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Acquiring knowledge about the underlying structures of the environment
presents a number of challenges for a naive learner. These challenges include
the absence of reinforcement to guide learning, the presence of numerous

information sources from which only a select few are relevant, and the
uncertainty about when an underlying structure may have undergone a
change. A crucial implication of these challenges is that the naive learner

must make implicit decisions about when to generalize to novel inputs and
when to restrict generalization because there are multiple underlying struc-
tures. An historical perspective on these challenges is presented, and some
potential solutions are proposed.

Planning for a presidential address poses a significant dilemma—should
the focus be on (1) your personal scientific history, (2) key controversies
in the field, (3) a tribute to highly talented graduate students and post-
docs, (4) a lifelong goal of proposing a grand theory, or (5) giving up in
desperation and simply delivering your regular colloquium? In the end,
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this address is a little bit of “all of the above”. I begin with some history
on the general topic of learning theory and development (Stevenson,
1970), and then pose a series of questions—why is learning a hard prob-
lem, what enables learning to be tractable given these problems, and are
the mechanisms of learning across development continuous, incremental,
and progressive? Along the way, I highlight a number of methodological
challenges that face infancy researchers, and I come to some tentative con-
clusions about how the field might move forward to address the key ques-
tions that will surely continue to vex the next generation of researchers.

A BRIEF HISTORY OF LEARNING DURING DEVELOPMENT

One of the key events in my personal scientific history was the tremendous
appreciation for the history of psychology engendered by one of my profes-
sors—Robert Wozniak—at the University of Minnesota’s Institute of Child
Development. In several courses and countless conversations, Rob high-
lighted the importance of consulting the history of any discipline before
stumbling, unannounced, into a subfield where others before you have
given considerable thought (and often conducted key experiments) to
address a particular question. Fortunately for me, my first laboratory expe-
rience as an undergraduate at Michigan State University was with Hiram
Fitzgerald, whose own research on infant learning was steeped in the tradi-
tions of classical conditioning (Fitzgerald & Brackbill, 1976) that were in
turn engendered in him by his mentor Yvonne Brackbill and the major fig-
ures in the field before her. The study of learning in infants had a major
resurgence of interest in the 1960s not only in the tradition of classical con-
ditioning, but also in the operant conditioning paradigms adapted to study
infants by Lipsitt (1964) and Papousek (1959). Two decades later, these
same principles were used to condition head-turning behavior (Kuhl, 1985).
The beauty of these paradigms was their emphasis on unambiguous events:
a single context, clear instances of conditioned and unconditioned stimuli,
well-defined responses, and the use of primary reinforcers.

Unfortunately, these early examples of classical and operant paradigms
exposed a number of problems for any realistic theory of learning in
infants. Problem 1 was the fact that most of the natural environment of
infants is devoid of primary reinforcers. This of course was one of the key
points noted by Tolman (1932) and demonstrated decades later by Harlow
(1959). That is, the so-called secondary reinforcers (e.g., curiosity, contact
comfort) were incorrectly characterized as derived from primary reinforc-
ers rather than having primary status on their own. Problem 2 was the
fact that the natural environment is filled with high levels of ambiguity—
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that is, given the myriad of events that co-occur, it is unclear whether a
stimulus is causally related to another stimulus (or to a reward) or
whether these co-occurrences are merely coincidences that lead to suspi-
cious attributions of causal relations. How does the na€ıve (infant) learner
resolve this ambiguity without the benefit of top-down knowledge that is
only available to a mature learner?

The road to addressing these two problems was paved by a second wave
of methodological advances in the study of infant learning in the 1970s and
1980s and then a third wave of interest in what has become known as statis-
tical learning in the 1990s and 2000s. A key methodological advance was
the development and elaboration of the habituation paradigm by Bornstein
(1985), Fantz (1964), Horowitz (1974) and McCall and Kagan (1970). They
showed that repeated exposure to a stimulus led to a decline in a criterion
response (e.g., looking time), which could then be reactivated by a change
in that stimulus. Although this simple habituation paradigm provided an
excellent measure of discrimination, it was the addition of a “family” of
stimuli during the so-called multiple-habituation phase that allowed the par-
adigm to address questions of category learning. In the hands of Cohen and
Strauss (1979) and Fagan (1976), the multiple-habituation paradigm allowed
investigators to ask how infants grouped stimuli into categories without the
involvement of any conditioned response or primary reinforcer—infants
looked for the sake of looking and learned for the sake of learning.

Paradigms that followed in the tradition of operant conditioning, using
motor responses other than looking time such as sucking or foot-kicking,
showed that infants as young as 1 day after birth were excellent learners.
Siqueland and De Lucia (1969) demonstrated that infants suck to turn on a
stimulus. Rovee-Collier, Sullivan, Enright, Lucas, and Fagan (1980) dem-
onstrated that infants kick to wiggle a stimulus, despite the absence of any
other reinforcer. And DeCasper and Fifer (1980) showed that newborns
suck differently (by starting or delaying a burst of sucks) to one class of
auditory stimuli over another. All of these methodological advances in the
1970s and 1980s forced the conclusion that classical learning theory must
be broadened beyond the limited notion of primary reinforcement to
include constructs such as familiarity or novelty, curiosity, control or mas-
tery, efficacy, contingency, and other “hidden causes” as part of the larger
family of reinforcers that affect infant learning.

The third wave of interest in infant learning had its beginnings in the
work of Barbara Younger and Leslie Cohen in the mid-1980s. Using the
multiple-habituation paradigm that they helped to develop, their question
centered on how infants allocate attention to the many visual features that
define a class of objects. This question tackles Problem 2 raised earlier—
given a complex environment containing many stimulus features, how
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do infants implicitly decide to attend to just the “right” features that
define a class of objects? Younger and Cohen (1983, 1986) reasoned that
if a subset of features covary across a series of images, then infants should
automatically attend to those correlated features, even in the presence of
all the other uncorrelated (extraneous) features. Their results confirmed
this hypothesis, at least in 10-month-olds (but not 7-month-olds). That is,
infants “generalized their habituation to a novel test stimulus that main-
tained the correlation they had seen, whereas they dishabituated to a stim-
ulus containing equally familiar features but that failed to preserve the
correlation” (pp. 864–865). In other words, with no reinforcement to guide
their attention, and when confronted with a highly complex, multidimen-
sional visual stimulus, infants automatically attended to features that
co-occurred in a family of images and generalized their attention to novel
images that contained these same feature correlations.

If we fast-forward a decade to a different modality (audition) and a dif-
ferent question (word segmentation) in the study by Saffran, Aslin, and
Newport (1996), we see this same implicit learning mechanism at work.
Saffran et al. asked whether infants who are exposed to a multidimen-
sional stream of speech elements in the auditory-temporal domain, analo-
gous to Younger and Cohen’s (1983) multiple images in the visual-spatial
domain, are able to “parse” that stream into word-like chunks. In a series
of experiments (Aslin, Saffran, & Newport, 1998; Saffran, Johnson, Aslin,
& Newport, 1999; Saffran et al., 1996), they showed that 8-month-olds
can indeed segment these streams of speech (or auditory tones) into their
statistically coherent chunks. Moreover, in a series of experiments with
adults (Fiser & Aslin, 2002) and infants (Kirkham, Slemmer, & Johnson,
2002; Marcovitch & Lewkowicz, 2009), it was shown that this process of
extracting temporally ordered chunks operates in the visual modality as
well. And reminiscent of Younger and Cohen (1983, 1986), Fiser and
Aslin (2001, 2002, 2005) showed that this same process of extracting
feature correlations applies to visual-spatial patterns, although instantiated
across 16–144 different images rather than the four images used by Youn-
ger and Cohen.

This brief historical review of infant learning, spanning more than five
decades, leads us back to the two problems that any theory of learning must
address. Problem 1—that reinforcement in the natural environment is either
not present at all or only rarely—appears to be “solved” by an implicit
mechanism of statistical learning. That is, there is a powerful “engine” that
operates over any corpus of structured input to extract, without any extrin-
sic reward, those statistical correlations that are present and, as we will dis-
cuss later, generalize to novel exemplars under some circumstances.
Problem 2—that there is ambiguity in the input as to what “counts” as a
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relevant feature to be analyzed by this powerful statistical-learning mecha-
nism—has not yet been addressed. A corollary to this problem of what to
count is how many features can be counted given limited information-pro-
cessing capacities in young infants? Laboratory studies, particularly in early
work on statistical learning, presented infants with a rather simple set of
features devoid of ambiguity so that the “proof of concept” of such a learn-
ing mechanism could be demonstrated. But these early demonstrations
immediately raised a number of important questions: (1) do na€ıve learners
keep track of statistics across time, across space, and for all possible spa-
tial-temporal correlations, (2) if infants can keep track of statistics among
“obvious” elements such as syllables or simple shapes, what about elements
at lower (e.g., speech formants, visual pixels) or higher (e.g., grammatical
categories, visual scenes) levels, and (3) do infants keep track of everything
so that they don’t miss anything that could potentially be important to a
na€ıve learner? We turn now to these constraints on learning, which must
operate in infants to enable a robust and rapid mechanism to be tractable
given the limits on information processing in early development.

CONSTRAINTS ON STATISTICAL LEARNING

Two classic hallmarks of infant development are a limited span of attention
and an inability to process rapidly presented information (Richards, 2008).
Yet findings from statistical learning, particularly in the auditory modality,
revealed that infants could not only keep track of rapidly presented events
(i.e., 4 syllables/sec), but that they could compute a variety of statistics over
these events (e.g., frequencies of occurrence, transitional probabilities).
Recent evidence on a key aspect of information processing—short-term
memory (STM)—appears to reconcile this seeming contradiction. Although
several studies had shown that working memory (WM) in infants was highly
limited (e.g., holding only one item in WM during a brief occlusion event in
6-month-olds—see Kaldy & Leslie, 2005; Ross-Sheehy, Oakes, & Luck,
2003), WM is a difficult task because it requires continuous updating. In con-
trast, STM has no competing task or updating requirement while informa-
tion is being retained. The classic demonstration of the high capacity of STM
was by Sperling (1960) using a partial-report paradigm. The logic of the par-
adigm was that if all items in a visual array were available in STM, but only
a few could be reported verbally before STM decayed, then if a subset of the
items were highlighted after the presentation of the array, subjects should
have no difficulty reporting on any subset. That is precisely what Sperling
found, even for large arrays of items, as long as the subset to be reported
was relatively small (e.g., three to five items).
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A recent study by Blaser and Kaldy (2010) reported a similar pattern of
results in 6-month-old infants. They presented infants with an array of up
to 10 items varying in shape and color for a brief 1-sec duration and then
highlighted two of the items by removing them from the array for 1/2 sec.
When these removed items reappeared, one of them had changed. The
dependent measure was whether infants looked at the changed item. As in
Sperling (1960), if all of the items in the array were encoded into STM, then
regardless of which subset was highlighted, infants should detect the chan-
ged item and look longer at it. However, if infants cannot encode all of the
items in the array, there will be a set-size limit beyond which the novelty
preference for the changed item will fail to exceed chance. This pattern of
results was precisely what Blaser and Kaldy found—at set sizes of 2, 4, and
6 infants looked longer at the changed item, but at set sizes of 8 and 10
they did not. These results suggest that 6-month-olds have a STM capacity
of at least six items in a briefly presented array. Along with prior results on
WM, these results also confirm that infants have more limited information-
processing capacities than adults, although their capacities are still rather
impressive given the absence of task instructions, motivation, and training.

What then mitigates Problem 2—the inability to keep track of all possi-
ble statistics? Over the past two decades, a variety of constraints have
been proposed and verified experimentally to account for the na€ıve lear-
ner’s ability to overcome the computational explosion problem (i.e.,
attempting to keep track of everything). These constraints include the
following. Attentional biases—infants appear to “naturally” attend to
object shape and to the whole object rather than its parts (Smith, 2003),
to syllables rather than phonemes (Bertoncini & Mehler, 1981), to a vari-
ety of Gestalt principles (Bhatt & Quinn, 2011) such as proximity, syn-
chrony, and stream segregation (within an octave), and to limit inferences
to a single possibility (i.e., mutual exclusivity in object names; Markman,
Wasow, & Hansen, 2003). Social cues—infants appear to be guided in
their attention by the gaze, manual exploration, and pointing gestures of
their caregivers (Baldwin, 1993). Environmental simplification—infants ben-
efit from a variety of ways in which caregivers declutter or enhance stimuli
in their proximal environment (Kuhl et al., 1997). Cross-situational statisti-
cal learning—infants can determine by a simplified “process of elimina-
tion” that names and objects are linked even when these linkages are
inferred rather than overt (Smith & Yu, 2008). Repetition—infants are
confronted with a remarkable level of event repetition, both by how their
caregivers act and by how they themselves repeat preferred events under
their control. One startling statistic computed by Haith (1980) is that the
average 2-month-old infant has sampled its visual environment with over
250,000 fixations (looking times between saccades) since birth.
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Despite the logical advantage of the foregoing constraints—which
surely must assist in dealing with Problem 2—it is nevertheless the case
that laboratory demonstrations of statistical learning are highly simplified
compared to what an infant is actually confronted with in the natural
environment. Thus, we should be concerned that such demonstrations are
little more than proof of concept that under ideal conditions a statistical-
learning mechanism can solve certain tasks. But does this mechanism
“scale up” to more natural and complex learning tasks? There are two
answers to this question, at least for studies of statistical learning in the
language domain. First, a variety of corpus analyses (Frank, Goldwater,
Griffiths, & Tenenbaum, 2010; Swingley, 2005) have shown that, to a first
approximation, the same types of statistical information manipulated in
the laboratory are present in real language input to infants. Yet in real
corpora, these statistical cues are less reliable, and thus, one worries that
no one cue alone is sufficient. It is important to note, for historical
purposes, that initial claims about statistical learning made precisely this
point: “Although experience with speech in the real world is unlikely to be
as concentrated as it was in these studies, infants in more natural settings
presumably benefit from other types of cues correlated with statistical
information (p. 1928)” (Saffran et al., 1996). Laboratory studies that elim-
inate all potentially useful cues except one serve the purpose of showing
that the sole cue present in the input is sufficient for learning. But such
studies cannot confirm that in the natural environment, where many cues
are correlated, any given cue plays a necessary role in learning.

The second answer to the “scale up” question is to conduct laboratory
experiments in which two or more cues are presented in combination to
see which one “wins” or how each cue is “weighted” in the statistical-
learning process. Early work that followed this strategy suggested that sta-
tistical cues “trump” prosodic cues (Thiessen & Saffran, 2003), at least at
the level of lexical prosody (i.e., whether 2-syllable words have a strong-
weak or a weak-strong stress pattern). The reason that lexical prosody
might take a back seat to statistics is that prosody is language-specific,
whereas syllable statistics, at least in most languages, are not. Yet there
are other levels of prosody that are language-general and so could reason-
ably serve as universal constraints on which statistics are computed.

One such language-general prosodic constraint is the fact that words
never span an intonational phrase—the natural slowing and short pause
that typically occurs at boundaries between major grammatical categories
(e.g., noun- versus verb-phrase). Take for example the sentence “The
beautiful baby smiled at her mother” which consists of two intonational
phrases, with a boundary between “baby” and “smiled”. It is possible to
create strong statistical cues between syllables that fall within an
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intonational phrase, as would be present in any natural language, or
between syllables that span an intonational phase boundary, which almost
never occurs in natural languages. This design was implemented in Shukla,
White, and Aslin (2011) using nonsense syllables as in Saffran et al.
(1996), but organized into short sentences rather than continuous streams.
A family of such sentences was presented to 6-month-olds as they watched
a video display depicting three salient objects. One of the objects consis-
tently underwent motion across trials while the other two objects never
moved, thereby drawing infants’ attention to the single moving object.
The key feature of the design, implemented across two groups of infants,
was that there were syllables with strong statistical links (i.e., words) and
syllables with weak statistical links (i.e., part-words), but in only one of
the two conditions were the strongly linked syllables within an intona-
tional phrase. Thus, if infants attended only to syllable statistics, regard-
less of their positioning with respect to intonational phrases, both groups
would extract these word-candidates and map them onto the single object
in the video display that was moving. However, if infants were constrained
to extract syllable statistics when they fell within an intonational phrase,
then only infants in the group where the ends of words were aligned with
the ends of intonational phrases would map these syllable statistics to the
moving object. That is precisely the outcome reported by Shukla et al.

The main reason for describing the Shukla et al. (2011) study is that it
illustrates how the statistical-learning mechanism of young infants is con-
strained in a principled way to reduce the computational complexity faced
by a na€ıve learner in the language domain. Intonational phrases are uni-
versal characteristics of natural languages that presumably do not them-
selves have to be learned because they are based on low-level durational
and pitch cues. But the Shukla et al. study also illustrates a second impor-
tant point about the implications of designing laboratory experiments to
test infants. As noted earlier, it is natural for experimentalists to eliminate
all but one source of information to determine whether it alone is suffi-
cient for learning; that was the goal of the Saffran et al. (1996) study that
focused on syllable statistics while eliminating prosodic and repetition cues
that are present in natural language input. Subsequent work by Graf
Estes, Evans, Alibali, and Saffran (2007) showed that when the input was
structured in an incremental manner—streams of nonsense syllables orga-
nized into statistically coherent words, followed by the opportunity to
map those words onto objects in a referential context—17-month-olds
readily solved this task. Shukla et al.’s results showed that these statistical
segmentation and word-mapping tasks can be accomplished at the same
time and moreover in much younger infants (6-month-olds). This suggests
that when designing single-cue laboratory experiments, we may be
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underestimating the learning capabilities of infants because they have
already formed expectations about how multiple sources of information
are correlated in natural language input. The counterintuitive implication
of this finding is that making an experimental design too simple may make
the task for the infant more complex, thereby leading researchers to
underestimate the infant’s actual learning capacity.

To summarize this section on the second problem facing the na€ıve lear-
ner—there must be constraints to enable learning to be tractable—the
solution seems clear-cut. The computational complexity and interpretive
ambiguity about which statistics are the “right” ones to keep track of is
solved by a few innate constraints on what to attend to and a learning
mechanism that feeds off of these innate constraints to become further
constrained by what has been learned so far during development. In the
terminology of Bayes theorem, what a learner acquires (called the poster-
ior probabilities) is a combination of what was given by the innate biases
(called the priors) and what has already been observed from masses of
data (called the likelihoods), filtered through the lens of the innate biases.
This is essentially an incremental bootstrapping model of learning, in
which a hierarchy of information is built up from two mechanisms—a
powerful and robust statistical-learning “engine” that is rendered tractable
by a few innate biases, coupled with an enormous amount of raw data
that once filtered by these innate biases is forever “blocked” from further
computations that would divert the learner along an unfruitful path. But
this view of the development of learning rests on an assumption of the
infant as a rationale allocator of attention to those sources of information
that are the most “fruitful”. How does the infant “know” that some infor-
mation is worthy of their attention and other information is not? The next
section tackles this question by reviewing recent work on the fundamental
properties of how we interpret looking-time data from infants.

THE NOVELTY–FAMILIARITY CONUNDRUM

The use of looking times as a measure of learning, and a whole host of
other underlying perceptual and cognitive processes, has been exploited
for the past 50 years of research on infants (Aslin, 2007). The canonical
view of looking times is that they are reactions to stimulation, pulling the
infant’s gaze hither and yon based on a combination of exogenous (i.e.,
stimulus salience) and endogenous (i.e., memory) factors. According to
this view, the expected pattern during exposure to a single stimulus or a
family of stimuli during the habituation phase should be a decline in look-
ing time as memory builds a “template” of the familiar stimuli. And when
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a new stimulus is presented during the posthabituation test phase, looking
time should rebound to reflect a discrepancy with the template. While this
“novelty” response during the test phase is the typical outcome, it is not
universal; under some circumstances the posthabituation looking times are
longer to the familiar stimulus. For example, although almost all of the
findings on infant statistical learning report novelty preferences (i.e., longer
looking to the less frequent or less predictable stimuli), there are excep-
tions (Fiser & Aslin, 2002; Pelucchi, Hay, & Saffran, 2009). In fact, in
looking-time measures of infants’ preferences for their native language,
when there is no immediately preceding habituation phase (but only the
long-term exposure prior to visiting the laboratory for testing), infants typ-
ically listen longer to highly familiar stimuli rather than to novel stimuli
(Jusczyk & Aslin, 1995).

The foregoing results across literally hundreds of experiments raise the
possibility that there is at least one additional variable that is unaccounted
for by the canonical reactive view of looking times. Kidd, Piantadosi, and
Aslin (2012) hypothesized that if infants also take an active role in sam-
pling their visual environment, then looking times should vary by how
much information infants are able to extract on a moment-by-moment
basis. To be clear, this does not deny the importance of stimulus salience
and memory for repeated events as factors that influence infant looking
times. Rather, Kidd et al. asked whether this third factor—the ability to
estimate the information content of stimulus events—also plays a role in
infant looking times.

The logic of the design employed by Kidd et al. (2012) was to create a
quantitatively well-defined family of stimulus events whose salience was
randomized (to wash out that effect). Each stimulus event varied in its
predictability or surprisal given all previous events in a given sequence.
Thus, the goal was to determine, at each stimulus event, whether the
infant would continue to look at the display or to terminate fixation and
end the trial. Notice that this is quite different from previous studies that
ask how long infants will maintain their looking. Kidd et al. asked whether
on each stimulus event infants will or will not make an implicit binary
decision to stay or go. To achieve this, they created very brief (2 sec)
events from an inventory of three possibilities on each trial that varied in
information complexity from simple (e.g., AAAAAAA) to complex (e.g.,
ABACCBBBACAA). The hypothesis was that if infants are active sam-
plers, they will terminate their fixation whenever the sequence of events is
either too simple or too complex. The former occurs because there is no
further information to be gained by continuing to look at highly expected
events, and the latter occurs because the events make no sense (or cannot
be predicted).
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The results of Kidd et al. (2012) confirmed the hypothesis that infants
are more likely to terminate their looking to events that are either overly
simple or overly complex, given the sequence of events leading up to that
terminating event, and less likely to terminate their looking to events of
intermediate complexity. This generates a U-shaped function of the likeli-
hood of ending a trial as a function of the information content of the
events in the sequence (see Figure 1). Crucially, the U-shaped function
was not the result of a variety of other variables that could have plausibly
led to this outcome. A special form of regression (survival analysis)
accounted for factors such as the number of repeated events (e.g., AAA
versus ABC), number of unseen events (e.g., ABA without C), the first
instance of an event (e.g., C after ABA), and the overall tendency to look
less to events as the sequence continued. Thus, the tendency to maintain
fixation to events of intermediate complexity—which Kidd et al. called the
Goldilocks effect—appears to be based on an implicit sense that some pat-
terns of information are more or less informative than others and there-
fore worthy of further sustained attention.

A number of follow-up experiments confirmed the general nature of the
Goldilocks effect. The sequences of events did not have to consist of three
possible objects in the display, but could consist of a single object whose
presence versus absence created variations in surprisal. The events did not
have to be visual, but could be sequences of auditory stimuli (Kidd,

Figure 1 The U-shaped function reported in Kidd et al. (2012) describes the

probability that infants will look away from an event based on the complexity of that

event given all preceding events in a sequence. The red symbols are the binned raw

data, and the blue curve is the best fitting function with confidence intervals indicated

by dashed lines. [Reprinted with Creative Commons Attribution License from Public

Library of Science].
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Piantadosi, & Aslin, 2014). And crucially, the U-shaped function, which
was based on group data, was not an artifact of averaging some infants
who had decreasing probabilities of terminating a trial as complexity
increased with some infants who showed the opposite pattern. A more
detailed analysis of each infant’s data confirmed that 39 of 41 infants
showed U-shaped functions, thereby verifying the ubiquity and robustness
of this active process of allocating attention to sequential events (Piantad-
osi, Kidd, & Aslin, 2013). In ongoing work, these same visual events were
presented to macaque monkeys in a nonreinforced visual attention task,
and a similar U-shaped function was obtained (C. Kidd, T. Blanchard,
R. N. Aslin, & B. Y. Hayden, unpublished data). Thus, it appears that
the general principles by which na€ıve learners allocate their attention are
not unique to human infants or to paradigms used with human infants.

It is important to be clear about how this work on the Goldilocks effect
relates to prior work showing U-shaped functions and to point out several
unanswered questions that must be addressed in the future. First, many
other researchers have observed U-shaped functions and have proposed a
variety of explanations for this occurrence (see special issue of Journal of
Cognition and Development, 5, 1–157). Yerkes and Dodson (1908) noted
that the efficacy of learning in rats varies with level of arousal, such that
low and high arousal predicted poorer learning than a medium level of
arousal. Berlyne (1960) proposed that curiosity modulates the likelihood
of learning, with low and high curiosity leading to poorer learning out-
comes than a medium level of curiosity. Kinney and Kagan (1976) pro-
posed that infants have a tendency to attend maximally to stimuli of
moderate complexity (or discrepancy with respect to a family of stimuli)
compared to overly simple or overly complex stimuli. The key difference
between these past observations is that the proposed mediating mechanism
(arousal, curiosity, discrepancy) was not defined quantitatively and was
not assessed independently of the measure of attention itself. That is, stim-
uli were chosen based on intuitions about how they related to the mediat-
ing mechanism, and when a U-shaped function was obtained, the
mediating mechanism was interpreted as verified. In contrast, Kidd et al.
(2012) quantitatively defined information complexity before presenting the
stimulus sequences and eliminated the effects of a variety of other poten-
tial mediators of the obtained U-shaped function.

The results of Kidd et al. (2012) raise a variety of unanswered ques-
tions. First, what enables infants (and monkeys) to implicitly notice that
they are failing to “understand” the complex events and why are they
choosing to terminate fixation? One possibility is that learners are evaluat-
ing the choice between “making progress” in understanding a sequence of
events and failing to see any benefit in attempting to learn something that
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is more complex compared to reallocating attention to something that is
not yet known but may be simpler to learn. That is, attention is selective
and can be allocated to multiple sources of information. Learners may
have, by prior experience, learned that if a sequence of events is not
“mastered” within some period of time, they are likely to find other
sources that can be more effectively “mined” for information and are
more readily accessible. However, a limitation of the Kidd et al. work is
that allocation of attention was not linked to the efficacy of learning. It is
possible that the “sweet spot” of the Goldilocks function is where infor-
mation is best learned, but it is also possible that learning occurs best on
the rising portion of the function where information is slightly more com-
plex. There are hints in a recent study by Tummeltshammer and Kirkham
(2013) that learning is in fact facilitated when an intermediate level of
predictability is present.

A third limitation of the Goldilocks results is that so far they only
apply to sequential events and only to stimuli that are not “special” in
some way. The choice of sequential events was driven by the goal of
quantitatively characterizing the information complexity of the stimuli
(i.e., entropy or surprisal is a well-defined mathematical property). It
remains to be seen if similar quantitative metrics of information complex-
ity can be applied to static stimuli. Kidd et al. (2012, 2014) avoided spe-
cial classes of stimuli such as faces or the mother’s voice precisely
because such stimuli are thought to be treated differently, either by innate
biases or by past experience, than arbitrarily novel stimuli. Clearly, the
valence of certain classes of stimuli must be taken into account to extend
the Goldilocks findings to events that are common in the natural environ-
ment. And finally, there are potential interactions between spontaneous
allocation of attention and the “reward” that could follow—perhaps in
the form of a “sense of mastery” or reduced “prediction error” if learning
is achieved.

In summary, the Goldilocks work is not merely a methodological side-
bar to studies of attention, but also a catalyst for thinking more deeply
about what factors control looking times and how these factors influence
the interpretation of studies of infant learning. So far, we have focused on
studies of statistical learning that were limited to asking whether infants
can compute and remember items or events to which they were exposed in
an immediately preceding familiarization phase. We now turn to the more
interesting case of how infants generalize from familiar to novel items or
events. After all, knowledge based solely on what we have already experi-
enced is overly restrictive and inefficient—a “smart” learner must be able
to make inferences about previously unexperienced items or events to
attain the generative capacity of a mature learner.
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NONSTATIONARITY AND THE RULES OF GENERALIZATION

The preceding summary of the Goldilocks results highlighted the fact that
learners discover structure in the input to which they are exposed by
sampling that input with selective attentional mechanisms. Because any
natural corpus of input, whether language or vision, will contain variabil-
ity, a “smart” learner should resist the temptation to gather small samples
because they can be misleading—instead learners should integrate over a
representative corpus. But this creates a dilemma and a tradeoff. The
dilemma is that a learner cannot ignore variation within a corpus because
the underlying structure to be learned may undergo a change or there may
be more than one structure present in a large sample of the input. The
tradeoff is between small samples that enable rapid learning but risk infer-
ring multiple structures when a single structure (with variability) is pres-
ent, and larger samples that enable more reliable estimates of the possible
presence of multiple structures but slow down the rate of learning of these
structures. These concerns define Problem 3 for the na€ıve learner—is the
environment stationary, consisting of a single structure to be learned, or is
the environment nonstationary, with two or more structures that must be
discovered and retained in memory as separate representations?

Dealing with the nonstationarity problem is not trivial and failing to
solve it has significant ramifications for the accuracy of subsequent learn-
ing. If a na€ıve learner has a stationarity bias, then whenever the environ-
ment has more nuanced structural components, learning will be
suboptimal. Moreover, if a poor “fit” of a model of the environment is
tolerated, then the criterion for subsequent learning may be overly “lax”
and prevent further learning. In contrast, if a na€ıve learner has a non-
stationarity bias, then variability due to sampling rather than to the pres-
ence of multiple structures will lead to “overfitting” this natural variability
and prevent the model of the environment from generalizing to novel
instances of what is actually a uniform structure (i.e., the learner will
acquire too much detail).

Although the natural environment is clearly nonstationary, there is a
surprising paucity of research on this topic. In fact, the design of almost
all statistical-learning studies ensures that whichever subset of the corpus
is sampled, the statistics are the same. In one of the first studies of nonsta-
tionarity, Gebhart, Aslin, and Newport (2009) presented adults with a
10-min stream of nonsense syllables (as in Saffran et al., 1996) and, with-
out informing the subjects, altered the structure half way through the
exposure phase. In a posttest that contrasted words and part-words from
each of the two structures, Gebhart et al. found that adults learned the
syllable statistics of the first structure but not the second (i.e., what was
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called a statistical garden path). Thus, in the absence of any cues that sig-
nal a change of structure, adults have a primacy bias and appear to treat
the second structure as a noisy version of the first. However, Gebhart
et al. also showed that when there is a clear cue for a change in structure
(e.g., by pausing between structures and informing the subjects that there
is a new structure), adults learn both structures equally well. Importantly,
Gebhart et al. also showed that a cue for a change in structure is not
required—when subjects heard an extended version of the second struc-
ture, they learned its syllable statistics and yet maintained their learning of
the first structure’s syllable statistics. This overall pattern of results sug-
gests that once a structure is learned, it takes extensive evidence that a
second structure is present (rather than a noisy version of the first struc-
ture) or a strong cue for a change of structure to overcome an initial sta-
tionarity bias.

Another interesting finding from Gebhart et al. (2009) was that all cues
for a change in structure are not equally effective. When the first structure
was spoken in a male voice and the second structure in a female voice,
there was no benefit to learning the syllable statistics in the second struc-
ture. This is perhaps not surprising given that talker or voice differences
in natural languages do not signal a different structure, unless the two
talkers are speaking different languages. This bilingual example was exam-
ined by Weiss, Gerfen, and Mitchel (2009) using a paradigm similar to
Gebhart et al., but with the two structures repeatedly alternating every
2 min. Under these circumstances, there was no evidence of learning either
of the two syllable statistics, presumably because the 2-min exposure was
insufficient to “tag” the fact that there were two structures. However,
when each structure was spoken by a different talker or voice, this tagging
was obvious and now subjects learned both syllable statistics. Thus, as in
Gebhart et al., when there is a strong cue that indicates the presence of
two different contexts, learners are quite adept at keeping track of two
separate sets of statistics that describe the two underlying structures.

This notion of context is crucial not only for the efficacy and efficiency
of learning, but also for the propensity to generalize. Consider a situation
in which a na€ıve learner is attempting to understand a corpus of environ-
mental input. Even if the learner has a stationarity bias, there are a variety
of contextual cues that are very obvious (e.g., time of the day as indicated
by sunlight versus darkness or when a given parent is present versus a pre-
school teacher). How does the learner decide which of these contextual
cues is relevant—leading to the inference that there is a new structure to be
learned—and which contextual cues should be ignored because they are
uncorrelated with a change in structure? As noted by Qian, Jaeger, and
Aslin (2012), this distinction between cue-sensitivity and cue-relevance is
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what was earlier referred to as Problem 3—the presence of contextual ambi-
guity. That is, learners must be open to the possibility that a cue serves as
a contextual signal for a change of structure, but not overly willing to
assume that every cue that is discriminable signals such a contextual cue.

Problem 3 has a further implication for what a learner should do after
they have partitioned (or not) the environmental input into separate struc-
tural representations. If a learner has a stationarity bias and treats multi-
ple structures as being generated by a single representation, then they will
incorrectly generalize across those multiple structures. This overgeneraliza-
tion is a common property of early language productions for certain
grammatical morphemes (e.g., the –ed ending on verbs). In contrast, if a
learner has a nonstationarity bias and falsely infers multiple structures
when they are not present in the input, then they will incorrectly restrict
generalization. This undergeneralization is seen in 5-month-old infants
who, after exposure to multiple views of a single person’s face, fail to
generalize to a novel view of that same person’s face (Fagan, 1976). This
propensity to generalize was also noted in Younger and Cohen (1983)—
7-month-olds appeared to base their learning of multifeature objects by
memorizing exemplars, whereas 10-month-olds extracted the commonali-
ties among the set of objects and generalized to new exemplars that shared
these commonalities.

Proposals about the rules of generalization have been a central topic of
discussion among learning theorists since the time of Pavlov (1927) and
Skinner (1938). A more modern treatment of generalization in the context
of statistical learning comes from the work of Marcus, Vijayan, BandiRao,
and Vishton (1999). In a variant of the syllables-of-speech design of
Saffran et al. (1996), Marcus et al. presented 9-month-olds with 3-syllable
strings separated by pauses rather than with continuous streams devoid
of pauses. These 3-syllable strings were composed from a set of eight con-
sonant-vowel syllables into one of three different patterns defined by the
repetition of one of the syllables, thereby forming AAB, ABA, or ABB
“rules”. After exposure to multiple repetitions of the 16 3-syllable strings,
infants heard two types of test trials, both of which were composed of
entirely new CV syllables. One type of test trial conformed to the familiar
“rule” and the other did not. Infants showed a novelty preference—they
listened longer to the unfamiliar rule. These results led Marcus et al. to
propose that there are two different learning mechanisms: (1) statistical
learning that is limited to extracting “surface” patterns embedded in the
input to which the infant is exposed, and (2) rule learning that goes
beyond the exposure materials to generate “abstract” patterns.

Although this proposed dichotomy between statistical learning and rule
learning seems compelling, there are reasons to suggest an alternative
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hypothesis. Gerken (2006) conducted a follow-up experiment to Marcus
et al. (1999) in which separate groups of infants were familiarized to
slightly different families of 3-syllable strings. As shown in Table 1, both
groups of infants heard a subset of the 16 strings used in Marcus et al.
However, one group heard four strings that each ended in a different
syllable, and the other group heard four strings that ended in the same
syllable. Importantly, the four strings presented to both groups had an
AAB pattern. But for the group whose four strings ended in the same syl-
lable, an alternative to the AAB “rule” is a rule that is more restrictive—
the first two syllables are the same, followed by the syllable/di/. For this
group of infants, when presented with test strings that conformed to the
AAB rule but not the “ends in/di/” rule, they did not generalize (i.e., they
showed a novelty response). In contrast, for the group of infants presented
with the set of AAB strings that ended in four different syllables, they
formed a broader generalization that accommodated novel syllables even
in the final-syllable position. This latter group performed as the infants in
the Marcus et al. study by forming an “abstract” rule (i.e., AAB), whereas
the former group exhibited a more restrictive rule even though AAB was
a plausible inference from the strings presented during familiarization.

The Gerken (2006) study provides an important counterpoint to the
hypothesis that statistical learning and rule learning are two separate

TABLE 1

Design of the Gerken (2006) Study Showing How Two Subsets of the 3-Syllable Strings

Used in the Marcus et al. (1999) Study Can Influence the “Rule” Extracted from These

Strings

Strings from Marcus et al. AAB strings from Gerken Ends-in-/di/strings from Gerken

le le di le le di le le di

le le je

le le li

le le we

wi wi di wi wi di

wi wi je wi wi je

wi wi li

wi wi we

ji ji di ji ji di

ji ji je

ji ji li ji ji li

ji ji we

de de di de de di

de de je

de de li

de de we de de we
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mechanisms. As argued by Aslin and Newport (2012), the degree of gener-
alization is a function of the patterning of the input to which the learner is
exposed. Even canonical statistical-learning studies that only test exemp-
lars drawn from the specific stimulus materials to which the learner is
exposed can be viewed as an inference problem (Goldwater, Griffiths, &
Johnson, 2009). For example, the words and part-words used as test items
in Saffran et al. (1996) were drawn from the continuous stream of sylla-
bles presented during the familiarization phase. Thus, neither of these test
items were exact replicas of what had been presented for “learning”. Yet,
infants readily showed reliable differences in “recognition” of these test
items. Thus, the proper way to conceptualize any learning task is to ask
what are the most plausible inferences that the learner could make based
on the patterning of the input.

Reeder, Newport, and Aslin (2013) provided extensive evidence that
adults will either generalize freely or restrict generalization depending on
the patterning of the context in which nonsense words are presented
across a family of utterances. Their task consisted of listening to several
hundred utterances of variable word lengths and then being tested on
(1) a subset of these familiar utterances, (2) a set of novel utterances that
conformed to the underlying grammar, and (3) a set of novel utterances
that violated the underlying grammar. Crucially, the number of grammati-
cal categories and which nonsense words were assigned to these categories
were unknown to the subjects. In each of eight separate experiments, the
patterning of the nonsense words that surrounded a critical target cate-
gory differed—in some experiments all possible surrounding contexts were
presented in the familiarization utterances, in others some of the sur-
rounding contexts were consistently absent, and in yet others only a single
context was present. Thus, as in Gerken (2006), the surrounding contexts
varied from providing consistent evidence for generalization to inconsis-
tent evidence for generalization, and finally little or no evidence for gener-
alization (i.e., strong evidence for restricting generalization). Moreover, in
two follow-up experiments that more closely mimicked the variability in
word frequency (K. D. Schuler, P. A. Reeder, E. L. Newport, & R. N.
Aslin, unpublished data) and the presence of subcategories (Reeder, New-
port, & Aslin, 2010) that add a further level of context, adults readily gen-
eralized or restricted generalization depending on these same principles of
patterning in the surrounding contexts. Thus, distributional cues are suffi-
cient to induce learning and modulate generalization.

In summary, the dilemma of Problem 3—how does a na€ıve learner deal
with the possibility that the environment is nonstationary?—appears to be
“solved” by a strong a priori bias to assume stationarity (i.e., a uniform
structure) unless there is an obvious contextual cue that signals a struc-
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tural change or unless there are consistent gaps in the input for a given
context. In the absence of strong contextual cues, a na€ıve learner runs the
risk of overgeneralization rather than restricting generalization to the sep-
arate structures that are actually present but underspecified in the learner’s
representations. Of course, it is not clear what is meant by an “obvious”
contextual cue. As noted earlier, there are many highly salient cues that
do not signal a relevant change in underlying structure, and there are
changes in structure that are not signaled by any contextual cue.

Interestingly, this aspect of Problem 3—contextual ambiguity—appears
to be treated in fundamentally different ways in the motor and cognitive
domains. In the domain of motor development, the consequences of fail-
ing to learn the underlying structure (e.g., how to control posture, bal-
ance, and limb movement for locomotion) is catastrophic, generalization
from one regime to the next (e.g., crawling to cruising to walking) is
restricted, and the change of context is obvious (e.g., eye-height above the
floor). In contrast, in the domain of cognitive development, the conse-
quences of failing to learn the underlying structure (i.e., to not “under-
stand” something) is minimal, generalization is ubiquitous, and a change
of context is typically not obvious. Moreover, motor development requires
extensive practice, and making inductive “leaps” can be quite risky (e.g., a
small step down for an experienced crawler is much less dangerous than
that same small step down for a na€ıve walker). In contrast, cognitive
development typically does not rely on practice except by making predic-
tions, and making inductive “leaps” is essential to deal with the computa-
tional explosion of information (i.e., Problem 2). The foregoing dichotomy
between motor and cognitive development is certainly overstated, but it
raises the possibility that there is a continuum of differences among
domains of development along the three dimensions of (1) consequences
of failure to learn a structure, (2) propensity to generalize, and (3) rele-
vance of contextual cues.

META-QUESTIONS IN DEVELOPMENT

The foregoing sections lead us to consider some of the broader implica-
tions of the three major problems facing na€ıve learners—absence of rein-
forcement, informational overload, and contextual ambiguity. Presumably,
those of us who study development in infants are interested in the mecha-
nisms and process of developmental change. There are three fundamental
ways of conceiving of this change: (1) continuous—without interruption or
sudden change, (2) incremental—adding or building from previous states,
and (3) progressive—improvement without regression.
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The classic view of developmental change is a discontinuous process
(e.g., stage-like, see Piaget, 1952). Although it is undeniable that the rate
of change is variable, the underlying mechanism could nevertheless be uni-
form. It is seductive to conclude that whenever a discontinuity is observed
in some aspect of development, a new mechanism has emerged. Yet we
know that discontinuities can result from a continuous process with an
underlying nonlinearity (e.g., a thermostat triggers binary actions—on ver-
sus off—despite a linear temperature sensitivity). Moreover, learning itself
can change the interpretation of the same input (e.g., the sticky mittens
paradigm alters how prereaching infants interact with objects; cf. Need-
ham, Barrett, & Peterman, 2002).

Development is also traditionally viewed as incremental, in the sense of
a serial process of learning a hierarchy of nested structures (much like the
building-blocks of a house). This view is undoubtedly too simple, as all
biological systems acquire specializations (e.g., organs) that are qualita-
tively different from their underlying components. Moreover, development
is better characterized as a parallel process of incremental additions with
feedback interactions that alter subsequent additions. McMurray (2007)
provided a nice example of this parallel nature of development in the
domain of the vocabulary spurt in child language. The notion of “mental
organs” or modules simply reflects the fact that highly efficient submecha-
nisms, or domain-specific expertise, frees up cognitive resources to access
more or different types of information from the same corpus of input.
This in turn allows the mature learner to “dig deeper” and extract more
complex aspects of information that were initially inaccessible to the na€ıve
learner. An interesting methodological point that falls out of this perspec-
tive is that the habituation paradigm presumes “processing is complete”
once the criterion of habituation has been met. But it seems quite likely
that revisiting the same stimuli in a subsequent habituation phase would
trigger “further processing” of information that was “missed” by the
infant in the initial habituation phase.

Finally, development is commonly viewed as progressive, in the sense
of consistently adding more knowledge or becoming more sophisticated.
However, regressions are common in development (Bever, 1982), presum-
ably because of competition among subsystems (e.g., the phenomenon of
“perceptual narrowing” in speech and face perception: Pascalis, de Haan,
& Nelson, 2002; Pons, Lewkowicz, Soto-Faraco, & Sebasti�an-Gall�es,
2009). For researchers to understand whether development is progressive
or regressive requires confidence that the same measurement tool in a
given domain of development is actually assessing the same underlying
competence across age, or when a uniform tool is unavailable, that differ-
ent measurement tools suited for different age ranges are assessing the
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same underlying competence. These are not trivial interpretive issues.
Moreover, the emergence of some other developmental system (e.g., loco-
motion) may not only serve to restrict generalization because of an
obvious change of context, but also fundamentally change the objects or
events to which infants attend (Bertenthal, Campos, & Kermoian, 1994).

In summary, the question of whether development is continuous, incre-
mental, and progressive—particularly in the domain of statistical learning—
requires more than just noticing (based on distributional statistics) that two
events are different (e.g., words and part-words). It is also necessary to
know the implications (for a given task) of those events. It is seductive to
assume that, by showing a looking-time preference at an early age, the
developmental domain under investigation is “mature” because those pref-
erences are consistent with the mature state. But looking times are not nec-
essarily equivalent to having attained a rich and robust understanding of a
corpus of input (i.e., having developed a mature representation of the under-
lying structures). It is quite possible that nonverbal measures of “capacity
X” in infancy are analogous to developmental seeds that will grow into
mature knowledge systems, but it also quite possible that these early capaci-
ties are replaced by a fundamentally different system that did not require
these precursors (see Keen, 2005 for thoughtful discussions on this point).

CONCLUDING REMARKS

At the end of a presidential address to nearly 1,000 attendees at our bien-
nial conference, it is instructive to return to some historical perspectives
on development, both personal and professional. In 1949, the year of my
birth, Donald Hebb published his now classic book entitled “The Organi-
zation of Behavior”. As a first-year graduate student, I purchased a paper-
back copy for $3.95. There are many kernels of wisdom in this book, but
my favorite is the following:

It is of course a truism that learning is often influenced by earlier learn-
ing. Innumerable experiments have shown such a ‘transfer of training’.
Learning A may be speeded up, hindered, or qualitatively changed by
having learned B before…. If the learning we know and can study, in
the mature animal, is heavily loaded with transfer effects, what are the
properties of the original learning from which those effects came? How
can it be possible even to consider making a theory of learning in gen-
eral from the data of maturity only? There must be a serious risk that
what seems to be learning is really half transfer.

(Hebb, 1949, pp. 109–110)
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The present article is my attempt to update Hebb’s insights into a
slightly more modern, but fundamentally similar, form based on the past
65 years of research since the book was published, recognizing that the
field of infancy research was virtually nonexistent in 1949.

I would also like to pay homage to my mentor, Philip Salapatek, by offer-
ing the following quote from Kessen, Haith, and Salapatek (1970) in their
chapter in Carmichael’s Manual of Child Psychology, which was the “bible”
in the growing field of infancy research when I entered graduate school:

Whether one sees the newborn child as neurologically insufficient
(Flechsig, 1920), cognitively confused (James, 1890), narcissistic (Freud,
1905), solipsistic (Piaget, 1927), or merely ugly (Hall, 1891), the dis-
tance between the new child and the walking, talking, socially discrimi-
nating, and perceptive person whom we see hardly 500 days later is
awesome.

(p. 287)

I can think of no better term than “awesome” to describe the excite-
ment and vibrancy of our field.
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