networks become functionally inde-
pendent during a sequence-learning task (Bassett, Yang,
Wymbs, & Grafton, 2015).

METHODS

Participants

Thirty-five participants recruited from either the Univer-
sity of Rochester or the Pennsylvania State University
completed a behavioral prequalification portion of
this study (see Procedure section). Seventeen of them
completed the subsequent scanning session. One of the
17 participants was excluded because it was discovered
that she had already participated in an earlier pilot ver-
sion of the study. The 16 participants included in these
neuroimaging analyses were divided evenly between
both institutions (fMRI scanning was conducted on iden-
tical scanners using identical imaging sequences; see
below for scanning details1). The study was approved by
the institutional review boards at both institutions. All
participants were right-handed, native speakers of English
between the ages of 18 and 30 (mean age = 20.67 years,
SD = 1.01 years; 6 men, 10 women) with normal or
corrected-to-normal vision. They provided informed con-
sent and were compensated financially according to
university guidelines.

Stimuli

Auditory stimuli were adapted from Gebhart et al. (2009)
and Newport and Aslin (2004). Two distinct “languages”
were created by concatenating 16 unique trisyllabic words
three times each, resulting in a continuous 48-word stream
of approximately 34 sec that was then looped to create a
much longer exposure stream, interrupted by silence after
each 34-sec block. Streams were generated with the con-
straints that the same word never appeared twice in a
row and each word-final syllable was followed by only
one of two possible word-initial syllables. Words in both
languages had an underlying structure of CV-CV-CV, but
in one stream the informative statistic was the transitional
probability between consonants within a word (TP = 1.0)
and in the other the relevant statistic was between vowels
within a word (TP = 1.0). All other TPs, that is, between
adjacent and nonadjacent syllables as well as between seg-
ments spanning word boundaries, ranged from 0.42 to
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0.58. Note that the syllabic inventory in each language was
identical ( pa, ku, be, po, gi, tae, ki, gu, do, da, te, bae),
although the words themselves differed (e.g., pa-ku-te vs.
te-da-ku) because of the underlying consonant or vowel
frame structure (Figure 1). The syllable streams were
synthesized using a monotone, female voice setting in
MacinTalk, ensuring that there were no informative pauses
or cues to word boundaries other than the statistical
regularities in the input. Syllable length ranged from 180
to 220 msec, and the mean intersyllable interval was ap-
proximately 18 msec within words/13 msec between words
for the vowel frame language and 17 msec within words/
19 msec between words for the consonant frame language.
A two-alternative forced-choice test following exposure

to each language assessed whether participants had suc-
cessfully segmented the streams. During the posttest,
participants were asked to discriminate the predictable
triplet sequences (words) from one of two types of part-
words: a 3-1-2 partword composed of one word-final
syllable and the first two syllables from the next word
and a 2-3-1 partword composed of two word-final sylla-
bles and one word-initial syllable. We selected four words
and four partwords from each stream and paired them
exhaustively to create a list of 16 test pairs per language.
Crucially, Gebhart et al. (2009) found no significant dif-
ference in posttest performance for separate groups of
participants when comparing the consonant and vowel
frame languages presented in isolation, suggesting that
the languages are roughly equally learnable.

Procedure

Phase 1 Testing

Participants were initially recruited for a behavioral test-
ing session that took place in a mock scanner. Because of

variability in learning that has been observed under fMRI
scanning conditions (Karuza et al., 2013; Turk-Browne
et al., 2009; McNealy et al., 2006), we included this pre-
liminary session to ensure that participants robustly ac-
quired L1. It is important to note that our question in
this study was not which brain areas underlie learning
of statistical regularities (a topic that has been addressed
by the aforementioned studies); rather, we sought to un-
cover the mechanism by which knowledge of L1 impacts
the learning of patterns embedded in L2. It was therefore
crucial to establish an L1 learning effect.

Participants were positioned comfortably in the mock
scanner, equipped with headphones, and instructed to
view an experimental display through a rearview mirror
mounted to a mock head coil. They were told that they
would be exposed to an alien language, parts of which
might become familiar to them. They were also informed
that, following exposure, there would be a testing phase.
As in the subsequent scanning phase, stimuli were pre-
sented in a blocked design (33.7 sec on, 20 sec off ).
While the language was playing, a black-and-white car-
toon image of an “alien” (fictional creature) was presented
in the center of the screen. During the off periods, a fixa-
tion cross was displayed. Auditory fade-in and fade-out
effects (Audacity Team, 2012; Audacity v. 2.0) were
applied to the first and last two syllables of each sound
stream to eliminate potential segmentation cues. Finally,
ambient scanner noise was played during the session so
that the setup would match an actual scanning session
as closely as possible.

Following 10 blocks of exposure (5.6 min of L1 and
3.7 min of interstimulus rest; 9.3 min total), participants
were told that they would hear pairs of items with a silence
between them. Within each pair, one item was a word and
the other a partword. Using a handheld button box, they
selected “1” if the first triplet sounded like it belonged to
the language they just heard and “2” if the second triplet
belonged to the language. Participants who met or ex-
ceeded a predetermined cutoff of 11 of 16 correct (68.75%)
were invited to participate in a follow-up scanning session.
Participants were not informed pretesting that their per-
formance in the mock scanner determined their eligibil-
ity for scanning nor were ineligible participants informed
that they failed to meet criterion.

Phase 2 Language Exposure

Qualifying participants completed an fMRI scan within
48 hr of the original mock-scanner session. At each insti-
tution, half of these participants had been exposed to the
consonant frame language on Day 1 and half to the vowel
frame language. They were told that the session in the
mock scanner was a practice session to make sure they
would feel comfortable in the real scanner while they
performed a longer version of that experiment. Block
duration, ISI, visual presentation, and instructions were
identical to the mock-scanner protocol. However, in this

Figure 1. Directed graph displaying underlying word structure in the
vowel and consonant frame languages. Nodes represent segments and
edges represent transitional probabilities between them. Note that,
within each word, the maximally informative statistic is the perfectly
predictive relationship between either vowels (top plot) or consonants
(bottom plot).
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phase of the experiment, we extended the exposure to
include 4 “transition” blocks and 5.6 additional minutes
of L2 exposure (plus interleaved baseline periods). That
is, in the first run, we reexposed participants to the L1
stream they heard in the mock scanner over the course
of 10 blocks (either the consonant or vowel frame
language), followed by two additional blocks that were
33% and 50% L2, respectively (total run duration was
11.1 min). We then started a second run (also 11.1 min)
with two more transition blocks (50% and 67% L2,
respectively) followed by 10 full blocks of L2 (Figure 2).2

Regardless of the language playing, the same alien was
present on the screen, and participants were given no
indication that they would be exposed to a different lan-
guage. In fact, the intended purpose of the transition
blocks, along with the consistent presentation of the
alien image, was to obscure cues to the L2 shift that might
be induced by the pause between scanning runs. During
scanning, participants were therefore led to believe that
they were simply listening to more L1, although half of
the Phase 2 presentation actually consisted of L2. Follow-
ing exposure to both languages, participants were asked
to complete a “longer version of the first posttest.” In
the General Discussion section, we consider how poten-
tial consequences of explicitly leading participants to
expect a single language might bear upon interpretation
of our results.

No imaging data were collected during the posttest,
though for continuity participants remained in the scanner
during this final portion of the experiment. Unbeknownst
to participants, the first 16 items of the posttest examined
L2 learning whereas the second 16 items reexamined L1
learning. Thus, we could ask whether L1 learning was
maintained, even after the L2 pattern shift. Moreover, if test
performance were transient, we would capture any learn-
ing of L2 because it was always tested before L1. This
design feature enabled us to examine learning of L2 with-
out potential interference effects from L1 test items; how-
ever, when interpreting L1 test scores following scanning,
we cannot completely rule out potential interference
effects from the preceding L2 test. To be clear, any such

interference effect is likely to be quite negligible because
neither words nor partwords in the L2 posttest overlapped
in any way with the words and partwords in the subsequent
L1 posttest. It was not, for example, possible for learners to
endorse a word during the L2 posttest and then reject that
same triplet as a partword in the L1 test. Although an on-
line, more implicit behavioral measure of learning un-
doubtedly has its benefits, we opted to test participants’
knowledge with an offline posttest for the following rea-
sons: (1) the nature of our exposure streams, which con-
tained the rapid and continuous presentation of syllables,
did not easily lend itself to the collection of online mea-
sures; (2) depending on the task used, the collection of
online measures has unknown effects on the learning
process; (3) the broader field of statistical learning offers
considerable evidence that learning can be indexed by an
offline posttest, as it is the most commonly used measure;
and (4) online implicit measures, such as RT, have been
shown to correlatewith offline posttest performance (Karuza,
Farmer, Smith, Fine, & Jaeger, 2014).

Phase 2 Setup and Acquisition Parameters

Before beginning the scanning sequences, the partici-
pant’s head was secured using foam padding. As in the
mock scanner, rear-projected visual stimuli appeared
through a small mirror mounted above the eyes at an
angle of 45°. Participants were provided with earplugs
to reduce scanner noise, and they wore noise-canceling
headphones to enable them to hear the auditory stim-
uli. Posttest responses were recorded on a custom-built
MR-safe button box held in their right hand.
Imaging data acquired at both sites (Penn State and the

University of Rochester) were collected on a Siemens
(Erlangen, Germany) 3T MRI scanner equipped with a
12-channel head coil. At the start of the session, a high-
resolution, T1-weighted anatomical imagewas acquiredusing
an MPRAGE sequence (repetition time [TR] = 2530 msec,
echo time=3.44msec, flip angle=7°, voxel size= 1mm3).
For the subsequent two functional runs (334 time points
each), 30 axial slices covering the whole brain were collected

Figure 2. Experimental design.
Participants were first exposed
to L1 in a mock scanner.
Those with qualifying scores
were invited to participate in a
scanning session within 48 hr
of the initial session. During
the scanner phase, participants
were exposed to an additional
9.3 min of L1 (teal) followed
by 9.3 min of L2 (blue). The
transition between the two
streams was not explicitly
marked, and presentation
of each language was
accompanied by an identical
visual stimulus (an “alien”).

1488 Journal of Cognitive Neuroscience Volume 28, Number 10



in an interleaved order using a T2*-weighted gradient-echo
EPI sequence (TR = 2000 msec, echo time = 30 msec, flip
angle = 90°, voxel size = 4 mm3).

RESULTS

Behavioral Performance

Average L1 learning in the mock scanner was significantly
greater than chance level (50%), even when including
those participants who did not meet the qualification
criterion (mean accuracy = 70.89% correct; t(34) =
5.87, p < .0001). Of those 16 participants who qualified
and were available for the scanning session, mean L1
performance in the mock scanner was 87.50% correct
(t(15) = 15.94, p< .0001). Bar plots in Figure 3A indicate

that participants generally maintained their L1 perfor-
mance (86.72% correct, SD = 14.22%; t(15) = 10.32, p <
.0001) following the fMRI phase of L1 and L2 exposure.
However, they did not, on average, successfully acquire
L2 (50.39% correct, SD = 16.99%; t(15) = 0.09, p = .93,
ns different from chance). On the scanning day, L1 scores
ranged from 50% to 100% and L2 scores ranged from 25%
to 81.25% (Figure 3B). A Levene’s test revealed no sig-
nificant difference in variance (F = 1.93, p = .18). Inter-
estingly, L1 and L2 performance were significantly inversely
correlated (r = −0.56, p = .02), suggesting that robust L1
acquisition may have impeded subsequent L2 acquisition.

Neuroimaging Results

General Preprocessing

All fMRI analyses were carried out using FEAT (fMRI
Expert Analysis Tool, v. 6.00), a general linear modeling
package that is part of FSL (FMRIB’s Software Library;
Jenkinson, Beckmann, Behrens, Woolrich, & Smith,
2012). Two dummy volumes from the start of each func-
tional run were discarded to eliminate start-up equili-
bration artifacts. The following standard corrective
procedures were then performed: skull-stripping with
BET to remove nonbrain material, motion correction
with MCFLIRT (FMRIB’s Linear Image Registration Tool;
Jenkinson, Bannister, Brady, & Smith, 2002), slice timing
correction (interleaved), spatial smoothing with a 5-mm
3-D Gaussian kernel, and high-pass temporal filtering
with a cutoff of 55 sec. Six motion parameters estimated
from MCFLIRT were added as nuisance regressors in all
subsequent modeling.

Group Level Univariate Analysis

A series of univariate analyses were then performed to
elucidate the relationship between activation levels dur-
ing language exposure and ultimate learning measures.
As the basis for these group level analyses, we modeled
individual subject activation separately for each of the
two functional runs (so-called “first level analysis” carried
out using FILM: FMRIB’s Improved Linear Model). The
waveform corresponding to each language (L1 in the first
run or L2 in the second run) was modeled by specifying
the onset and duration of each of the 10 language blocks.
The two transition blocks (mixture of L1 and L2) in each
run were coded as separate regressors of no interest.
This waveform then underwent double-gamma convolu-
tion to best match it to the measured hemodynamic re-
sponse function. To reduce unexplained noise, we also
added in a fraction of the temporal derivative from the
original waveform and applied a temporal filtering pro-
cess. Finally, native image transformation to the standard
MNI-152 structural template (2 mm) was completed using
FLIRT ( Jenkinson et al., 2002): Participants’ functional
scans were first coregistered to their corresponding

Figure 3. Mean posttest scores for qualifying participants (A) and the
spread of individual participant performance across testing days (B).
Note that even after exposure to L2, qualifying participants tended to
maintain their L1 representations in the Day 2 scanning session. Error
bars in A represent 1 SEM corrected for within-subject comparisons, and
colored lines in B indicate individual trends in performance across tests.
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structural scan, and the combined maps were warped to
the MNI template via an affine transformation with 12
degrees of freedom.

We began by examining the effect of posttest score on
each run separately.3 First-level parameter estimates from
either L1 or L2 were entered into FMRIB’s Local Analysis
of Mixed Effects (FLAME1). In addition to modeling the
main effect of task in each run, we included a demeaned
predictor corresponding to L1 or L2 posttest score. As
FLAME1 is one of the more conservative cluster-based
parametric methods (Eklund, Nichols, & Knutsson, 2015),
all group level maps were thresholded at the single voxel
level using a cutoff of Z > 1.96. However, because of
concerns about inflated family-wise error rates for certain
parametric statistical methods (Eklund et al., 2015), we
also report which results were maintained when a more
stringent cluster defining threshold of Z > 2.6 was applied
(corresponding to a one-tailed p < .005). Finally, accord-
ing to the cluster correction method described in Worsley
(2001), we compared significance levels associated with
contiguous groupings of these remaining voxels to a clus-
ter probability threshold of p < .05.

Although we find no significant effect of L2 posttest
performance on L2 activation levels (at either Z-statistic
threshold), we observe a widespread set of areas exhibit-
ing a significant negative correlation between L1 posttest
scores and L1 activation. This diffuse negative association
encompasses bilateral temporal cortex, posterior parietal
cortex, as well as fronto-subcortical regions (Table 1).
These results suggest that learners with higher L1 post-
test scores appeared to allocate fewer processing re-
sources during L1 exposure, presumably because they
had already robustly learned L1 in the prior mock-scanner
session. Noting that this inverse relationship was quite
robust, we also display in Table 1 cluster information
when the analysis was run using the more conservative
threshold of Z > 2.6. In Figure 4, we display all regions
significantly active above and below baseline for L1 and
L2 regardless of behavioral performance (i.e., correspond-
ing to the main effect of task at Z> 1.96 and Z> 2.6 in the
L1 and L2 runs; see also Table 2).

Next, we contrasted activation between the runs di-
rectly, asking whether, across participants, activation
differences in response to L1 and L2 exposure were
modulated by the strength of the primacy effect mea-
sured behaviorally. To accomplish this, all parameter
estimates from first-level analyses of L1 and L2 were
entered into a FLAME model; our group level model con-
tained a fixed categorical factor with two levels cor-
responding to each of the two language exposure runs
(L1 or L2), a numeric primacy predictor for each par-
ticipant (L1–L2 scores centered with respect to the group
mean), and random subject intercepts. The primacy effect
predictor was computed by subtracting accuracy scores
from the L2 posttest from accuracy scores from the L1
posttest (i.e., L1–L2 performance, where a positive value
indicates a particular participant scored higher on L1 than

L2). First, we observe a significant main effect of language
(cluster-corrected at a threshold of p < .05 and Z > 1.96;
ns at Z > 2.6). When comparing L1 and L2, we find a
medial fronto-subcortical cluster with a peak in right
fronto-orbital cortex (cluster extent = 1492 voxels, p =
.0004, peak of Z = 3.55 in x = 16, y = 28, z = −14)
and a posterior parietal cluster with a peak in right pre-
cuneus (cluster extent = 917 voxels, p = .01, peak of Z =
3.51 in x = 8, y = −56, z = 64) to be more strongly acti-
vated in the L2 exposure run. Thus, participants on aver-
age showed greater activation in these two clusters during
the novel language (L2) when compared with the familiar
language (L1), and no brain areas displayed the reverse
effect. Second, our results reveal a significant negative
interaction between these predictors within posterior
parietal cortex (Figure 5A; ns at Z > 2.6). We find an ap-
proximately medial cluster (extent = 1960 voxels, p <
.0001) with maxima in right and left precuneus (right: Z =
3.25, x= 14, y=−64, z= 28; left: Z= 3.14, x=−10, y=
−74, z = 38) and extending into right posterior cingulate
(PCC) gyrus (peak in x= 2, y=−46, z= 26, Z= 2.90). To
illustrate this effect, we have extracted for the precuneal
and PCC activation peaks an estimate of the L1–L2 activa-
tion difference for each participant and plotted it against
their behavioral difference scores (Figure 5B). Note that
when L1 learning was higher than L2 learning, partici-
pants showed lower levels of posterior parietal activation
during L1 exposure relative to L2 exposure. Conversely,
those participants whose L2 learning exceeded L1 learn-
ing showed greater posterior parietal activation during
L1 relative to L2 during exposure.

Group Level Connectivity Analysis

Subsequently, we investigated the neural connectivity co-
occurring with the observed activation decreases during
L1 processing. That is, we sought to characterize through
a psychophysiological interaction (PPI) analysis the inter-
regional functional integration that accompanies changes
in mean activation levels (O’Reilly, Woolrich, Behrens,
Smith, & Johansen-Berg, 2012). This temporally fine-
grained approach may be of particular importance in
light of findings that, during learning, early perceptual
areas respond on a much shorter time scale than higher-
level areas such as frontal cortex (Harrison, Bestmann,
Rosa, Penny, & Green, 2011). If the brain indeed samples
less from its environment as a function of learning, then
we would expect a corresponding attenuation of the
interaction between auditory cortex and downstream
cortical and subcortical regions that mediate statistical
learning. PPI analyses thus enable us to reveal regions
that become more or less tightly coupled during expo-
sure to L1. This method contrasts with a pure correla-
tional analytic approach that explores which regions are
integrated in general, regardless of the timing of the
input. To differentiate between the PPI approach used
here and correlational approaches commonly associated
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with functional connectivity, we use the term “interactivi-
ty” below when referring to the association between time
series in auditory cortex and the rest of the brain.
Because we were specifically interested in interactivity

with perceptual regions, we defined our seed ROI from
the activation peak in left temporal cortex determined at

the group level via a simple language versus baseline con-
trast (i.e., activation corresponding to a main effect of
task in L1). This task-general peak for L1 (x = −42, y =
−30, z = 8) was localized to primary auditory cortex,
falling near the junction of left planum temporale and
Heschl’s gyrus. To perform the PPI analysis, we first

Table 1. Regions Exhibiting a Lowered Level of L1 Activation in the Highest-achieving L1 Learners (L1 Posttest −)

Predictor Cluster Extent (Vox) Region x y z Z Statistic

L1 posttest (−) >1.96

1 3134 R planum polare 42 0 −18 4.51

R frontal operculum 46 16 6 3.51

R temporal pole 30 18 −50 3.4

R superior temporal gyrus* 68 4 −6 3.4

R middle temporal gyrus 72 −12 −6 3.39

2 1137 L supramarginal gyrus −58 −52 28 4.13

L angular gyrus −38 −50 28 3.56

L lateral occipital complex −34 −58 34 3.52

3 11910 R inferior temporal gyrus 62 −50 −12 3.81

R temporal occipital fusiform 40 −46 −20 3.75

R angular gyrus 48 −52 26 3.74

L posterior cingulate gyrus −10 −52 26 3.69

L precuneus −12 −58 8 3.52

4 1869 L central operculum −42 −8 12 3.79

L putamen −34 −6 −4 3.45

L insula −44 −4 4 3.38

L frontal pole −36 40 34 3.3

L inferior frontal gyrus −40 24 12 3.12

L1 posttest (−) >2.6

1 474 R planum polare 42 0 −18 4.51

R putamen 34 −12 4 3.21

R temporal pole 30 10 −32 2.9

2 342 L supramarginal gyrus −58 −52 28 4.13

L angular gyrus −38 −50 28 3.56

L lateral occipital complex −34 −58 34 3.52

3 288 R inferior temporal gyrus 62 −50 −12 3.81

R temporal occipital fusiform 40 −46 −20 3.75

R middle temporal gyrus 54 −50 −4 3.24

4 673 L posterior cingulate gyrus −10 −52 26 3.69

L precuneus −12 −58 8 3.52

For each significant cluster, we present up to the top 5 activation peaks in anatomically distinct areas (in MNI coordinate space) as well as their
corresponding peak Z statistics. The first four clusters represent significant learning-related activation observed with a cluster-determining threshold
of Z > 1.96; the subsequent four clusters represent the same activation map, this time thresholded at Z > 2.6.
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transformed this peak voxel to each individual’s native
functional space through their unique structural images,
then dilated a spherical region around that voxel using a
5-mm kernel. From the resulting 7-voxel seed, we ex-
tracted each participant’s mean time series from their
preprocessed (i.e., filtered and motion-corrected) func-
tional images for L1 (see General Preprocessing section).
Next, we reran the previously described first-level analy-
sis, but this time including the following regressors: (1) a
psychological regressor indicating the timing of the L1
task blocks (this regressor was centered such that the
zero point fell halfway between the task blocks [+1] and
the baseline periods [−1]); (2) a physiological regressor
consisting of the activation time course of our single audi-
tory seed sphere (this regressor was centered by sub-
tracting the mean intensity across the time series from
the intensity value at each TR); (3) an interaction regres-

sor modeling the relationship between our block timing
waveform and the physiological time series; and (4) a nui-
sance regressor specifying the timing of the mixed blocks.
Of the various approaches to PPI analyses (cf. Gitelman,
Penny, Ashburner, & Friston, 2003), we adhere to the ap-
proach detailed by O’Reilly et al. (2012). That is, our task
regressor was first convolved with a double-gamma hemo-
dynamic response function and subsequently combined
with the filtered time series from our left temporal seed
region. Neither the physiological regressor nor the inter-
action term required convolution or temporal filtering, as
they already represented the real-time state of the brain
during scanning.
To investigate how interactivity during L1 experience

relates to ultimate learning outcomes (and therefore
gives rise to the observed behavioral primacy effect),
we then performed two group-level analyses. In the first
analysis, we entered first-level parameter estimates of the
PPI effect from L1 into FLAME and asked where L1 post-
test performance (demeaned L1 posttest scores) signifi-
cantly predicted L1 interactivity with our auditory seed.
In a second, related analysis, we examined the relation-
ship between L1 interactivity and L2 learning by inputting
L2 posttest scores. Thus, we tested whether infrequent
L1 sampling, which we operationalize as low interactivity
with auditory cortex during L1 processing, might result in
lower L2 learning outcomes. All significant interactivity
results reported below were obtained using a threshold
of Z > 1.96 (i.e., ns at Z > 2.6).
Results from the first analysis show a complementary

relationship between L1 activation and L1 interactivity,
at least in the context of robust learning. As Figure 6A
demonstrates, we found a significant negative correlation
between L1 learning and L1 interactivity with auditory
cortex in diffuse bilateral frontal and subcortical regions
(cluster extent = 8001 voxels, p < .0001), including left
inferior frontal gyrus (peak of Z = 2.52 in x = −50, y =
12, z= 10), left caudate (peak of 2.81 in x=−10, y= 12,
z = 8), left putamen (peak of 2.66 in x = −22, y = 0, z =
8), right caudate (peak of 2.53 in x= 8, y= 6, z= 4), and
right putamen (peak of 2.64 in x = 26, y = 2, z = 8). In
Figure 6B, we show how these five peaks, selected for
visualization because of their implication in other fMRI
studies of statistical learning (e.g., Karuza et al., 2013;
Turk-Browne et al., 2009), are less functionally integrated
during L1 processing in strong L1 learners. This pattern
does not hold when comparing L1 interactivity estimates
in these five regions with L2 learning, although we do see
a slight positive trend (Figure 6B). Given the inverse cor-
relation between L1 and L2 posttest scores, note that it
would be impossible for those regions that are negatively
correlated with L1 learning to also negatively correlate
with L2 learning.
For the second group level analysis, in which L2 post-

test scores were used as a predictor of L1 interactivity, we
do observe a positive relationship between these measures
in a different set of areas. Specifically, we find a bilateral

Figure 4. Regions showing positive and negative main effects of Task
for each language, L1 and L2 (see also Table 2). Activation maps
generated with a cluster-determining threshold of Z > 2.6 are overlaid
(in red) onto activation maps generated using Z > 1.96 (in blue).
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Table 2. Regions Showing Positive and Negative Main Effects of Task Are Also Presented (Main Effect of L1 +/− and L2 +/−)

Predictor Cluster Extent (Vox) Region x y z Z Statistic

Main effect of task
(L1+)

>1.96

1 61559 R lateral occipital complex 38 −86 −10 7

R occipital pole 30 −94 0 6.09

L planum temporale −42 −30 8 6.03

R superior temporal gyrus 58 −6 −6 5.85

L superior temporal gyrus −58 −26 0 5.7

Main effect of task
(L1−)

1 8966 R lateral occipital complex 28 −86 42 4.68

L lateral occipital complex −40 −82 22 4.63

L lingual gyrus −30 −46 −6 4.53

R lingual gyrus 34 −42 −6 4.31

R occipital pole 14 −92 16 4.17

2 791 R precuneus* 10 −54 56 3.55

L precuneus* −12 −46 50 3.48

L posterior cingulate gyrus* −14 −30 38 2.75

R posterior cingulate gyrus* 16 −32 40 2.63

L precentral gyrus* −16 −34 40 2.63

Main effect of task
(L2+)

1 55707 R lateral occipital complex 38 −84 −10 6.62

R superior temporal gyrus 56 −22 −2 6.18

R planum temporale 54 −18 4 5.85

L Heschl’s gyrus −42 −24 10 5.76

L planum temporale −42 −30 10 5.71

2 1189 R lateral occipital complex 46 −62 48 3.63

R angular gyrus 52 −56 36 3.08

R superior parietal lobule 32 −48 42 2.93

Main effect of task
(L2−)

1 4233 L lingual gyrus −6 −80 −4 4.31

L intracalcarine −8 −86 2 4.14

R intracalcarine 2 −82 4 3.93

R occipital pole 10 −90 6 3.8

R supracalcarine 2 −80 8 3.61

2 1080 L precuneus* −30 −56 8 3.86

L temporal occipital fusiform* −32 −50 −4 3.71

L lateral occipital complex* −38 −72 10 3.32

L intracalcarine* −28 −60 8 3.19

L lingual gyrus* −16 −42 −12 2.72

For each significant cluster (determined by Z > 1.96, p < .05), we present up to the top 5 activation peaks in anatomically distinct areas (in MNI coor-
dinate space) as well as their corresponding peak Z statistics. Asterisks (*) represent regions that did not survive a more conservative cluster-determining
threshold of Z > 2.6.
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Figure 6. Inverse relationship
between L1 connectivity with
early perceptual cortex and
L1 learning outcomes. The top
plot (A) displays the results of
a whole-brain PPI analysis in
which we observed a negative
correlation between L1 posttest
scores and connectivity with
left auditory cortex during L1
exposure (Z > 1.96, p < .05).
Decoupling from this sensory
area, particularly in pFC and the
basal ganglia, was associated
with high accuracy on the
L1 posttest. For illustrative
purposes, the bottom plot
(B) shows this relationship for
each of the fronto-subcortical
peaks color-coded in A. Note
that we find no significant
relationship between L1
connectivity with fronto-
subcortical regions and L2
learning (but refer to Figure 7).

Figure 5. Inverse relationship
between L1 versus L2 activation
and the strength of the primacy
effect measured behaviorally.
Activation in PCC and
precuneus was modulated
by differences between L1
and L2 posttest accuracy
(A; Z > 1.96, p < .05). As
illustrated in B, lower L1
relative to L2 activation in
these regions was related to
a stronger primacy effect.
To create the bottom plot,
parameter estimates for each
participant were extracted
using the group level peaks
in right precuneus and PCC,
shown in pink, and plotted
against individual difference
scores (L1–L2). Negative values
on either axis indicate lower
L1 activation relative to L2
( y axis) or lower L1 accuracy
relative to L2 (x axis).
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frontoparietal cluster (extent = 6026 voxels, p < .0001),
with peak parietal activation in left precuneus (Z = 3.33,
x = −2, y = −40, z = 54) and right precuneus (Z =
3.33, x = 2, y = −40, z = 52), and peak frontal activation
in left anterior cingulate gyrus (Z = 3.11, x = −4, y = 6,
z = 36). This finding represents the only significantly
positive relationship we observed thus far; the greater
the interactivity between early auditory cortex and this
frontoparietal system during L1 processing, the higher
the L2 learning scores. Participants who were still inte-
grating auditory input with high-level cognitive systems
during L1 (i.e., sampling more from their environment)
were more likely to be affected by novel statistical infor-
mation contained in L2 streams.

Investigating Complementary Systems

In a final analysis, we asked whether the positive relation-
ship between L1 interactivity and L2 learning would be
mirrored in the relationship between L1 activation levels
and L2 behavioral performance. We ran an identical
correlational analysis, but input L1 first-level parameter
estimates for the main effect of task instead of the PPI
estimates. We find that L1 activation and interactivity are
complementary in posterior parietal cortex. When analyz-
ing the effect of L2 posttest scores on mean activation
during L1 at Z > 1.96, we observe two significant clusters
with peaks in the right superior parietal lobule (cluster
extent = 3136 voxels, p < .0001, peak of Z = 3.90 in x =
10, y = −48, z = 74,) and right PCC (cluster extent =
845 voxels, p = .04, peak of Z = 3.40 in x = 4, y = −48,

z = 10). At Z > 2.6, this L2 learning-related activation
was reduced to a single cluster with a peak in right post-
central gyrus (cluster extent = 310 voxels, p = .03, peak
of Z = 3.56 in x = 42, y = −32, z = 64). For comparison
purposes, Figure 7 illustrates the overlap between L1
activation predicted by L2 posttest and L1 interactivity pre-
dicted by L2 posttest. In summary, both functional acti-
vation and integration during processing of an initial
language are significantly related to learning of an upcom-
ing language. Learners who expended more neural re-
sources during L1 processing were more sensitive to a
new set of distributional statistics; learners with the most
efficient neural systems (decreased activation and inter-
activity levels—an “entrenchment” effect) had the lowest
scores on the L2 posttest. As an additional insight, these
analyses, both of which include L2 posttest performance
as a behavioral regressor, demonstrate that our hypotheses
about sampling and expenditure of neural resources are
supported not only by L1 response correlated with L1
learning (test items which may be prone to interference
effects) but also by L1 response correlated with L2 learning
(which, because of the nature of the L2–L1 test order fol-
lowing scanning, cannot be explained by test interference
effects).

GENERAL DISCUSSION

Results of this study offer new insight into the complex
interrelationships among learning, structural change de-
tection, and neural efficiency. Both fronto-subcortical
interactivity with early auditory cortex and diffuse acti-
vation within multiple association systems (i.e., down-
stream processing areas outside early sensory areas)
were negatively correlated with L1 learning. We find that
participants who expended the fewest neural resources
in processing the first of two successive speech patterns
ultimately displayed the most robust offline knowledge of
the initially presented structure (i.e., were most accurate
in discriminating between L1 words and partwords on
posttest). Thus, we have used functional neuroimaging
to expand on a behavioral effect that has been clear since
the earliest serial RT studies (Nissen & Bullemer, 1987):
Humans are more efficient (i.e., faster) in processing se-
quential stimuli when they have knowledge of its under-
lying structure (see also Karuza et al., 2014). However, at
least at the neural level, facilitatory processing effects
appear to involve a trade-off. We find a markedly different
relationship between L1 processing and L2 learning;
participants with stronger activation and interactivity
between auditory and parietal regions during L1 expo-
sure, particularly in the precuneus and PCC, attained
the highest scores on the L2 posttest. Thus, we propose
that sampling less from sensory input and minimizing the
engagement of high-level neural systems, while poten-
tially beneficial from an efficiency standpoint, may impede
change detection mechanisms that lead to the genera-
tion of additional structural representations. On the other

Figure 7. L1 connectivity (top plot, A) and L1 activation (bottom plot,
B) positively correlated with L2 posttest performance in overlapping
posterior parietal regions (Z > 1.96, p < .05). When precuneus and
PCC were actively engaged during L1 processing (indicated both by
connectivity and activation measures), participants were more sensitive
to the L2 shift, as evidenced by robust L2 behavioral performance.

Karuza et al. 1495



hand, resource-intensive processing and continuous moni-
toring of the environment (as evidenced by richer func-
tional connections with primary sensory cortex) may
increase sensitivity to and thereby spur stronger hypothe-
ses about new distributions of statistical information.

Efficiency in a Learning Context

On the surface, the efficiency/change detection trade-off
appears to contrast with certain accounts of adaptation: It
is in part because the sensory system depresses its re-
sponse to unvaried input that it is better able to detect
changes in the environment (Puccini, Sanchez-Vives, &
Compte, 2006; Ulanovsky, Las, & Nelken, 2003; Muller,
Metha, Krauskopf, & Lennie, 1999; for a review, see
Malmierca, Sanchez-Vives, Escera, & Bendixen, 2014). By
this account, however, it is relevant to note that repetition–
suppression effects are typically, though not always,
measured within the confines of early perceptual cortex
(cf. priming effects during sentence processing observed
in higher-level temporal and frontal areas; Devauchelle,
Oppenheim, Rizzi, Dehaene, & Pallier, 2009; Hasson,
Nusbaum, & Small, 2006). Here, our activation and func-
tional connectivity measures revealed differences between
L1 and L2 extending beyond primary auditory areas (i.e.,
Heschl’s gyrus). Thus, although sensory cortex may have
been sensitive to changes in syllable patterns, our data sug-
gest that this information generally failed to be threaded
upward to association regions that would induce the for-
mation of additional structural representations. Moreover,
we stress that perceptual adaptation studies typically
examine sensory neurons already tuned to key properties
of the visual and auditory world (i.e., meaningful varia-
tions in basic features of the environment such as the lumi-
nance, shape, and orientation of objects or the duration,
frequency, and amplitude of sounds). Likewise, in the
domain of linguistic processing, higher-level adaptation
effects measured behaviorally (Fine et al., 2013) and neu-
rally (Devauchelle et al., 2009; Hasson et al., 2006) are
observed in participants with years of experience with a
mature language system.

While we pretrained participants on L1 in this study, we
still examined change detection within a dual-structure
learning context, one in which structural representations
of familiar input were less mature and the languages
shared an identical syllable inventory. In this particular
context, our results suggest that learners favor early sta-
tistical information because their neural systems are
biased toward efficient processing. This bias is linked to
the assumption, supported in this case by task instruc-
tions, of a single underlying statistical structure. The
strongest L1 learners were those who had the most robust
expectations about L1 structure and saw those expec-
tations supported as the L1 exposure run progressed.
When a second, perceptually identical, statistical structure
was then presented without indexical cues, this efficiency
bias then hampered the accumulation or consideration of

evidence about the presence of alternative structures that
differed from those initially encountered. Of course, sub-
sequent learning of new structures is not blocked forever,
and as revealed by Gebhart et al. (2009), L2 may “break
through” this primacy effect with extensive additional
exposure. In this study, we focused on the early phase
of L2 exposure when the primacy effect was generally still
robust.
In the current set of results, the question of why some

participants appeared to overwrite a previously learned
language in favor of downstream input (as evidenced
by the inverse L1/L2 correlation) remains open. The
PARSER model proposed by Perruchet and Vinter (1998)
and empirically supported by Perruchet, Poulin-Charronnat,
Tillmann, and Peereman (2014) offers one possible ex-
planation. This account posits that, in the case of syllable
overlap, a well-formed representation of a previously
learned “chunk” will cause learners to mis-segment a sec-
ond language (particularly when an L1 word transitions
to an L2 partword). By this account, learners who most
strongly acquired the word structure of L1 would most
egregiously mis-segment L2, at least initially. On the other
hand, the observed negative relationship between L1 and
L2 learning is contrary to evidence collected by Franco,
Cleeremans, and Destrebecqz (2011) that the weakest L1
learners tended to also be the weakest L2 learners. Despite
their dissimilar conclusions, both Perruchet et al. (2014)
and Franco et al. (2011) investigated learning only when
participants were explicitly cued to the presence of two
languages (i.e., in instruction, voicing, or a combination of
the two). In the present case, learners were informed only
of a single language, suggesting that the negative cor-
relation between L1 and L2 knowledge may be influenced
by learners’ expectations about the number of structures
in their environment. Moreover, we note that a direct com-
parison between studies is not possible because our screen-
ing procedures ensured that all scanned participants were
originally robust L1 learners.

Brain Basis of the Primacy Effect

In addition to probing the general activation and inter-
activity patterns corresponding to our observed behav-
ioral outcomes, it is useful to consider the brain regions
in which these effects functionally arise. Focusing on the
inverse relationship between neural activation during L1
exposure and L1 learning outcomes, we have implicated
a diffuse set of prefrontal, superior temporal, and sub-
cortical regions that, in other studies of statistical learn-
ing, have been positively associated with behavioral
performance (Karuza et al., 2013; Cunillera et al., 2009;
Turk-Browne et al., 2009; McNealy et al., 2006). In the
current experimental context, we suggest that the inverse
relationship between activation in these areas and behav-
ioral performance can be attributed to key differences in
the particular stage of learning captured during scanning.
In typical fMRI studies of statistical learning, participants

1496 Journal of Cognitive Neuroscience Volume 28, Number 10



are first exposed to novel input while in the scanner,
resulting in heavy initial recruitment of learning systems
(indicated by a boost in neural activation related to post-
test performance). Here, we screen participants based
on L1 learning scores from a mock scanner session and
confirm that our participants were already familiar with
L1. As a result, our imaging data are likely more repre-
sentative of processes related to recognition, mainte-
nance, or consolidation, and it follows that the strongest
learners would engage learning systems less than they
would have in the first stages of acquisition (including
functionally uncoupling parts of these systems from sen-
sory areas). Importantly, lowered activation of frontal
structures (e.g., left inferior frontal gyrus) and other
control-related regions has been shown to result from
extensive training on various tasks, including foreign
language learning (e.g., Grant et al., 2015; Yang, Gates,
Molenaar, & Li, 2014; Ventura-Campos et al., 2013; Stein
et al., 2009; Chee et al., 2001) and motor sequence learn-
ing (for a review, see Patel, Spreng, & Turner, 2013).
Previous studies of learning-related changes in functional
connectivity offer complementary insight; specifically,
integration within cognitive control networks has been
shown to progressively decrease during novel word or
phonological learning, presumably because of less de-
manding, more automatic processing (Ghazi Saidi et al.,
2013). Although we instead focus on interactivity with
sensory cortex, results of our functional connectivity anal-
yses show reduced coupling with parallel areas, such as
the pFC, but also encompassing the basal ganglia.
In addition to the fronto-subcortical substrates com-

monly observed in statistical learning tasks, our analyses
also indicate a unique role of posterior parietal cortex.
Interestingly, we show activation within this region to
be negatively correlated with the strength of individual
learners’ primacy effect, or L1–L2 scores (Figure 5). Exam-
ining each posttest separately, we observe that stronger
L1 learners exhibited reduced L1 activation in PCC and
precuneus, whereas stronger L2 learners exhibited the
opposite effect. Tobia, Iacovella, and Hasson (2012) also
found increased PCC activation in response to unstable
input patterns on a far more rapid time scale (see also
Speer, Zacks, & Reynolds, 2007; Zacks et al., 2001). Our
data complement this finding, showing that participants
with strong activation and interactivity with posterior
parietal cortex during L1 are more sensitive to new
structures in the learning environment (i.e., better learn-
ing of L2; Figure 7).
Although the role of PCC is not yet fully understood,

accumulating evidence suggests that it is a densely con-
nected, hypermetabolic associative region that acts as
a central hub in the default mode network (Greicius,
Supekar, Menon, & Dougherty, 2009). As such, it has
been called (alongside its sister area, the precuneus) a
task-negative region, exhibiting greater levels of activa-
tion when the brain is in self-referential, endogenously
generated mental states relative to when it is engaged

in exogenously driven, cognitively demanding tasks
(Fox et al., 2005). Of particular relevance to the current
findings, Pearson, Hayden, Raghavachari, and Platt (2009;
see also Pearson, Heilbronner, Barack, Hayden, & Platt,
2011) have framed PCC as flexibly guiding behavior in
dynamic environments. Using reward-based learning
tasks, they draw a distinction between exploratory and
exploitative behavior and show that neurons in PCC dis-
tinguish between these two strategies. Pearson et al.
(2011) propose that a primary role of the PCC, as a cru-
cial node in the DMN, is in monitoring and detecting
change in a shifting world. They note, as we do here, that
this region is suppressed in contexts where stimuli are
well learned and no longer demand high levels of cogni-
tive control.

Extending Pearson et al.’s proposal to implicit proba-
bilistic learning tasks lacking explicit reward, we offer
preliminary evidence that “inefficient” brains with more
active association regions (specifically PCC and precu-
neus) are less anchored to early input and more sensitive
to downstream statistical information (i.e., the shift to
L2). These results find additional support from a recent
behavioral study demonstrating that when learners are
advanced to L2 immediately after acquiring L1, they are
less likely to exhibit a primacy effect relative to learners
who received additional L1 input after successful L1
acquisition before encountering L2 (Bulgarelli & Weiss,
2016). In the context of this study, neural patterns from
these “inefficient” L1 learners contrast with those “effi-
cient” learners in whom decreased activation in posterior
parietal cortex during early exposure is associated with
lower L2, but higher L1, learning outcomes, a result not
altogether surprising given the inverse correlation be-
tween L1 and L2 posttest scores.

Methodological Considerations

In considering other possible interpretations of the ob-
served data patterns, we acknowledge that the task in-
structions in this study were specifically constructed so
as to mask the transition to a new language (i.e., par-
ticipants were told before scanning that they would
hear “more of the language from the mock scanner ses-
sion”). Although these instructions may have biased
learners against L2, we suggest that they cannot fully
account for findings central to our efficiency account;
particularly, the inverse relationship between L1 posttest
scores and L1 neural engagement (activation and inter-
activity with primary auditory cortex). In other words,
explicit expectation of a single, familiar language, which
was equated in instructions across participants, does
not explain why learners who most strongly disengaged
neural systems during L1 achieved higher L1 posttest
scores, and vice versa. The sum of these results points
toward broader trade-offs in deploying processing re-
sources, latching on to early structures, and detecting
shifts in the environment. Moreover, Gebhart et al.
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(2009), who less explicitly biased learners in favor of a
single language, found that L2 acquisition could be in-
duced when exposure was increased threefold.4 If mere
mention of a single language were always sufficient to
block L2 learning, then we would not expect learners to
acquire an uncued language under any circumstances.

Conclusions and Future Directions

Taken together, our combined univariate activation and
functional interactivity data offer a neural account of
the mechanisms underlying statistical learning in the face
of multiple structures: We propose that the behavioral
primacy effect stems, at the neural level, from the tension
between processing efficiency and the potential benefit
of change detection. However, the present data cannot
address whether differences in task instruction, such as
stressing the number of languages, and individual biases
toward processing efficiency may have interactive effects
on ultimate learning outcomes (i.e., perhaps “efficient”
L1 processors are more likely to assume a single structure
and therefore more likely to weight experimenter in-
structions to this effect). An investigation aimed at teas-
ing apart these influences would be one valuable area of
future research, as it is remains an open question whether
learners explicitly instructed to monitor for change or,
given no instructions at all, would exhibit the same patterns
of neural activity.
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Notes
1. To maximize the comparability of data, we used the same
stimulus materials and presentation software/protocols. For
fMRI data, we minimized cross-site scanning variability through
quality assurance protocols for both sites to check field homo-
geneity, ghosting and geometry, and the stability of spatial and
temporal signal-to-noise ratios.
2. Transition blocks were formed by splicing together each
sound stream with an intersyllable interval of 15–35 msec to
eliminate coarticulatory cues to the transition. The three types
of transition blocks (33%, 50%, and 67%) were structured as
follows: initial 32 words L1/final 16 words L2, initial 24 words
L1/final 24 words L2, initial 16 words L1/final 32 words L2.
3. In an analysis suggested by a reviewer, we also examined,
through an additional first-level regressor, whether parametric
increases in activation might predict L1 and L2 posttest scores.
We find that for L1, linear decreases in activity across exposure
blocks were correlated with L1 accuracy in two fronto-temporal

clusters (Cluster 1: extent = 1886 voxels, p = .0003, Z-max of
3.33 in right paracingulate gyrus x = 2, y = 10, z = 52; Cluster
2: extent = 2731 voxels, p < .0001, Z-max of 3.31 in right
central operculum x = 64, y = −12, z = 12; ns at Z > 2.6)
and a subcortical cluster (extent = 1320 voxels, p = .004,
Z-max of 2.97 in right caudate x = 14, y = 116, z = −4; ns at
Z > 2.6). Conversely, linear increases in activity during L2 were
correlated with L2 accuracy in a single bilateral fronto-temporal
cluster (cluster extent = 4301 voxels, p < .0001, Z-max of 3.5 in
left superior frontal gyrus x=−18, y= 18, z= 42; ns at Z> 2.6).
4. In the case of dual-language exposure, Gebhart et al. in-
structed participants: “to listen attentively to a recording of a
continuous speech stream that would sound a little like a
foreign language” (p. 1095, emphasis ours).
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